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Abstract

For a function f : {0, 1}n → R and an invertible linear transforma-
tion L ∈ GLn(2), we consider the function Lf : {0, 1}n → R defined by
Lf(x) = f(Lx). We raise two conjectures: First, we conjecture that if
f is Boolean and monotone then I(Lf) ≥ I(f), where I(f) is the total
influence of f . Second, we conjecture that if both f and L(f) are mono-
tone, then f = L(f) (up to a permutation of the coordinates). We prove
the second conjecture in the case where L is upper triangular.

1 Introduction

Definition 1 A function f : {0, 1}n → R is monotone if for all x = (x1, . . . , xn)
and y = (y1, . . . , yn),

(∀i : xi ≤ yi) ⇒ (f(x) ≤ f(y)).

Monotone functions on the discrete cube, and especially monotone Boolean
functions, were intensively investigated over the last decades (see, for exam-
ple, [9]). Despite the extensive research, the structure of such functions is far
from being understood. For example, there is no simple criterion to determine
whether a Boolean function is monotone or not.

In this paper we raise two conjectures regarding the application of linear
transformations to monotone functions on the discrete cube. The first conjecture
deals with the total influence of the function.

Definition 2 For a Boolean function f : {0, 1}n → {0, 1} and for 1 ≤ i ≤ n,
the influence of the i-th coordinate on f is

Ii(f) = µ({(x1, . . . , xn)|f(x1, . . . , xn) 6= f(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn)}),
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where µ is the uniform measure on the discrete cube. The total influence of f
is

I(f) =
n∑

i=1

Ii(f).

Influences of Boolean functions have been extensively studied and have ap-
plications in numerous fields, including Combinatorics, Theoretical Computer
Science, Statistical Physics, Social Choice Theory, etc. (see, for example, the
survey article [7]). Functions with a low total influence are of special impor-
tance, since they essentially depend on a small number of coordinates [4]. Our
first conjecture asserts that the total influence of a monotone Boolean function
cannot be reduced by applying a linear transformation.

Conjecture 1 If f is Boolean and monotone, then I(f) ≤ I(Lf), for all L ∈
GLn(2).

We have verified the conjecture for all the Boolean functions on n ≤ 5
variables.

The second conjecture deals with general monotone functions on the discrete
cube.

Conjecture 2 If both f and Lf are monotone, then f = Lf , up to a permuta-
tion of the coordinates.

We have verified Conjecture 2 for all monotone Boolean functions on n ≤ 5
variables. Further, we have proved the following particular case:

Theorem 1 If L ∈ GLn(2) is an upper triangular matrix, and both f and Lf
are monotone, then f = Lf .

We present the proof of Theorem 1 in Section 2. In Section 3 we discuss the
relation of Conjecture 1 to the Entropy-Influence conjecture [5] and consider
related questions dealing with other properties of the Fourier-Walsh expansions
of the functions f and Lf .

2 Proof of Theorem 1

The proof is by inverse induction on the number of coordinates L preserves (i.e.,
the number of i’s such that (Lx)i = xi for all x ∈ {0, 1}n). If L preserves all
the coordinates, then L is the identity matrix. Assume now the claim for any L
that preserves at least n−k+1 coordinates, and let L0 be a transformation that
preserves n− k coordinates. Without loss of generality we can assume that L0

preserves the last n− k coordinates. We want to show that for all (x1, . . . , xn),
we have L0f(x) = L1f(x), where L1 is identical to L0 except for the k-th row,
and in the k-th row, L1 is equal to the identity matrix. Then, by the induction
hypothesis, we have L0f = L1f = f .
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We divide the discrete cube into subcubes according to the values of the last
n− k coordinates. That is, for every (vk+1, . . . , vn) ∈ {0, 1}n−k we define

W = W (vk+1, . . . , vn) = {x ∈ {0, 1}n|xj = vj ,∀j ≥ k + 1}.

By the assumption, each W = W (vk+1, . . . , vn) is invariant under L0 and L1.
Hence, it is sufficient to prove the assertion for each W = W (vk+1, . . . , vn)
separately. From now on we fix W , and leave (vk+1, . . . , vn) implicit.
The proof is based on two observations:

1. If h : {0, 1}k → R is monotone, then for all (x1, . . . , xk−1) ∈ {0, 1}k−1 we
have h(x1, . . . , xk−1, 0) ≤ h(x1, . . . , xk−1, 1). Thus,∑
(x1,...,xk−1)∈{0,1}k−1

h(x1, . . . , xk−1, 0) ≤
∑

(x1,...,xk−1)∈{0,1}k−1

h(x1, . . . , xk−1, 1).

Moreover, equality holds if and only if h(x1, . . . , xk−1, 0) = h(x1, . . . , xk−1, 1)
for all (x1, . . . , xk−1) ∈ {0, 1}k−1, or equivalently, if the k-th coordinate
does not influence the output of h.

2. Since L0 and L1 are identical except for the k-th row, the values L0x and
L1x can differ only in the k-th coordinate. Since L0 is upper triangular
and since the values (xk+1, . . . , xn) are fixed for all x ∈ W , we have either
(L0x)k = xk for all x ∈ W or (L0x)k = 1−xk for all x ∈ W . If (L0x)k = xk

for all x ∈ W then L0f = L1f on W , as asserted. Hence, we may assume
that (L0x)k = 1− xk for all x ∈ W .

Define
f ′(x1, . . . , xk) = f(x1, . . . , xk, vk+1, . . . , vn),

and
L′

0(x1, . . . , xk) = (y1, . . . , yk),

where (y1, . . . , yn) = L0(x1, . . . , xk, vk+1, . . . , vn). Note that f ′ and L′
0(f

′) are
the restrictions of f and L0f to W . In particular, since L0 preserves the last
n − k coordinates, the monotonicity of f and L0f implies that both f ′ and
L′

0(f
′) are monotone.

Define the sets

S0 = {x ∈ {0, 1}k|xk = 0}, S1 = {x ∈ {0, 1}k|xk = 1}.

Since f ′ is monotone, by Observation 1 we have∑
x∈S0

f ′(x) ≤
∑
x∈S1

f ′(x). (1)

Similarly, since L′
0(f

′) is monotone,∑
x∈S0

f ′(L′
0x) ≤

∑
x∈S1

f ′(L′
0x). (2)
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By Observation 2, L′
0(S0) ⊆ S1 and L′

0(S1) ⊆ S0. Since L′
0 is the restriction

to W of L0 which is invertible, it follows that its restrictions L′
0 : S0 → S1 and

L′
0 : S1 → S0 are injective and surjective. Hence, Equation 2 is equivalent to∑

x∈S1

f ′(x) ≤
∑
x∈S0

f ′(x). (3)

Combining Equations 1 and 3 we get∑
x∈S0

f ′(x) =
∑
x∈S1

f ′(x). (4)

By Observation 1, Equation 4 implies that the k-th coordinate does not influence
the output of f ′. Therefore, L1f(x) = L0f(x) for all x ∈ W (since L0x and
L1x differ only in the k-th coordinate that does not affect the output of f for
x ∈ W ). This completes the proof of the theorem.

Remark 1 We note that the equality f = Lf does not imply that L is the
identity matrix. For example, if f = maj5, the majority function on 5 variables,
and L is the linear transformation which preserves the first four variables and
replaces the fifth with the XOR of all five, then it is easy to check that Lf = f .

3 Related Questions

We conclude the paper with several questions related to Conjecture 1.

3.1 Other Analytic Properties of Functions on the Dis-
crete Cube

In Conjecture 1, the total influence can be replaced by other analytic properties
of the function, i.e., other properties of its Fourier-Walsh expansion.

Definition 3 Let f : {0, 1}n → R. The Fourier-Walsh expansion of f is

f(S) =
∑

T∈{0,1}n

f̂(T )uT (S),

where elements of {0, 1}n are identified with subsets of {1, 2, . . . , n}, the char-
acters are uT (S) = (−1)|S∩T |, and

f̂(T ) = 〈f, uT 〉 =
1
2n

∑
T ′∈{0,1}n

f(T ′)uT (T ′).

As was first observed in [6], the total influence is given by the formula

I(f) = 4
∑

S∈{0,1}n

|S|f̂(S)2.
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It can be shown, using the linearity of the Fourier-Walsh expansion, that the
Fourier-Walsh coefficients of Lf satisfy

L̂f(S) = f̂((LT )−1(S)).

That is, the Fourier-Walsh coefficients of Lf are a permutation of the Fourier-
Walsh coefficients of f , defined by the matrix (LT )−1. Hence, Conjecture 1
asserts, qualitatively, that if f is monotone then the level of the Fourier-Walsh
coefficients of f is lower than the level of the coefficients of Lf (where the level
of the coefficient f̂(S) is |S|).

In the same spirit, one can raise the following question:

Question 1 If f is Boolean and monotone, α > 0, and 0 < ε < 1, is it true
that:

1. ∑
S∈{0,1}n

|S|αf̂(S)2 ≤
∑

S∈{0,1}n

|S|αL̂f(S)2

2. ∑
S∈{0,1}n

ε|S|f̂(S)2 ≥
∑

S∈{0,1}n

ε|S|L̂f(S)2

The expression Nε(f) =
∑

S∈{0,1}n ε|S|f̂(S)2 represents the noise sensitivity
of f (see [2]). The higher is Nε(f), the less is f sensitive to a small change of
the coordinates. Hence, Part 2 of the question asks, qualitatively, whether it is
true that f is less sensitive to noise than Lf , for all L.

Remark 2 We note that the similar question: Is it true that if f is Boolean
and monotone then for all k,∑

|S|≤k

f̂(S)2 ≥
∑
|S|≤k

L̂f(S)2

has a negative answer. The counterexample is the majority function on 2m + 1
coordinates, with k = 2m.

3.2 Relation to the Entropy-Influence Conjecture

Definition 4 The spectral entropy of a Boolean function f is defined by

E(f) =
∑

S∈{0,1}n

f̂(S)2 log2

1

f̂(S)2
.

The Entropy-Influence conjecture [5] asserts the following:
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Conjecture 3 There exists an absolute constant C such that for every Boolean
function f , E(f) ≤ CI(f).

There exist classes of monotone functions for which the inequality in the
conjecture is tight, i.e., there exists a universal constant C ′ such that I(f) ≤
C ′E(f) for functions in the class. An example of such a class is the tribes
functions, introduced in [1]. For such functions, applying the Entropy-Influence
conjecture to the function Lf and using the fact that E(f) = E(Lf) for all
L ∈ GLn(2), we get that there exists a universal constant C ′′ such that I(f) ≤
C ′′I(Lf) for all L ∈ GLn(2).

Hence, a weaker form of Conjecture 1 for several classes of functions follows
from the Entropy-Influence conjecture.

3.3 Non-Monotone Functions

If the function f is not monotone, then I(Lf) can be much smaller than I(f).
For example, let f(x1, . . . , xn) = x1 ⊕ . . . ⊕ xn be the parity function, and
let L be the linear transformation that represents the change of coordinates:
y1 = x1 ⊕ . . .⊕ xn, y2 = x2, . . . , yn = xn. Then Lf(x) = x1 is the dictatorship
function. While I(f) = n is the maximal possible total influence amongst
Boolean functions on n variables, I(Lf) = 1 is, by the Edge Isoperimetric
Inequality (see [3], Theorem 16.2), the minimal possible total influence amongst
balanced Boolean functions.

For the parity function, the only non-constant Fourier-Walsh coefficient of
f is on the n-th level, and the only non-constant coefficient of Lf is on the first
level. This “level reduction” can be generalized:

Proposition 1 Let f : {0, 1} → R be a function such that all the Fourier-Walsh
coefficients of f are concentrated on the k lowest and the k highest levels. Let
L be the matrix representing the change of coordinates

y1 = x1 ⊕ x2, y2 = x2 ⊕ x3, . . . , yn−1 = xn−1 ⊕ xn, yn = xn.

Then the Fourier-Walsh coefficients of Lf are concentrated on the 2k +1 lowest
levels.

It was shown in [8] that there exists a universal constant C such that if f is a
Boolean function all whose Fourier-Walsh coefficients are concentrated on the k
lowest levels, then f depends on at most Ck coordinates. Hence, Proposition 1
implies that if all the Fourier-Walsh coefficients of f are on the k highest and
the k lowest levels, then Lf depends on at most C2k+1 coordinates.
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