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1. Introduction

The main objective of the paper is to show that the notion of type which was
developed within the frames of logic and model theory has deep ties with geomet-
ric properties of algebras. These ties go back and forth from universal algebraic
geometry to model theory through the machinery of algebraic logic.

More precisely, we shall show that types appear naturally as logical kernels in
the Galois correspondence between filters in the Halmos algebra of first order for-
mulas over equalities and elementary sets in the corresponding affine space. Note
that in our terminology the term ”elementary set” has the meaning of ”definable
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set” in the standard model theoretic terminology. This Galois correspondence gen-
eralizes classical Galois correspondence between ideals in the polynomial algebra
and algebraic sets in the affine space. The sketch of the ideas of universal algebraic
geometry can be found in [39], [41], [42], [44], [45], [3], [36], [29], [7] [8], [9],[10], [5],
(6], [23], [24], [48], [49], etc. As for standard definitions of model theory, we refer
to monographs [35], [47], [4], [18], etc. For the exposition of concepts and results of
algebraic logic see [11] — [15], [16], [20], [21], [2], [1], etc.

Methodologically, in the paper we give a sketch of some ideas which provide
interactions of algebraic logic with geometry, model theory and algebra. We believe
that a development of the described approach can make benefits to each of these
areas. We shall stress that the paper does not contain a bunch of new results. Its
main duty is to specialize new problems and to underline common points of algebra,
logic and geometry through the notion of the type.

The paper is organized as follows. Section 2 is devoted to structures of alge-
braic logic. We define here various kinds of Halmos algebras, consider the value
homomorphism and provide the reader with the main examples of algebras under
consideration. Section 3 deals with basic approaches of universal algebraic geometry.
We define the general Galois correspondence which plays the important role in all
considerations. The description of this correspondence starts from the classical case
and extends to the case of multi-sorted logical geometry over an arbitrary variety
of algebras. In Section 4 we recall the model theoretic notion of a type. In Section
5 we concentrate attention on types from the positions of one-sorted algebraic logic
over given variety ©. Section 6 deals with the ideas of universal logical geometry
which give rise to LG-types and their geometric description. We finish the paper
with the list of problems appearing in the context of previous considerations.

2. Structures of Algebraic Logic
2.1. One-sorted case

We consider algebra and logic with respect to a given variety of algebras ©. This
point of view (cf. [43]) implies some differences with the original notions introduced
by P. Halmos ([11] — [15], see [31] for non-homogenious polyadic algebras). For
the sake of convenience, in this section we provide the reader with all necessary
definitions. It will be emphasized that the transition from pure logic to logic in ©
is caused by many reasons, and we would like to distinguish the needs of universal
algebraic geometry among them.

Denote by Q the signature of operations in algebras from ©. Let W (X) denote
the free in © algebra over a non-empty set of variables X. In the meantime we
assume that each X is a subset of some infinite set of variables X.

We shall recall the well-known definitions of the existential and universal quan-
tifiers which are considered as new operations on Boolean algebras (see [11]).

Let B be a Boolean algebra. The mapping 3 : B — B is called an ezistential
quantifier if
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1. 3(0) =0,
2. a < J(a),
3. 3(aA3b) = 3a A b

The universal quantifier V: B — B is defined dually:

1. ¥(1) =1,
2. a >V(a),
3. VY(a Vv ¥b) =Va V Vb.

Here the numerals 0 and 1 are zero and unit of the Boolean algebra B and a,b
are arbitrary elements of B. Symbol = means coincidence of elements in Boolean
algebra, i.e., a < b and b < a is written as a = b, a,b € B. The quantifiers 3 and V¥
are coordinated by: —(3a) = V(—a), i.e., (Va) = =(3(—a)) .

A pair (B, 3), where B is a Boolean algebra and 3 is the existential quantifier,
is a monadic algebra (see [11]).

Definition 2.1. A Boolean algebra B is a quantifier X-algebra if a quantifier
Jx: B — B is defined for every variable x € X, and

drdy = dydx,
for every z,y € X.

Remark 2.1. See also the definition of diagonal-free cylindric algebras of Tarski
e.a. [16].

Remark 2.2. According to [11], [43] a Boolean algebra B is a quantifier X -algebra
if a quantifier 3(Y"): B — B is defined for every subset Y C X, and

1. 3(@) = Ip, the identity function on B,
2. 3(X; U X2) = 3(X1)3(X2), where X7, Xy are subsets in X.

If we restrict ourselves with finite nontrivial subsets of X, then these two definitions
coincide, because condition 2) implies commutativity of quantifiers, and, conversely,
one can define 3(Y) = Jy; - - - yx, where Y = {y1,...,yx}-

We shall consider also extended Boolean algebras over W(X). We define an
equality on a Boolean algebra B is symmetric, reflexive and transitive predicate
=: W(X) x W(X) — B which takes a pair w,w’ € W(X) to the constant in B
denoted by w = w’, subject to condition:

(wi =W A Aw, =w)) < (wy ... wpw =W whw),

where w is an n-ary operation in Q.

Definition 2.2. We call a Boolean algebra B an extended Boolean algebra over
the free in O algebra W (X), if
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1. There are defined quantifiers dx for all z € X in B with Jz3Jy = JyIx for all
z,y € X, i.e. B is a quantifier X-algebra.

2. To every pair w,w’ € W(X) it corresponds a constant (called an equality) in B,
denoted by w = w’. Here,
(a) wy = w) < w) =w;.
(b) w = w is the unit of the algebra B.
(c) w1 = we Awg = ws < wy = ws.
(d) For every m-ary operation w € €2, where Q is a signature of the variety ©,

we have

— / — / — / /
wy =wi A AWy =W, KW .. WpW = Wy .. W, W.

Remark 2.3. Endomorphisms of Boolean algebras leave constants w = w’ un-
changed.

Remark 2.4. Condition 2(d) means that equalities respect all operations on
W(X).

Definition 2.3. An algebra £ = £(X°) is a Halmos algebra (one-sorted Halmos
algebra) over W (XY), X© is infinite if:

1. £ is an extended Boolean algebra.

2. The action of the semigroup End(W(X?)) is defined on £, so that for each
s € End(W(X")) there is the map s, : £ — £ which preserves the Boolean
structure of £.

3. The identities controlling the interaction of s, with quantifiers are as follows:

(a) sixdza = sy 3wa, a € L, if s1(y) = s2(y) for every y € X0, y # .

(b) sx3za = 3(s(z))(s«a), a € L,if s(x) =y and y is a variable which does not
belong to the support of s(2’), for every o’ € X, and 2’ # .
This condition means that y does not participate in the shortest expression
of the element s(z’) € W(XY) through the elements of X°.

4. The identities controlling the interaction of s, with equalities are as follows:
(a) si(w=w') = (s(w) = s(w)).
() (s2)ar(w=w') < (s%,).a, where a € £, and s% € End(W (X)) is defined
by s%(x) = w, and s% (z') = 2/, for ' # x.

For the definition of support see [43], Chapter 9, Section 1.
Remark 2.5. The set X° in the definition 2.3 must be infinite because otherwise
End(W(X")) does not act on B (see [43], Chapter 8, Section 2 for the details) in

the case of free Halmos algebras. In general this condition is superfluous since we
require the action of the semigroup End(W (X")) on the algebra £.

Remark 2.6. Definition 2.3 introduces algebras which are very close to polyadic
algebras of Halmos ( see [11]) defined over an infinite set of variables X". The
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main difference between these classes comes from the desire to specialize an alge-
braization of first order logic to an arbitrary variety of algebras ©. This means
that instead of action of the semigroup of transformations End(X?) of the set X,
we consider the action of the bigger semigroup End(W (X?)) as the semigroup of
Boolean endomorphisms. We also consider equalities of the type w = w’ instead of
the ones x = y for polyadic algebras.

Remark 2.7. Axioms 3(a) and 3(b) which look messy, are grounded on major
examples of Halmos algebras. In particular, we will see that Halmos algebras of
the kind Halg(H) (see Example 1) satisfy these identities. If instead of Halg(H)
we consider the Halmos algebra of formulas ® (see below), then the identity 3(a)
corresponds to the well-known fact that it is possible to replace a quantified variable
in a formula by another one. The identity 3(b) has a similar explanation (see [11]).

Remark 2.8. In [11], [43] an equality in Halmos algebras is defined as a reflexive
binary predicate which satisfies conditions 4(a) and 4(b). Then, it can be checked
[43], that this predicate is automatically symmetric and transitive.

Example 1. We give an example of a Halmos algebra which plays a crucial role
in further considerations.

Let X be any set (finite or infinite), H an algebra in ©. Consider the set
Hom(W(X), H) of all homomorphisms from W(X) to H. Let Bool(W(X), H) be
the Boolean algebra of all subsets A in Hom(W (X), H). Our aim is to make it an
extended Boolean algebra.

Define, first, quantifiers 3z, x € X on Bool(W(X), H). We set u € Jx A if and
only if there exists ¥ € A such that u(y) = v(y) for every y € X, y # z. It can be
checked that 3z defined in such a way is, indeed, an existential quantifier.

According to Definition 2.2, for each pair w,w’ € W(X) we shall define a con-
stant (equality) in Bool(W (X)), H). For some reasons for this particular algebra we
denote it by Valy (w = w'). We define this constant as follows:

Val(w= ') = {u | p(w) = plw)}.

Thus, the algebra Bool(W (X), H) is equipped with the structure of an extended
Boolean algebra (we omit verification of the necessary axioms).

Let X" now be an infinite set. Define the action of the semigroup End(W (X))
in Bool(W (X°), H). Every homomorphism s € End(W (X?)) gives rise to a Boolean
homomorphism

5« : Bool(W(X°), H) — Bool(W(X"), H),

defined by the rule: for each A C Hom(W (X"), H) the point p belongs to s, A if
us € A.

The signature of a Halmos algebra for Bool(W (X?), H) is now completed. De-
note it by HalgO(H). The algebra Halgo (H) is, indeed, a Halmos algebra, (it is
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proved in [39], that all algebras Hald ’ (H) for different H € © generate the variety
of Halmos algebras).

2.2. Multi-sorted case

Our next aim is to define multi-sorted Halmos algebras. There are many reasons
to do that. Some of them are related to potential applications of algebraic logic
in computer science, but some have purely algebraic nature. For instance, we need
multi-sorted variant of Halmos algebras in order to work with finite dimensional
affine spaces and to construct geometry related to first order calculus in arbitrary
O.

Every multi-sorted algebra D can be written as D = (D;,i € T"), where I is a
set of sorts, which can be infinite, and D; is a domain of the sort i. We can regard
domains D; as algebras from some variety (for definitions see [30], [33]).

Every operation w in D has a specific type 7 = 7(w). This notion generalizes
the notion of the arity of an operation. In the multi-sorted case an operation w
of the type 7 = (i1,...,1n;J) operates as a mapping w : D;, x ... x D; — D;.
Homomorphisms of multi-sorted algebras act component-wise and have the form
w=(pi,i €T): D — D' where u; : D; — D} are homomorphisms of algebras and,
besides that, every u is naturally correlated with the operations w.

Subalgebras, quotient algebras, and cartesian products of multi-sorted algebras
are defined in the usual way. Hence, one can define varieties of multi-sorted algebras.
In every such a variety there exist free algebras over multi-sorted sets, determined
by multi-sorted identities.

It is worth noting that categories and multi-sorted algebras are tightly connected
[17], [32]. So, define, first, Halmos categories.

Let ©° be the category of free algebras of the variety ©, and X,Y be (finite or
infinite) subsets of XY.

Definition 2.4. A category T is a Halmos category if:

1. Every its object has the form Y(X), where T(X) is an extended Boolean algebra
in © over W(X).

2. Morphisms are of the form s, : T(X) — T(Y), where every s : W(X) — W(Y)
is a homomorphism in @Y, s, is the homomorphism of Boolean algebras and
the correspondence: W(X) — YT(X) and s — s, determines a covariant functor
0% —T.

3. The identities controlling the interaction of morphisms with quantifiers and
equalities repeat the ones from Definition 2.3, where the endomorphisms s from
End(W (X)) are replaced by homomorphisms s : W(X) — W(Y).

Now we are able to define multi-sorted Halmos algebras associated with Halmos
categories. For the aims of logical geometry we assume that the set of sorts I is the
set of all finite subsets of the infinite set X©.
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Let X be a finite subset of X°, z € X. Consider an arbitrary W (X) in ©, and
take the signature

Lx ={V,A,—~, 32, Mx}, forall x € X.

Here Mx is the set of all equalities w = w’, w,w’ € W(X) over the algebra W (X).
We treat equalities from Mx as nullary operations. Consider the signature

Lo ={V,A,—,3x, Mx,s.}, for all z € X, and various X €T

In the signature Lg the symbol s, is reserved for operations of the type 7 = (X;Y),
where X,Y € I'. Each homomorphism s : W(X) — W(Y') induces the operation s.
of the type 7 = (X;Y).

Remark 2.9. The condition on I' is not necessary for the definition of Halsmos
algebras and made for the needs of universal algebraic geometry. Halmos algebras
can be defined for various choices of I'. For example, the one-sorted Halmos algebra
from Definition 2.3 corresponds to the signature

Lo = {V,A,—, 3z, Mxo,s.}, forall z € X°,

where the operations s, is induced by all possible homomorphisms s : W(X°) —
W (X?), and T consists of only one set X0.

Definition 2.5. We call an algebra T = (T x, X € I') in the signature Lo a Halmos
algebra, if

1. Every domain Yx is an extended Boolean algebra in the signature Lx.

2. Every mapping s, : Tx — Ty is a homomorphism of Boolean algebras. Let
s:W(X) - W), s : W) - W(Z), and let u € Tx. Then s, (s.(u)) =
(s'8)x(u).

3. The identities, controlling interaction of operations s, with quantifiers and equal-
ities are the same as in the definition of Halmos categories.

Each Halmos category T can be viewed as a Halmos algebra and vice versa.

Remark 2.10. The choice of © gives rise to some conditions all s, have to satisfy.

Now we shall construct two major examples of multi-sorted Halmos algebras.
The first one mimics the construction of one-sorted Halmos algebra from Example 1.

Example 2. Our aim is to define the Halmos category Halg(H). Assume that
we have a class of sets X, X € I'. Objects of this category are extended Boolean
algebras Bool(W (X), H) from Example 1, for various X € I'. Morphisms

S« 1 Bool(W(X),H) — Bool(W(Y), H),
are defined as follows:

pE s A s 3(u)=us €A,
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where p : W) — H, A ¢ Hom(W(X),H), s : W(X) — W(Y), and
S: Hom(W(Y),H) — Hom(W(X), H). Here § is viewed as a morphism of the
category of affine spaces (for the definition see [46]). In other words, s, A = (3)71A.
A morphism s, is automatically a homomorphism of Boolean algebras. The maps
s« are correlated with quantifiers and equalities, see [39] for details. Moreover, there
is a covariant functor: ©° — Halg(H). Hence, Halg(H) is a Halmos category.

The category Halg(H) gives rise to a multi-sorted (I'-sorted) Halmos algebra,
denoted by

Halg(H) = (Bool(W(X),H),X €T).

Each component (domain) here is the extended Boolean algebra. The operations in
Hale(H) are presented by the operations in each component Bool(W (X)), H) and
operations corresponding to morphisms

S« : Bool(W(X),H) — Bool(W(Y), H).

Example 3. Another important example of multi-sorted Halmos algebra is pre-
sented by algebra ® = (®(X), X € I') of first order formulas over equalities. It turns
out that geometrical aims forces to consider multi-sorted variant of algebraization
of first order calculus.

Consider once again the signature

Lo ={V,A,—, 3z, Mx,s.}, z€ X, X €Tl.

We construct the algebra ® in an explicit way. Denote by M = (Mx,X €T)
the multi-sorted set of equalities with the components My .

Each equality w = w’ is a formula of the length zero, and of the sort X if
w = w € My. Let u be a formula of the length n and the sort X. Then the
formulas —u and Jzu are the formulas of the same sort X and the length (n + 1).
Further, for the given s : W(X) — W(Y) we have the formula s,u with the length
(n 4+ 1) and the sort Y. Let now u; and us be formulas of the same sort X and
the length n, and ns accordingly. Then the formulas u; V us and u; A us have the
length (ny 4+ n2 + 1) and the sort X. In such a way, by induction, we define lengths
and sorts of arbitrary formulas.

Let £% be the set of all formulas of the sort X. Each £% is an algebra in the
signature Lx and

g0 = (2%, X eD)
is an algebra in the signature Lg. By construction, algebra £° is the absolutely free
algebra of formulas over equalities (i.e. over nullary operations) concerned with the
variety of algebras ©.
Denote by 7 the congruence in £° generated by the identities of Halmos algebras

from Definition 2.5 (see also their list in Definition 2.3) and define the Halmos
algebra of formulas as

= g%/7.
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It can be written as ® = (®(X), X €T'), where

®(X) = L& /7x,
where each ®(X) is an extended Boolean algebra of the sort X in the signature
Lx. The algebra ® is the free algebra in the variety of all multi-sorted Halmos

algebras associated with the variety of algebras ©, with the set of free generators
M = (Mx, X €T). Denote this variety by Halg.

Remark 2.11. One can show [40], that if we factor out component-wisely the al-
gebra £° by the many-sorted Lindenbaum-Tarski congruence, then we get the same
algebra ®. This observation provides a bridge between syntactical and semantical
description of the free multi-sorted Halmos algebra.

Remark 2.12. If an element u belongs to the domain ®(X), and s, corresponds
to s : ®(X) — ®(Y), then we cannot represent the formula s,u from ®(Y') in terms
of equalities, connectives, and quantifiers in ®(Y"). The formulas from ®(X) may
contain free generators from different X, X € I'.
For example, the formula
u=s.(y1 =y2) V(x5 = 24),

where X = {x1,22,23,24}, Y = {y1,9y2} and s(y1) = 21, s(y2) = 2, belongs to
d(X).

Theorem 2.1 ([39]). The variety Halg of multi-sorted Halmos algebras is gen-
erated by all algebras Hale(H), where H € ©.

Theorem 2.1 implies that ® is the free algebra in Halg. This allows us to study
properties of ® using the very concrete algebra

Hale(H) = (Bool(W(X), H), X €T)

as a model. Recall that we have defined the image of equalities from Mx in
Bool(W(X), H) by:

Val(w=w') = {u | p(w) = plw')}.

This means that there is the map

Valg : M — Hale(H).

Since equalities M = (Mx,X € I') generate freely the free multi-sorted Halmos
algebra ®, the map Valy can be extended from generators to the homomorphism
of multi-sorted Halmos algebras

Valy : ® — Hale(H).

Since ® = (®(X),X € I'), where each component ®(X) is an extended Boolean
algebra, the homomorphism Valyg induces homomorphisms

Valys : ®(X) — Bool(W(X), H),
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of the one-sorted extended Boolean algebras. This allows us to calculate the value
of each element from ®(X) in Bool(W (X), H). Note that the values of elements of
the form s,u are calculated as follows. Take s : W(X) — W(Y') and consider the
formula s,u, where u € ®(X). By definition, s,u belongs to ®(Y"). Since Valy is a
homomorphism, then

Valy (syu) = s.(Valiu).

In the next sections we shall put all this staff in the context of affine spaces in
arbitrary varieties. Replacing usual equations by logical formulas we arrive at the
field of logical geometry.

3. Structures of Universal Algebraic Geometry

Let us begin with the very classical setting (cf. [58]). Let K be a field and T =
{f1,--., fm} be a set polynomials in the polynomial algebra K[X]| = K[x1, ..., Z,].
Consider the affine space K™ with points a = (aq,...,ay), a; € K and define the
Galois correspondence between ideals T in K[X| and algebraic sets A in K™:

T, =A={a] fi(a) =0, for all f; € T},

Ay =T ={fi e K[X] |fi(a) =0, for all ae A},

In this correspondence geometric objects: curves, surfaces, general algebraic sets
appear as zero loci of polynomials in the algebra K[X].

In order to generalize this situation to arbitrary varieties of algebras, consider
the variety Com — K of commutative, associative algebras with unit over the field
K. Then the algebra K[X] is the free algebra in this variety and polynomials f; are
just elements of free algebra. Consider the field K and its extensions as algebras in
this variety. Consider elements @ = (aq, ..., a,) of the affine space K™ as functions
a: K[X] — K defined by a(x;) = a;, ¢ = 1,...,n. Using this vocabulary we can
define the Galois correspondence and geometric objects not in Com — P but in
arbitrary ©.

Let © be an arbitrary variety and H be an algebra in ©. This algebra takes
the role of the field K, hence the affine space has to be of the form H™. Let
W(X) be the free algebra over X, X = {x1,...,2,}. This is the place were equa-
tions are situated and thus it plays the role of K[xy,...,2,]. The natural bijec-
tion a : Hom(W(X), H) — H™ allows us to consider the set of homomorphisms
Hom(W(X), H) as the affine space and its elements as the points of the affine
space. Let the point u € Hom(W (X), H) be induced by a map p : X — H. Then
it corresponds the point @ = (a1,...,a,) in H", where a; = p(z;). This corre-
spondence gives rise to kernels of points u of the affine space. We define the kernel
Ker(u) of the point u as the kernel of the homomorphism g : W(X) — H.
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Let T be a system of equations of the form w = w’, w,w’ € W(X) which we
treat as a system of formulas of the form w = w’ on W(X). Since w and w’ are
elements in W (X), then w = w(zxy,...,z,), v =w'(z1,...,2,).

Definition 3.1. A point @ = (a,...,a,) € H™ is a solution of w = w’ in the
algebra H if w(ay,...,a,) = w'(a1,...,a,). A point p € Hom(W(X),H) is a
solution of w = w' if w(p(xy),...,pw(zy)) = w (u(x1),. .., wlzy)).

The equality w(u(zy),...,u(x,)) = w'(p(x1),. .., u(x,)) means that the pair
(w,w") belongs to Ker(u). Identifying pairs (w,w’) with the elements w = w’ one
can say that the equation w = w’ has a solution at the point p if w = w’ belongs to
the kernel of the point u. The kernel Ker(u) is a congruence of the algebra W (X),
and thus the quotient algebra W(X)/Ker(u) is defined.

Let now T be a system of equations in W(X) and A a set of points in
Hom(W(X), H). Set the Galois correspondence by

Ty=A={p:W(X)—H|TC Ker(u)}
w=T={(w=w)| (wuw)e [ Ker(n)}.

Definition 3.2. A set A in the affine space Hom(W (X), H) is called an algebraic
set if there exists a system of equations 7" in W (X) such that each point p of A
satisfies all equations from 7. A congruence T in W (X) is called H-closed if there
exists A such that A%, =T.

We can rewrite the Galois correspondence through the values of formulas:

Ty=A= m Valy (w = w').
(w,w")eT

Ay =T={w=w|AcCVayw=uw)}

The geometry obtained via this correspondence is an equational geometry
grounded on algebra H in ©. However, there are no reasons to restrict ourselves
with equational predicates looking at the images of the formulas in the affine space.
We can look at arbitrary first order formulas as at equations, and since arbitrary
formulas are the elements of ® = (®(X), X € I'), we shall replace in all considera-
tion the free algebra W (X) by the extended Boolean algebra ®(X).

The sets of equations are defined as arbitrary subsets in ®(X), the finite dimen-
sional affine space H™ is the same as in equational case, and it remains to define
the geometric objects, that is the images of the formulas v € ®(X) in the Galois
correspondence. This can be done because, as we know, the equalities Mx, X € T’
represent the free generators of ® and, thus the value homomorphism Valﬁ can be
extended from equalities to arbitrary formulas u € ®(X).
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Let p: W(X) — H be a point. Along with the classical kernel Ker(u) we define
its logical kernel.

Definition 3.3. A formula u € ®(X) belongs to the logical kernel LKer(u) of a
point u if and only if u € ValX (u).

It can be verified that the logical kernel LKer(u) is always a Boolean ultrafilter
of ®(X) [40].

Since we consider each formula u € ®(X) as an "equation” and Val(u) as
a value of the formula u in the algebra Bool(W(X), H), then ValX(u) is a set of
points p : W(X) — H satisfying the ”equation” u. We call Val (u) solutions of
the equation u. We also say that the formula u holds true in the algebra H at the
point .

We call the obtained geometry associated to an arbitrary variety © and H € ©
the logical geometry.

In order to establish in this case the Galois correspondence we shall replace the
kernel Ker(u) by the logical kernel LKer(u). Let T be a set of formulas in ®(X)
and A a set of elements in Bool(W(X), H). Define

Th=A={pu:W(X)— H|TC LKer(n)},

AL =T = ﬂ LKer(p)
HEA

The same Galois correspondence can be rewritten as

Th = A= () Valj(u).
ueT

AL =T = {ue ®(X) | AC Valk(u)}).

Definition 3.4. A set A in the affine space Hom(W (X)), H) is called an elementary
set if there exists a system of formulas 7" in ®(X) such that each point u of A satisfies
all formulas from 7. In other words, A = ALl = TL is fulfilled for elementary sets.

Definition 3.5. A set of formulas 7' C ®(X) such that T = THY = AL is called
an H-closed Boolean filter in ®(X).

Remark 3.1. The set of formulas 7" which defines an elementary set A can be
infinite.

Remark 3.2. Elementary sets in the model theory are usually called definable
sets. Since in the geometrical approach they are tightly connected with elementary
theories, we use the term ”elementary set” instead of ”definable set”.
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4. Model Theoretic Types

In this small section we recall the well-known definitions from model theory. Expo-
sition mainly follows the standard model theory course by [35], see also [34], [47],
etc. We assume that the precise definition of an L-structure is known. Basically,
an L-structure is a pair (L, M), where L is a language and M is a set, called the
domain of the structure. Any language may contain functional symbols, symbols
of relations, and special symbols called constants. Given an L-structure, all these
symbols are interpreted (realized) on the domain M. So any L-structure can be
considered as a triple (IL, M, f), where f is an interpretation function.

Formulas of I are built inductively from atomic formulas, using the symbols of
L, symbols of variables x1, x2, ..., the equality symbol =, the Boolean connectives
A, V, =, the quantifiers 3 and V, and the parentheses ( , ). We suppose that the
interpretation of symbol = is always the equality on M.

A variable = occurs freely in a formula u if it is not bound by quantifiers 9z or
V. A formula v is called a sentence (or a closed formula) if it has no free variables.
If w(zq,...,z,) is a formula in free variables x1,...,z,, then its closure @ is any
sentence produced from u by binding all free variables by quantifiers.

Let M be an L-structure. Let w(zq,...,2,) be a formula in free variables
T1,...,T, which means that all occurrences of other variables in this formula are
bound. The value ("true” or ”false”) of a formula v = u(z1,...,2,,) in the point
a = (ay,...,a,) € M™ is defined inductively, using the scheme of Tarski. Each
L-sentence is either true or false on the whole M. The notation M = u(a) means
that u(a) is true on M. In this case we say that w is satisfiable on M.

Definition 4.1. A set T of L-sentences is called an LL-theory. M is a model of the
theory T if M |= w for all uw € T'. A theory is satisfiable if it has a model.

Suppose that M is an L-structure and A C M. Let L4 be the language obtained
by adding to L constant symbols for each a € A. We can naturally view M as an
L 4-structure by interpreting the new symbols in the obvious way. Let Th (M) be
the set of all L 4-sentences true in M, that is the IL 4-theory of the model M.

Definition 4.2. If L is a first order language, then Th 4 (M) is called the elementary
theory of M.

Definition 4.3. Let P = {u;(z1,...,%,)} be a set of L 4-formulas in free variables
Z1,...,2Tn. We call P an n-type (partial n-type) if P UTh4(M) is satisfiable. We
say that P is a complete n-type if u € P or —u € P for all L 4-formulas v with free
variables from x1, ..., x,.

So, the data for a type P is a structure M and a subset of constants A C M. If
M is any L-structure, A C M, and @ = (ay, ..., a,) € M™, denote by tp"(a/A) =
{u(z1,...,2,) € La such that M |= u(ay,...,a,)}. Then, tp"(@/A) is a complete
n-type.
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Definition 4.4. We say that a complete n-type P is realizable in M if there is
@ = (aiy,...,a,) € M™ such that P = tp*(a/A).

Denote the sets of all complete realizable n-types over M by S7% (M). In the case
A = M we denote this set by S™(M).

5. Algebraization of Model Theoretic Types

Define an algebraization of the notion of type. Let X° be an infinite set of variables.
Let H be an algebra from a variety of algebras © and also the set of constants.
That is we consider algebras G from the variety ©F of H-algebras. For example,
if © is the variety of commutative and associative rings with the unit and K is a
field, then ©X is the variety of algebras over the field K.

The free algebras in ©F have the form W(X%) = W/(X%) « H, where W'(X?)
is the free algebra in © and * stands for the free product in ©.

Let ®(X°) be the one-sorted Halmos algebra of formulas associated with the
variety ©F.

Let us consider the Galois correspondence for the one-sorted Halmos algebra
®(X?), XY is infinite. Let T be a set of formulas in ®(X"). We have

Th=A={u:W(X° - H|T C LKer(u)},

AL =T = ﬂ LKer(p)
pHEA
Let X = {x1,...,2,} be a finite subset in X". We shall define X-MT-type
(MT-type for short) of the point u € Hom(W(X),H) = H".
For each point p : W(X) — H consider the set of points A, defined by: a
point v : W(X°) — H belongs to A, if v(z) = p(z) for z € X and v(y), where
y € X%\ X, is an arbitrary element in H. Define

T,=(A)h = () LKer(v).
VEAM
In other words T}, is the set of all formulas v € ®(X°) which hold on the points
from A,,. This means that v € T}, if and only if A, C ValﬁO (u). Since every logical
kernel is an ultrafilter, the set T}, is a filter in ®(X?).

Definition 5.1. We call the filter T}, an MT-type of the point pu.

Remark 5.1. Let us compare Definitions 4.1 — 4.4 and Definition 5.1. In the defi-
nition 5.1 we consider an MT-type of the point a = (as,...,a,), where u(z;) = a;,
a; € H for x; € X, as the set of all formulas « which hold true on the point u (i.e.,
on the point a). Therefore, the type of a point in our definition is always a filter.
On the other hand, by the definition 4.4 the type of the point tp¥(a) = tp™ (1),
where p(x;) = a5, @ = 1,...,n is the set of the satisfiable in the point u formulas
of the form u = u(x1,...,Zn,y1,...,Yk), where only z; are free variables. This is a
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subset of T}, and thus an MT-type T}, is somewhat bigger than the corresponding
tp™ ().

Remark 5.2. The similar situation holds with the definition of the elementary
theory of an algebra H.

We will consider elementary theory of H as the set of all formulas u true in
every point p in Hom(W (X), H).

On the other side, according to the model-theoretic Definition 4.1 the elementary
theory of H is smaller and consists of closed formulas true in H. Since every formula
u true in H is equivalent to its closure u, then by abuse of language we use the
same notation Th(H) for the elementary theory of H in both cases. So,

Th(H) = (T,

where p € Hom(W(X), H).
This situation is typical for algebraic logic and geometry where the free variables
do not play the same role as in logic and model theory.

Denote the system of all MT-types T, of the algebra H by Si. Here, u :
W(X) — H, and X runs all finite subsets of X©.

Given finite subset X C X° and a point p : W(X) — H, define s = s* :
W(X% — W(XY), where W(X°) = W/(XY) x H, by letting s(z;) = u(x;), if
v € X, and s(y) =y fory € YO = X9\ X. Let si : ®(X°?) — ®(X°) be the
corresponding map of Halmos algebras.

Proposition 5.1. A formula u € ®(X°) belongs to T, if and only if sku belongs
to the elementary theory Th(H).

Proof. Let sku belong to the elementary theory Th(H). We shall prove that u €
T,,. Thus, we shall check that A, C Valﬁ0 (u). Let v € A,. Let 6§ : W(XY) — H
be an arbitrary point in Hom(W (X°), H). Then, for z; € X, we have ds*(z;) =
d(p(zi)) = p(x,) since ¢ fixes constants. Correspondingly, ds#(y;) = d(y;). Thus we
can choose ¢ such that ds* = v for any v € A,,. Since sku € Th(H), then ¢ lies in
Valﬁo(s’ju) = si‘Val)I_%O (u). The latter equality means, by definition, that ds* lies
in Valﬁ0 (u). Hence, A, C Valf,n (u).

Conversely, let u € T,. We shall prove that siu belongs to the elementary
theory Th(H). So we have to check that any point § satisfies sku. Consider ds*.
This point belongs to A,. Hence §s* lies in Valﬁo (u). This means that § lies in
stValX" (u) = ValX’ (stu). Thus, an arbitrary point 8 belongs to Val' (stu) and
siu lies in Th(H). O

Let u = u(z1,...,Tn,Y1,---,yx) be a formula in ®(X°) such that z; € X,
y; € Y, and all occurrences of x; are free, all occurrences of y; are bound. We call
such a formula special.
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Let u be a special formula. It can be seen that s&u replaces all occurrences of
free variables x; by the their images h; € H under the homomorphism s*. Hence
sku has all variables bound, i.e., sku is a sentence.

Any MT-type is complete with respect to special formulas. Indeed, let u be
a special formula and let w ¢ T),. Consider —u. We have s{(-u) = —si(u). By
Proposition 5.1, sk (u) does not hold in H. Since sku is a sentence, the formula
-k (u) holds in H. Hence, sk (—u) holds in H and thus belongs to Th(H). Then
—u € T}, according to Proposition 5.1.

From now on, one can build the type theory from the positions of one-sorted
algebraic logic. In the next section we consider a more geometric approach, related
to multi-sorted logic and multi-sorted Halmos algebras.

6. Logically Geometric Types

Let us take the free multi-sorted Halmos algebra of formulas ® = (®(X), X € I),
where all X are finite. Recall the necessary facts from the previous sections.
There is the value homomorphism of multi-sorted Halmos algebras Valy : o —
Halg(H), which induces homomorphisms of extended Boolean algebras Valy :
®(X) — Bool(W(X),H), where Halg(H) = (Bool(W(X),H),X € T"). We can
write Valy = (Vals, X € T). For every X, the homomorphism Val# gives rise to
a major Galois correspondence of logical geometry between H-closed congruences
in ®(X) and elementary sets in finite dimensional affine spaces Hom(W (X), H) :

TE=A={p:W(X)—= H|TC LKer(n)},

AL =T = ﬂ LKer(u).
HEA

Let Th(H) = (Th*(H),X € T) be the multi-sorted representation of the ele-
mentary theory of H. We call its component Th™ (H) the X-theory of the algebra
H. We have:

Ker(Valg) =Th(H),

Ker(Valy) = Th (H).

The key diagram which relates logic of different sorts in multi-sorted case is as
follows:

D(X) 2, 2(Y)

Valgl lVal}/I

Bool(W(X),H) —2— Bool(W(Y), H)
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Here the upper arrow represent the syntactical transitions in the category Halg,
the lower level does the same with the respect to semantics in Halg, and the
correlation is provided by the value homomorphism.

Recall that a formula v € ®(X) belongs to the logical kernel LK er(u) of a point
p if and only if p € Val¥ (u), that is u lies in LKer(u) if a point p satisfies the
"equation” u. This is the Boolean ultrafilter, which contains ThX (H). Indeed, if
u € ThX(H) then Valfl(u) = Hom(W(X), H). In particular, u € Valy(u) and
u € LKer(p). Thus Th* (H) C LKer(p). Moreover,

Th*(H) = (| LKerp.
o
Define now the concept of an LG-type.

Definition 6.1. Every ultrafilter 7' in the algebra ®(X) containing Th*X (H) is
called X-LG-type.

Definition 6.2. An ultrafilter T is called X-LG-type of the algebra H, if there is
a point u : W(X) — H such that T = LKer(u).

In the latter case we also say that the type T is realizable in H. Since the
elementary X-theory is contained in each LKer(u) then the elementary X-theory
Th™(H) is contained in each X-LG-type of H. Denote the system of all X-LG-types
of the algebra H by SX(H).

Now we want to explore the geometrical nature of the Galois correspondence. In
algebraic geometry, the category of all algebraic sets is an important invariant of the
the algebra H. In most cases, this category is dual to the category of coordinated
algebras. We want to use similar ideas in the case of logical geometry. The logical
kernels take the role played by the radical ideals in classical geometry and the roles
of closed congruences in the universal one. So, the types of the points represented
by the logical kernels may have similar impact to logical geometry and may be
involved in the similar algebraically-geometric ideas.

Two algebras Hy and Hs are called geometrically equivalent (AG-equivalent for
short) (see [40], [41]) if for every finite X and T in W (X)) we have

1" 1
Ty, =Ty,

1

Definition 6.3 ([46]). Algebras H; and Hjy are called logically equivalent (LG-
equivalent for short) if for every finite X and 7" in ®(X) we have

T~
It can be seen (see [46]), that if two algebras H; and Hy are logically equiv-

alent then they are elementary equivalent (i.e., Th(Hy) = Th(H3)). The converse
statement is not true.

Definition 6.4 ([46]). Algebras H; and Hj in © are called LG-isotypic, if for any
finite X, every X-LG-type of the algebra H; is an X-LG-type of the algebra H,
and vice versa.
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Thus, the algebras H; and Hy are LG-isotypic if S*(H;) = SX(Ha) for every
X €T This coincidence clearly implies that they are elementary equivalent.

So, we have the geometric notion of logical equivalence of algebras which gen-
eralizes geometric equivalence, and the model theoretic notion of LG-isotypeness.
Both of them imply elementary equivalence. The following theorem shows that
these two notions coincide.

Theorem 6.1 ([40]). Algebras Hy and Hs are LG-equivalent if and only if they
are LG-isotypic.

One can define the category of algebraic sets Kg(H) and the category of ele-
mentary sets LKg(H). The objects of Kg(H) are of the form (X, A), where A is
an algebraic set in Hom(W (X), H). If we take for A the elementary sets, then we
are getting to the category of elementary sets LKeg(H). The morphisms are of the
form

[s] - (X, 4) — (Y, B).

Here s : W(Y) — W(X) is a morphism in the category ©°. The corresponding
§: Hom(W(X),H) — Hom(W(Y), H) should be coordinated with A and B by
the condition: if v € A C Hom(W(X), H), then §(v) € B C Hom(W (Y'), H). Then
the induced mapping [s] : A — B we consider as a morphism (X, 4) — (Y, B).

The category Kg(H) is a full subcategory in LKg(H). It is known that if two
algebras H; and H, are geometrically equivalent, then the categories of algebraic
sets Kg(Hy) and Kg(Hs3) are isomorphic. A similar fact is valid with respect to
categories of elementary sets. Namely,

Theorem 6.2 ([46]). If the algebras Hy and Hy are LG-isotypic then the cate-
gories LKg(H1) and LKg(Hs) are isomorphic.

7. Problems

In Sections 5 and 6 we described M T-types and LG-types. Now we want to compare
these notions.

Recall that MT-types are defined for points p : W(X) — H of the affine space
Hom(W (X), H). However, the formulas from any MT-type T}, lie in the algebra
of formulas ®(X?), where X° is an infinite set.

In the case of LG-types, we consider finite sets X in X° and the multi-sorted
algebra of formulas ® = (®(X),X € I'), where all X are finite. The X-LG-type
of the point p: W(X) — H is LKer(u), which is calculated in the algebra ®(X).
This is one of the differences in two approaches. We shall also remember that the
formulas from T C ®(X) may contain free generators from different X, where
X €T (see Remark 2.12). The following conjecture compares MT-isotypeness and
LG-isotypeness.

Conjecture 7.1. Two algebras Hy and Hs from the variety © are MT -isotypic if
and only if they are LG-isotypic.
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This result will imply the general line which looks as follows: we work in the
frames of logical geometry and apply the results and corresponding notions to model
theoretic types.

For instance the notion of isotypeness of algebras is consistent with geometri-
cal ideas and extends the notion of geometrical equivalence of algebras. However,
from the point of view of model theory isotypeness is ultimately connected with
the classical questions about elementary equivalence of algebras. As soon as both
isotypenesses give the same we come out with one more bridge between logic and
geometry.

Problems 7.1 and 7.2 are formulated for LG-types, but the above said makes
them relevant for MT-types as well.

Problem 7.1. Let F,, be a free group of the rank n > 1 and H be a group. Is it
true that if F,, and H are LG-isotypic then they are isomorphic?

This problem lies, in fact, in the mainstream of Tarski’s problem which asks if
two finitely generated non abelian free groups are elementary equivalent. The latter
problem stimulated the development of the algebraic geometry over free groups and
hyperbolic groups described in a series of brilliant papers (see [23]-[28], [49]-[57]
and many others). In particular there is a description of all groups elementary
equivalent to a given free group ([54], [26]).

Problem 7.2. Are there LG-isotypic groups Hy and Hs such that Hy is finitely
generated and Ho is an arbitrary non finitely generated group?

C. Perin and R. Sklinos [38] (see also A. Ould Houcine [37]) proved that if for
a non-abelian free group H there is the equality 7}, = 7}, then u = ov for some
automorphism o of H.

Problem 7.3. What are the varieties © such that for arbitrary free algebra H =
W(X) from © the equality T,, = T, implies p = ov?

Similar question for LG-types and free groups is of great interest.

Problem 7.4. Is it true that for a given free mon-abelian group the equality
LKer(u) = LKer(v) implies p = ov?

Note that the group of automorphisms of an algebra H acts on the affine space
Hom(W(X), H), and each elementary set is invariant under this action. If for the
algebra H there are only a finite number of Aut(H)-orbits in Hom(W (X), H) for
every X, then there are only finite number of realizable LG-types in ®(X). It can
be shown that for free abelian groups of the exponent p this property is satisfied.
It would be interesting to look for non-abelian examples.

Problem 7.5. Find examples of algebras H such that for every X there are only
a finite number of Aut(H)-orbits in Hom(W (X), H).
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n [19], S. Feferman and R. Vaught studied the operations on algebras that
preserve elementary equivalence. The remaining open question weather the free
products of pair-wise elementarily equivalent groups are elementarily equivalent
was solved recently by Z. Sela affirmatively ([57], see also [22]). Namely, he proved
that if a group A; is elementarily equivalent to a group As, and a group Bj is
elementarily equivalent to By then A x By is elementarily equivalent to A x Bs.

Problem 7.6. Let Ay, As, By, By be groups and let Ay be isotypic to As, and By
be isotypic to By. Is it true that the free product Ay * By is isotypic to Ag x By ?

8. Recent results. Appendix

A bunch of results related to problems pointed above was obtained very recently
by Z.Sela, R.Sklinos, and G.Zhitomirski. After the paper had been finished we
were informed that Conjecture 7.1 is true (G. Zhitomirski [59]). Hence, the result
of C. Perin and R. Sklinos solves Problem 7.4. Problems 7.3 and 7.4 have posi-
tive solutions for the varieties of abelian groups and nilpotent of class ¢ groups
(G. Zhitomirski, [59], R. Sklinos for abelian groups, unpublished). The question

Problem 8.1. Is it true that for a given free solvable group of the derived length
¢ > 1 the equality LKer(u) = LKer(v) implies p = ov?

remains open.

Problem 7.1 is solved for the case of a finitely generated group H (R. Sklinos,
unpublished), i.e., if a free group F, of the rank n > 1 is isotypic to a finitely
generated group H, then F,, and H are isomorphic. G.Zhitomirski ([59]) proved
that if two abelian groups are isotypic and one of them is free and finitely generated
then they are isomorphic.

At last, using the technique of [57], Z. Sela solved positively Problem 7.6 (un-
published).
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