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Abstract—In the present paper, we consider word maps w: Gm  G and word maps with constants w: Gm 
G of a simple algebraic group G, where w is a nontrivial word in the free group Fm of rank m, w = w11w2 ∙∙∙
wrrwr + 1, w1, …, wr + 1  Fm, w2, …, wr ≠ 1,  = {(1, …,r | i G\Z(G)}. We present results on the images of
such maps, in particular, we prove a theorem on the dominance of “general” word maps with constants,
which can be viewed as an analogue of a well-known theorem of Borel on the dominance of genuine word
maps. Besides, we establish a relationship between the existence of unipotents in the image of a word map and
the structure of the representation variety R(w, G) of the group w = Fm/w.
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1. WORD MAPS WITH CONSTANTS

For any group G and any non-empty word w in the
free group Fm of rank m one can define the word map
w: Gm  G by the formula w((g1,…,gm)) = w(g1,…,gm)
(we substitute the elements gi instead of the variables
xi). Recently one could observe growing interest to the
study of word maps of simple algebraic groups (see [1–
3, 5, 8, 9]). For such groups we also consider here word
maps with constants. Namely, let G be a simple alge-
braic group defined over an algebraically closed field K
(we identify the group G with the group of points
G(K)), and let w1,…,wr + 1  Fm, where w2,…,wr ≠ 1, 
= {1,…,r | i  G\Z(G)} (we allow i = j for i ≠ j).
The expression w = w11w2 ∙∙∙ wrrwr + 1 is called a
word with constants (we regard usual words as words
with constants by setting  = , w = w1). The behaviour
of words with constants on simple algebraic groups
was studied, in particular, in [6, 7, 15]. A word with
constants also gives rise to a natural word map with
constants w: Gm  G. In [6] such maps were used for
studying products of conjugacy classes, and in [8] they
served as a method for studying genuine word maps.

One of the main questions of the theory of word
maps concerns their surjectivity (the answer is
unknown even for the group G = SL2(C), see [9]).
According to a theorem of A. Borel [4], the word maps

1 The article was translated by the authors.

of the simple algebraic groups are dominant, i.e., the
image Im w of such a map contains a dense open sub-
set of G. A word map with constants is not necessarily
dominant (for example, for w = xx–1). However, for
a “general” word with constants such a map turns out
to be dominant.

Theorem1. Let Ωr = (w1, …, wr + 1) be a sequence of
words from Fm where w2, …, wr ≠ 1. Suppose that

  [Fm, Fm]. Then there is a non-empty Zariski

open subset U(Ωr)  Gr such that for every sequence  =
(1, …, r)  U(Ωr) the map w: Gm  G is dominant.

We also consider the case of word maps with con-

stants for which we have . Namely, let
w(x, y)  F2 and   G. Then the map w: G  G
defined by the formula w(x) = w(x, ) is a word map
with constants (here the constants are powers of ).
We have the following theorem, which can serve as a
tool in studying word maps in two variables (see [8]).

Theorem 2. Let w  [F2, F2]. Тhen there is a non-
empty Zariski open subset U(w)  G such that for every
  U(w) the set {g(Im w)g–1|g  G} is Zariski dense in G.

2. SEMISIMPLE ELEMENTS IN Im w
In the paper [3] it was proven that for G = SL2(K)

the image of the word map w: SL2(K)m  SL2(K) con-
tains all semisimple elements of SL2(K) (here K is an
algebraically closed field) except possibly –1 (1
denotes the identity matrix). Using the fact that for all
simple algebraic groups except those of types Ar, D2r +

1, E6, the corresponding root system contains a subsys-
tem of the same rank which consists of the union of
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disjoint subsystems of type A1, one can get the follow-
ing assertion.

Theorem 3. Let G be a simple algebraic group, and
let w: Gm  G be a word map. Suppose that G is not of
type Ar, r > 1, D2r + 1, or E6. Then every regular semisim-
ple element of G is contained in Im w. Moreover, for every
semisimple element g  G there exists an element g0 of
order two such that gg0  Im w.

3. UNIPOTENT ELEMENTS IN Im w 
AND THE REPRESENTATION VARIETY 
OF A FINITELY GENERATED GROUP

Let T and W denote, respectively, a fixed maximal
torus and the Weyl group of G, and let : G  T/W be
the quotient morphism (see [14]). For a word map w:
Gm  G define w = w–1 (1), w = ( ⋅ w)–1(1) (here 1
denotes the identity element of G and also the image of
the identity element of T in T/W). Then w  w are
affine subvarieties of Gm, w = {(g1, …, gm)  G | w(g1,…,
gm) is a unipotent element}, w = R(w, G) is the vari-
ety of representations of the one-relator group w =
Fm/w in the group G. Thus, the existence of nontriv-
ial unipotent elements in Im w is equivalent to the
inequality w ≠ w. For example, in the simplest case
G = SL2(K) and m = 2 all irreducible components of
the variety w are of dimension 5, and thus the exis-
tence of nontrivial unipotent elements in Imw follows
from the existence of irreducible components of w of
dimension 4.

The representation variety of a group is an import-
ant object which can be regarded from various points
of view (see, e.g., [10–13]) and may be crucial for
answering the question on the existence of unipotent
elements in Imw.

The existence of unipotent elements in Im w is an
open question even in the case G = SL2(K). In [3],
Bandman and Zarhin proved that for G = SL2(K) (ch
K = 0) and w  [[Fm, Fm], [Fm, Fm]], the set Im w con-
tains all unipotent elements. Besides, they gave an
example of a computer-aided calculation for a word w

 [[Fm, Fm], [Fm, Fm]] such that Im w also contains all
unipotent elements. We consider a similar example for
which we calculate (without using computer) the vari-
eties w, w. Let K be an algebraically closed field (ch
K = 0), and let w: SL2(K)2  SL2(K) be the word map
induced by the word w(x, y) = [[x, y], x[x, y]x–1]. Let
B and T denote, respectively, the upper triangular and

diagonal matrices in SL2(K), let  = , and let

C be the conjugacy class of  в SL2(K). Then we have
the following fact.

Тheorem 4. The variety w has exactly three irreduc-

ible components:
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and the variety w also has exactly three irreducible
components:

(here bar stands for the Zariski closure).

Thus the existence of the component  of dimen-
sion 4 guarantees that all unipotents lie in Imw.
Although a full proof of this theorem requires signifi-
cant technical arguments, the mere fact that all unipo-
tents belong to Im w is proved by an elementary calcu-
lation of the value of w(s, b) for s  T, s4 ≠ 1, b  B, b
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