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Abstract. The aim of the paper is to construct, discuss and apply the Galois-type correspon-
dence between subsemigroups of the endomorphism semigroup End(A) of an algebra A and sets
of logical formulas. Such Galois-type correspondence forms a natural frame for studying algebras

by means of actions of different subsemigroups of End(A) on definable sets over A. We treat some
applications of this Galois correspondence. The first one concerns logic geometry. Namely, it
gives a uniform approach to geometries defined by various fragments of the initial language. The
next prospective application deals with effective recognition of sets and effective computations

with properties that can be defined by formulas from a fragment of the original language. In this
way one can get an effective syntactical expression by semantic tools. Yet another advantage is
a common approach to generalizations of the main model theoretic concepts to the sublanguages

of the first order language and revealing new connections between well-known concepts. The
fourth application concerns the generalization of the unification theory or more generally Term
Rewriting Theory to the logic unification theory.

Introduction.

The aim of the paper is to establish a sort of syntactical-semantical Galois correspondence

between classes of First Order formulas and semigroups of endomorphisms of algebras. So, we

suppose that a first order language L in the signature Ω and an algebra A are given. The algebra

A (in fact, L-algebra A) enjoys two natural semigroups: the semigroup End(A) of endomorphisms

and the semigroup T(A) of transformations of A. Throughout the paper we will deal (mostly)

with End(A) and its subsemigroups. However, all results can be formulated with respect to T(A)

as well. Note, parenthetically, that a large part of our setting admits natural generalization to

multi-sorted case (cf., [43]). A separate theory is related to the two-sorted case where semigroup

End(A) acts on algebra A and we have the two-sorted algebra (A,End(A)) (cf., [28]). It is known

that under some conditions this case can be reduced to the one-sorted one ([30], [28], [29]). We

could also replace an algebra A by an arbitrary structure A. This generalization is especially

meaningful in applications.

The classical syntactical-semantical connection in Model Theory is given by correspon-

dence between sets of formulas and the associated definable sets. In the series of papers (see,

for example, [38], [42], [39]) this connection takes the form of a Galois correspondence between

elements of syntactical algebra Φ(X) and elements of semantical algebra HalXΘ (A) (see [43] for the

detailed explanations and notations). In particular this means that every notion related to sets of

formulas can be reformulated via definable sets and vice versa.
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Our aim is to introduce another Galois correspondence between sets of formulas in L

and subsemigroups of End(A). These semigroups act naturally on the definable sets in the affine

space.

Our motivation is as follows. Its algebraic-geometric part is related to classical Galois

theory and ideas of Klein’s Erlangen Program. On the other hand, the Model Theoretic motivation

goes back to preservation theorems (see, for example, [18], [17], [23], and [13], [1], [49], [48] for

finite models). This is a set of theorems that characterize classes of formulas by closeness of the

corresponding elementary classes with respect to action of certain homomorphisms. In general,

this is a way to make a bridge between syntax and semantics on classes of formulas. One of the

basic facts of Model Theory states that any definable set of a model is closed under the action

of the automorphism group of this model. So automorphisms preserve any class of formulas of

the first order logic. The question is what are the natural subclasses of formulas which can be

described as classes preserving the action of homomorphisms of a special sort. This idea of the

classification of formulas by the maps which they preserve is explicitly presented in the well known

encyclopedic book ”Model Theory” by W. Hodges [18]. The easy part of the characterization of

the popular classes of formulas can be summed up as follows. Let ϕ be a first order formula. Then

• Every formula ϕ is preserved under isomorphisms of algebras.

• Every formula ϕ without universal quantifiers is preserved under monomorphisms of alge-

bras.

• Every positive formula ϕ is preserved under epimorphisms of algebras.

• Every positive formula ϕ without universal quantifiers is preserved under homomorphisms

of algebras.

So, we obtain classes of formulas whose syntactical structure forces a special relationship

between the corresponding algebras. The converse direction requires more subtle technique and

leads to classical Los-Tarski’s, Lyndon’s, and homomorphism preservation theorems.

Our setting looks as follows. We define the correspondence G between languages K (sets

of the first order formulas in a given signature Ω) and subsemigroups of End(A). Namely we assign

to K the set G(K) of endomorphisms of A such that any set D defined in An by a system Φ ⊂ K

is closed under the action of G(K). Conversely, we assign to a set E of endomorphisms of A the

set G(E) of the first order formulas such that any set D defined by a system Φ ⊂ G(E) is closed

under the action of E. Sets D defined by a system of formulas Φ are called type-definable, or

t-definable, see Section 1.

The Galois correspondence G defines Galois closed subsemigroups of End(A) and Galois

closed classes of formulas. Mentioned above four subsemigroups of End(A) and four classes of

formulas are classical candidates for the Galois closed objects. It appears that these objects are

not necessarilly G-closed and there are many other Galois closed objects.
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This correspondence gives rise to a general framework for generalizations of the well

known concepts of Model Theory such as homogeneous structures, oligomorphic models, Ryll-

Nardzewski property, the quantifier elimination property, etc. The correspondence G can be

naturally applied to classification, investigation and description of the type-definable sets in models

and algebras and for effective computations with the type-definable sets. In particular, it can be

applied to the classification of L′-definable sets over a structure M up to the action of a semigroup

of transformations of M , where L′ is a subset of the first order language L.

The Galois correspondence G can also find applications in the context of Logical Ge-

ometry and the Constraint Satisfaction Problems (CSPs). Theoretical aspects of CSP stimulated

a beautiful Galois-type theory developed by M. Bodirsky (see, for example, [5], [9], [6], [10], [8],

etc.). It extends to countably categorical structures the ideas laid in the works of Kaluzhnin-

Krasner school ([20], [21], [44], [11], etc.).

A possible way to classify the type-definable sets is to cover them by traces of elements

under the action of an endomorphism semigroup S. This idea is used with respect to algebraic

sets in the frames of Unification Types Theory, a part of Term Rewriting Theory (see [2], [3]).

Our Galois setting gives rise to natural generalizations of the ideas of Unification Types Theory.

Namely, we suggest the concept of logic unification S-covers.

More precisely, given a semigroup of endomorphisms S ⊂ End(A), consider four possi-

bilities for an algebra (model) A: any type-definable set over A defined by a system Φ ⊂ G(S) can

be covered either 1) by the trace of one point under the action of S, 2) by traces of a finite set of

points under the action of S, 3) by traces of an infinite and minimal (relative to inclusion) set of

points under the action of S, but not by traces of a finite set of points under the action of S or, in

opposite, 4) has no minimal cover by traces of any set of points under the action of S.

In the first case A, by definition, has the unitary logic unification S-cover. Similarly, in

the second case A has the finitary logic unification S-cover, if it has no unitary logic unification

S-cover. In the third case A has the infinitary logic unification S-cover. In the fourth case A has

the zero logic unification S-cover.

The paper is organized as follows. In the first section we introduce notation and main

concepts used in the paper. In the second section we define a correspondence between sets of

formulas of given signature and subsemigroups of the endomorphism semigroup End(A) of an

algebra A. We note that this correspondence is a Galois correspondence and consider first examples.

In fact, one of the aims of this section is to present a lot of various examples of the Galois

correspondence G, of Galois closed subsemigroups of End(A) and Galois closed classes of formulas.

We also consider a generalization of this Galois correspondence.

Section 3 deals with notions of logical and algebraic homogeneity with respect to the

action of a subsemigroup S of the endomorphism semigroup End(A). We apply these concepts
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to characterizing subsets and relations over an algebra A closed under the action of S and for

characterizing logical and algebraic traces and orbits of points over S. We prove that A is logically

S-homogeneous if and only if any subset M of An closed under the action of S is the union of

G(S)-t-definable sets. In Section 4 we suggest a classification of type-definable sets with respect

to different sorts of their coverings by traces of elements under the action of a subsemigroup S of

End(A). We look at this classification from the prospectives of the well known model theoretic

concepts: oligomorphic, Ryll-Nardzewski and countable categoricity properties. In particular,

we obtain an S-version of Ryll-Nardzewski, Engeler and Svenonius result and apply it to the

investigation of unification types.

In the last fifth section we formulate some problems arising within the frames of the

Galois correspondence under consideration.

We use [18], [26] as model theoretic sources. The paper [42] is the general reference for

algebraic approach to the first order logic. Historical and bibliographical remarks can be also found

in [18]. Among many works that have stimulated the results of this paper, note [15], [37], [27].

1. Conventions and notation

1.1. Conventions. We use the word ”algebra” in the sense of universal algebra, i.e., an algebra

is a set with certain algebraic operations on it. We use the same notation for an algebra and for

the set of its elements. A class C of algebras is called elementary or axiomatizable if it can be

defined by a finite or an infinite set of first order sentences. So we assume that all variables in

the first order formulas which determine an axiomatizable class lie inside the scope of a quantifier.

An axiomatizable class is a variety if it can be defined by identities. Each variety of algebras Θ

contains free algebras F (X), where X = {x1, . . . , xn} is the set of free generators of F (X). Given

an algebra A in the variety Θ, denote by An the n-th Cartesian power of A. Then An can be

identified with Hom(F (X), A) where |X| = n. Namely, a point µ ∈ Hom(F (X), A) defined by

µ(xi) = ai corresponds to ā = (a1, . . . , an). We call An (and Hom(F (X), A)) the affine space over

the algebra A. Throughout the paper we freely use one of the implementations of the affine space

without a special notice.

Let L be a language and ϕ ∈ L. We use characters α, β, φ, f for homomorphisms; ϕ

for formulas; µ, ν and ā = (a1, . . . , an) for points in affine spaces, D,M... for definable sets, etc.

The notation ϕ(x1, . . . , xn) means that the set {x1, . . . , xn} includes the set of all free variables in

formula ϕ. Capital letters A, B, ... are used for algebras or, more generally, for L -structures. Let

ā = (a1, . . . , an) be a point of the space An. If the relation ϕ(x1, . . . , xn) is fulfilled on the point

ā = (a1, . . . , an) then we say that the point ā satisfies the formula ϕ(x1, . . . , xn). An algebraic

variant of the notion of satisfiability can be found, for example, in [42].

A set M ⊂ An is called definable if there exists a first order formula ϕ(x1, . . . , xn) such

that a point ā ∈ An belongs to M if and only if ā satisfies ϕ(x1, . . . , xn).
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A set M ⊂ An is called t-definable if there exists a set K of first order formulas such

that a point ā ∈ An belongs to M if and only if ā satisfies every formula ϕ(x1, . . . , xn) from K.

1.2. Notation. We mostly use standard notations. For the sake of convenience we provide the

reader with the short list of the frequently used terms.

Notation 1.1.

• T(A) is the semigroup of all transformations of an algebra A.

• End(A) is the semigroup of all endomorphisms of an algebra A.

• Aut(A) is the group of all automorphisms of an algebra A.

• SEnd(A) is the semigroup of all surjective endomorphisms of an algebra A.

• IEnd(A) is the semigroup of all injective endomorphisms of an algebra A.

• Hom(A,B) is the set of all homomorphisms of an algebra A to an algebra B.

• Iso(A,B) is the set of all isomorphisms of an algebra A to an algebra B.

• SHom(A,B) is the set of all surjective homomorphisms of an algebra A to an algebra B.

• IHom(A,B) is the set of all injective homomorphisms of an algebra A to an algebra B.

By transformations of an algebra we mean transformations of its underlying set. Recall once again

that most of results proved in the paper are equally valid for End(A) and T(A).

Given an algebra A, the elementary theory Th(A) is the set of all closed formulas valid

on A. We say that formulas ϕ and ψ are logically equivalent modulo Th(A) if the universal closure

of ϕ↔ ψ belongs to Th(A).

Convention 1. By default, formulas are considered up to the equivalence modulo Th(A).

We refer to [18] for the definitions of the sets of positive, existential, positive-existential,

and universal formulas. We use for them the notations Po, Ex, PoEx, respectively. We do not

use a special abbreviation for the set of universal formulas.

Notation 1.2.

(1) Given a formula ϕ(x1, . . . , xn) and a point µ ∈ Hom(F (X), A) denote by V al(ϕ, µ) the

truth value of the formula ϕ in the point µ. If the value of ϕ in µ is ”true” we say that the

point µ satisfies ϕ. This definition is equivalent to the one given in Subsection 1.1.

(2) We write V al(ϕ, µ) = T if the value of ϕ in µ is ”true”. The ”false” value is denoted by

V al(ϕ, µ) = F .

(3) Let K be a set of formulas in a language L. We abbreviate these formulas as K-formulas.

(4) Let K be a set of formulas in a language L, and let µ be a point in the affine space. Then

Ktp(µ), the K-type of µ, denotes the set of all formulas of K satisfied by µ. That is,

Ktp(µ) = {ϕ ∈ K|V al(ϕ, µ) = T}. Notation Ktp0(µ) is used for the set of all atomic

K-formulas satisfied by µ .
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2. The correspondence between subsemigroups of End(A) and systems of

elementary formulas.

For the reader’s convenience we repeat here some facts from Introduction. We shall start

with an excerpt from the book of Hodges.

Definition 2.1 (cf., [18]). Let f : A→ B be a function on L-structures, ϕ(x1, . . . , xn) be a formula

in L. A formula ϕ is preserved by f if V al(ϕ, µ) = T , where µ ∈ An implies V al(ϕ, ν) = T , where

ν = f(µ) ∈ Bn.

A formula ϕ is preserved by a set of functions if it is preserved by each function from

this set.

For example, a function preserving the atomic formulas of L is a homomorphism of

L-structures. In particular, if M is the set definable by ϕ then f preserves ϕ if f(M) ⊂M .

Theorem 1. ([18]). Let ϕ(x1, . . . , xn) be an L-formula.

(1) If f ∈ Iso(A,B) then f preserves ϕ.

(2) If f ∈ IHom(A,B) and ϕ is a formula without quantifiers ∀ then f preserves ϕ.

(3) If f ∈ SHom(A,B) and ϕ is positive then f preserves ϕ.

(4) If f ∈ Hom(A,B) and ϕ is a positive formula without quantifiers ∀ then f preserves ϕ.

As it was mentioned, the converse statements are classical Lyndon’s, Los-Tarski’s and

homomorphism preservation theorems.

Theorem 2 (see, for example, [18], [49]).

• A formula ϕ is preserved under arbitrary monomorphisms of algebras if and only if it is

equivalent to a formula without universal quantifiers (Los-Tarski theorem).

• A formula ϕ is preserved under arbitrary epimorphisms of algebras if and only if it is

equivalent to a positive formula (Lyndon’s positivity theorem).

• A formula ϕ is preserved under arbitrary homomorphisms of algebras if and only it if is

equivalent to a positive formula without universal quantifiers (Homomorphism preserving

theorem).

Definition 2.2. Let K be a set of formulas in the language L. We assign to K the set G(K),

consisting of all endomorphisms α of A such that any formula ϕ ∈ K is preserved under the action

of α ∈ G(K).

Remark 2.3. Let K be a set of formulas in the language language L. The correspondence above

can be equivalently presented as follows:

(1) α ∈ G(K) if and only if any subset D of An defined by a system Φ ⊂ K is closed under

the action of α, i.e., αD ⊂ D,
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or as follows

(2) G(K) = {α ∈ End(A)|(∀µ ∈ D)(∀ϕ ∈ K)(V al(ϕ, µ) = T → V al(ϕ, αµ) = T )}.

Proposition 1. Let K be a set of formulas of the language L. Then

(1) G(K) is a subsemigroup of End(A),

(2) G(K) contains Aut(A).

Proof. Statement (1) is straightforward. The 2-nd statement follows from Theorem 1. �

Definition 2.4. Let S be a subsemigroup of End(A). We assign to S the set G(S) of all L-

formulas preserved under the action of S.

Remark 2.5. Since the empty set and the set A of all elements of an algebra A are closed under

the action of End(A) we obtain that for any endomorphism semigroup S ⊂ End(A) the set of

formulas G(S) contains all false formulas (which define the emptyset) and Th(A).

Note that since any formula ϕ ∈ G(S) is preserved under the action of S the set over A

defined by a system Φ ⊂ G(S) is closed under the action of S.

Proposition 2. Let S be a subsemigroup of End(A). Any set of formulas G(S) contains the set

PoEx.

That is

(1) G(S) contains all atomic formulas of the first order language of A.

(2) G(S) is closed under conjunctions ∧ and under disjunctions ∨.

(3) G(S) is closed under quantifiers ∃x.

Proof. Let α ∈ S. Let ϕ, ψ ∈ G(S).

(1) The first statement follows from the definition of the endomorphism of an algebra A.

(2) Let V al(ϕ∧ψ, µ) = T . Then V al(ϕ, µ) = T and V al(ψ, µ) = T . Therefore V al(ϕ, αµ) = T

and V al(ψ, αµ) = T because ϕ, ψ ∈ G(S). Consequently V al(ϕ ∧ ψ, αµ) = T . Hence

ϕ ∧ ψ ∈ G(S).

Let V al(ϕ ∨ ψ, µ) = T . Then V al(ϕ, µ) = T or V al(ψ, µ) = T . Thus V al(ϕ, αµ) = T

or V al(ψ, αµ) = T because ϕ, ψ ∈ G(S). Consequently V al(ϕ ∨ ψ, αµ) = T . Hence

ϕ ∨ ψ ∈ G(S).

(3) Let variable x is free in ϕ. Without loss of generality we suppose that x = x1. Take

a point µ such that µ(xi) = ai, ai ∈ A. Let V al(ϕ,

(
x1 . . . xn
a1 . . . an

)
) = T . Then

V al(ϕ,

(
x1 . . . xn

α(a1) . . . α(an)

)
) = T , because ϕ ∈ G(S). Let us choose α(a1) ∈ A as a

value of x. We obtain V al((∃x)(ϕ), αµ) = T . Hence (∃x)(ϕ) ∈ G(S).

�
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Let us note that

(1) Any t-definable set over an L-algebra A is closed under the action of Aut(A).

(2) Any t-definable set over an L-algebra A defined by atomic formulas of L is closed under

the action of End(A).

(3) Any t-definable set over an L-algebra without operations and with ”equality” to be a single

relation is closed under the action of T(A).

Theorem 3. The correspondence S → G(S) and K → G(K) (Definitions 2.2 and 2.4 above)

between subsemigroups of the endomorphism semigroup End(A) and subsets of first order formulas

in L is the Galois-type correspondence.

Proof. The check of necessary properties is straightforward (see, for example, definition of the

Galois correspondence in [25]).

�

Proposition 3. If a t-definable set D over A is closed under the action of S ⊂ End(A) then D

can be defined by a system of formulas Φ ⊂ G(S). Conversely, if a t-definable set D over A is

not closed under the action of S ⊂ End(A) then D can not be defined by a system of formulas

Φ ⊂ G(S).

This proposition is, in fact, a reformulation of the definition of G(S). However, it gives

an effective semantical recognition method for the sets that can be defined by formulas of a special

form.

A set of formulas K in L is called Galois closed (or just G-closed) if GG(K) = K.

Analogously, a subsemigroup S in End(A) is G-Galois closed if GG(S) = S. G(S) is a G-closed

set of formulas and G(K) is a G-closed semigroup.

Remark 2.6. Once we have a Galois correspondence, closed objects are the main ones in this

theory. In particular, properties of an algebra A can be studied via characterization of closed

objects. In particular, let S ⊂ T ⊂ GG(S), K ⊂M ⊂ GG(K) and µ ∈ An. Then

• G(S) = G(T ).

• G(S)tp(µ) = G(T )tp(µ).

• G(K) = G(M).

G-closure operators define natural derived structures on an algebra A. Note that the

intersection of G-closed subsemigroups of End(A) and correspondingly the union of G-closed sets

of formulas are G-closed. Therefore the G-closed objects form 2 lattices. The second lattice

operation in the lattice of G-closed subsemigroups is the closure of the union of the semigroups.

We say that subsemigroups S and T of End(A) are G-equivalent if GG(S) = GG(T )

and denote this relation by S ≡G T . Similarly subsetsK andM of L areG-equivalent ifGG(K) =
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GG(M). They are denoted K ≡G M . These equivalence relations are completely described by

the corresponding G-closed objects.

Example 1. The following proposition gives examples of G-closed semigroups.

Proposition 4.

(1) Denote by ElEnd the semigroup of elementary embeddings of A into itself. G(L) = ElEnd

and G(ElEnd) = L.

(2) G(Ex) = IEnd(A).

(3) The semigroups End(A), IEnd(A) are Galois closed.

(4) The semigroup Aut(A) is Galois closed whenever A is finite or co-Hopfian.

Proof.

(1) Elementary embedding preserves any formula of L. Conversely, let α ∈ End(A) preserve

any formula of L. It is injective because it preserves formula x ̸= y and it is elementary em-

bedding because it preserves any formula of L. Note that any automorphism is elementary

embedding but not any elementary embedding of A into itself is automorphism.

The equality G(ElEnd)) = L follows from the fact that G(ElEnd) = GG(L) = L.

(2) IEnd(A) ⊂ G(Ex) by Theorem 1. Conversely, any endomorphism α ∈ G(Ex) preserves

formula x ̸= y and, therefore, α ∈ IEnd(A).

(3) End(A) is closed due to our convention to deal in this paper only with subsemigroups of

End(A).

Suppose that GG(IEnd(A)) = S and α ∈ S. Let D ⊂ A2 be the set defined by a

formula x ̸= y. This formula belongs to G(IEnd(A)) because any β ∈ IEnd(A) pre-

serves it. Consequently α preserves formula x ̸= y. Therefore α ∈ IEnd(A). Thus

S = GG(IEnd(A)) ⊂ IEnd(A). Conversely, IEnd(A) ⊂ GG(IEnd(A)) by Theorem 3.

(4) If algebra A is finite then Aut(A) = SEnd(A) = IEnd(A). Hence Aut(A) is G-closed.

The same is true for co-Hopfian algebras where IEnd(A) = Aut(A).

�

In this example we use Convention 1. Let us call semigroups of endomorphisms and the

corresponding sets of formulas from Theorem 2 the classical semigroups of endomorphisms and sets

of formulas or just classical objects. Example 1 gives us the classical G-Galois closed semigroups

andG-Galois closed sets of formulas. Examples below show that classical objects are not necessarily

G-closed and there are many non classical G-closed sets and G-closed semigroups. For example

G(L) = ElEnd does not necessarily coincide with Aut(A), i.e. there exist endomorphisms, which

are not automorphisms, but preserve all sets definable over A.
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If for specific algebras some classical endomorphism semigroups coincide, then by Propo-

sition 3 formulas of a wider class are equivalent to formulas of a smaller class. This is the case for

a vast class of algebras, see further examples.

Example 2.

• Let Γ = (Zp)
N, i.e., Γ is infinite direct product of cyclic groups of prime order. Then a

monomorphism φ : Γ → Γ which shifts the i-th component to the (i + 1)-th one preserves

all definable sets. So, G(L) ̸= Aut(Γ). This example shows that Aut(A) is not necessarily

G-closed even for countably categorical algebras (cf., [6]).

• Let F2, F3 be two- and three-generator free groups, respectively. Take Γ = F2×FN
3 . By [46]

the natural embedding f : F2 → F3 is elementary. Then monomorphism φ : Γ → Γ which

sends F2 to f(F2) and shifts all other copies of F3 as above preserves all definable sets.

Hence, G(L) ̸= Aut(Γ). The similar examples can be constructed on the base of hyperbolic

groups [32], [33].

• Let Γ = (Q, <) be the ordered set of rational numbers. It also can be considered as a semi-

group with operation min. It is well known that (Q, <) possesses quantifier elimination.

So, any embedding Γ → Γ is elementary. Therefore, the injective endomorphism x → x3

belongs to G(L). Thus, Γ is not co-Hopfian and Aut(Γ) is not G-closed.

• Consider the abelian group A = (Q,+), which is model complete and co-Hopfian. It means

that G(L) = Aut(A), and Aut(A) is G-closed.

Remark 2.7. Recall that algebra A is model complete if every embedding of A in A is elementary.

Suppose that Th(A) is model complete. Then Aut(A) is G-closed if and only if A is co-Hopfian.

Note that apart from abelian groups like (Q,+), see also [12], there are lots of non-abelian co-

Hopfian groups. Among them are some torsion-free nilpotent groups [4], some hyperbolic groups

[47], SLn(Z), n ≥ 3 [16], etc. Moreover, if A is countably categorical and model complete then

every formula is equivalent to Ex-formula, see [18] and [5].

Example 3.

(1) If A is a congruence free algebra then it has the unique endomorphism, namely the identical

automorphism. Therefore all first order formulas in the language of A form the unique G-

Galois closed system of formulas and correspondingly Aut(A) = End(A) is the unique

closed subsemigroup of End(A). Hence, any definable over A set can be defined by positive

existential formulas. Thus, one can get an effective syntactical expression by semantic

tools.

(2) Let Φ be a set of the first order formulas with n free variables which define the empty

set over algebra A. Then G(Φ) = End(A) (or even G(Φ) = T(A) in the setting with
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the transformation semigroup T(A)) and the Galois closed set of formulas GG(Φ) equals

PoEx.

The notion of Galois closed semigroup admits the following generalization.

Definition 2.8. Let L(f) be the extension of language L of A by the unary function symbol f and

Φ be a set of formulas in L(f). We say that a subsemigroup S of End(A) is defined in End(A) by

a set of formulas Φ, i.e., S is Φ-definable if it consists of all elements of End(A) which satisfy Φ.

Let B be an algebra with the same signature as A. Φ is defined as above. We say that a

subset S of Hom(A,B) is defined in Hom(A,B) by a set of formulas Φ, i.e., S is Φ-definable if it

consists of all elements of Hom(A,B) which satisfy Φ.

Example 4. Let S be a subsemigroup of End(A).

(1) End(A) is (∀x)(∀y)(f(xy) = f(x)f(y))-definable.

(2) IEnd(A) is (∀x)(∀y)(f(xy) = f(x)f(y)&((x ̸= y) → (f(x) ̸= f(y))))-definable.

(3) SEnd(A) is (∀x)(∀y)(f(xy) = f(x)f(y)&(∀z)(∃t)(f(t) = z)))-definable.

Example 5. Let A be an algebra such that the semigroup Const = End≤1(A) = {fc|c ∈ A, (∀a ∈

A)f(a) = c} lies in End(A). Note that semigroup of transformations Const is not, in general, a

semigroup of endomorphisms. However, Const ⊂ End(A) for some algebras. For example this is

the case for A = LZ a left zero semigroup (we remind that xy = x for all x, y ∈ LZ). Define

Cn ⊂ An by Cn = {(a, ..., a)|a ∈ A}.

Define ElEndC(A) = {α ∈ End(A)|α(D) ⊂ D ∪ Cn} for any definable set D and call it

the semigroup of C-elementary embeddings.

A non empty definable over A set D ⊂ An is G(Const)-definable if and only if Cn ⊂ D.

Indeed, for any α ∈ Const we obtain α(D) ⊂ Cn ⊂ D. Conversely, let D ̸= ∅ be closed under the

action of Const, (a1, ..., an) ∈ D and (a, ..., a) ∈ Cn. Then fa(a1, ..., an) = (a, ..., a) ∈ D.

Proposition 5. Let Const = End≤1(A) = {fc|c ∈ A, (∀a ∈ A)fc(a) = c} ⊂ End(A). Let

Φ ⊂ L be the set of all formulas ϕ(x1, ..., xn) of L such that ϕ(x1, ..., xn) implies the sentence

(∀x)ϕ(x, ..., x). Then G(Const) = Φ and GG(Const) consists of the set of all α ∈ End(A) such

that α(D) ⊂ D ∪ Cn for any definable set D over A, i.e. of all C-elementary embeddings. Thus

GG(Const) = ElEndC(A).

Proof. Let ϕ(x1, ..., xn) define the set D ⊂ An. Let ϕ(x1, ..., xn) ∈ G(Const). Then Cn =

{α(D)|α ∈ Const} ⊂ D. It means that if V al(ϕ(x1, ..., xn), µ) = T then V al(ϕ(x1, ..., xn), αµ) = T

for any α ∈ Const, µ ∈ An. Therefore V al((∀x)ϕ(x, ..., x)) = T and, thus, ϕ(x1, ..., xn) im-

plies the sentence (∀x)ϕ(x, ..., x), i.e., ϕ(x1, ..., xn) ∈ Φ. So, G(Const) ⊂ Φ. Conversely, let

ϕ(x1, ..., xn) implies the sentence (∀x)ϕ(x, ..., x). Let α ∈ Const. Let µ = (a1, ..., an) ∈ D

and (α(a1), ..., α(an)) = (a, ..., a). By the assumption, V al((∀x)ϕ(x, ..., x)) = T . Therefore



12 G. MASHEVITZKY, B. PLOTKIN, AND E. PLOTKIN

V al(ϕ(a, ..., a)) = T , (a, ..., a) ∈ D and D is closed under the action of Const. Hence Φ ⊂

G(Const). Thus Φ = G(Const).

Let α ∈ End(A) \ ElEndC(A). Suppose that α(D) ̸⊂ D ∪ Cn, where D is defined by a

formula ϕ(x1, ..., xn). The set D ∪ Cn is definable by the set of two formulas {ϕ(x1, ..., xn)} and

{ϕ(x1, ..., xn) → (∀x)ϕ(x, ..., x)|ϕ ∈ Ψ}. It is closed under the action of Const but it is not closed

under the action of α. Therefore α does not belong to the G-closure of Const. Conversely all

C-elementary embeddings belong to GG(Conat). Thus GG(Const) consists of the set of all α ∈

End(A) such that α(D) ⊂ D∪Cn for any definable set D over A, i.e., GG(Const) = ElEndC(A).

Note that ElEndC(A) is a semigroup. �

Remark 2.9. G(Const) consists of formulas ϕ(x1, ..., xn) such that ϕ(x1, ..., xn) → (∀x)ϕ(x, ..., x)

is a true formula with respect to A or, equivalently, of formulas ϕ(x1, ..., xn) such that ϕ(x1, ..., xn)

implies ϕ(x1, ..., xn) → (∀x)ϕ(x, ..., x).

Note that G(Const) and GG(Const) are non classical G-closed objects. Similar descrip-

tion can be obtained for G(T≤k(A)) and GG(T≤k(A)), where T≤k(A) is the semigroup of rank

≤ k transformations of such an algebra A that T≤k(A) ⊂ End(A). For example, it is the case for

A = LZ a left zero semigroup.

By reasoning similar to the previous proof one can obtain non classical G-Galois closed

sets for models.

Example 6. Let A be an algebra and let z ∈ A be an element such that t(z, ..., z) = z for any

signature operation t of A. For example, z is the identity element in a group or z is the zero

element in a ring. Then the function 0(x) = z for all x ∈ A belongs to End(A) and forms a

one-element subsemigroup O of End(A).

Define ElEnd0(A) = {α ∈ End(A)|α(D) ⊂ D ∪ {(z, ..., z)} for any definable set D and

call it the semigroup of the 0-elementary embeddings.

A non empty definable over A set D ⊂ An is G(O)-definable if and only if (z, ..., z) ∈ D.

Indeed, if (a1, ..., an) ∈ D and D is closed under the action of O then (z, ...z) = (0(a1), ..., 0(an)) ∈

D. Conversely, if (z, ...z) = (0(a1), ..., 0(an)) ∈ D then D is closed under the action of O.

Proposition 6. An algebra A, element z ∈ A and the one element subsemigroup O of End(A)

were defined above. Let {z} be a definable set (in particular, z is a constant). Then G(O) consists

of all formulas ϕ(x1, ..., xn) such that ϕ(x1, ..., xn) implies formula (∃y)(ψ(y)∧ϕ(y, ..., y)), where the

formula ψ defines the set {z}. GG(O) consists of all α ∈ End(A) such that α(D) ⊂ D∪{(z, ..., z)}

for any definable set D over A, i.e., of all 0-elementary embeddings.

Proof. Let D be a non empty set definable by a formula ϕ(x1, ..., xn). Recall that D is G(O)-

definable if it is closed under the action of O. We have proved that this is the case if and only if
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(z, ..., z) ∈ D. Let us prove that D is G(O)-definable if and only if D is definable by the set of

formulas ϕ(x1, ..., xn) such that ϕ(x1, ..., xn) implies (∃y)(ψ(y)∧ϕ(y, ..., y)), where formula ψ defines

set {z}. Let D be G(O)-definable, D is defined by a a formula ϕ. Then (z, ..., z) ∈ D. Therefore

V al(ϕ(z, ..., z)) = T and ϕ(x1, ..., xn) implies (∃y)(ψ(y) ∧ ϕ(y, ..., y)), where formula ψ defines set

{z}. Conversely, suppose that D is defined by a formula ϕ which implies (∃y)(ψ(y) ∧ ϕ(y, ..., y)),

where formula ψ defines the set {z}. Let µ = (a1, ..., an) ∈ D. Then (z, ..., z) ∈ D because

V al((∃y)(ψ(y) ∧ ϕ(y, ..., y)), µ) = T . Thus D is closed under the action of O. Therefore G(O)

consists of all formulas ϕ(x1, ..., xn) such that ϕ(x1, ..., xn) implies(∃y)(ψ(y) ∧ ϕ(y, ..., y)).

Let α ∈ End(A)\ElEnd(A). Suppose that α(D) ̸⊂ D∪{(z, ..., z)}, where D is defined by

a formula ϕ(x1, ..., xn). We proved above that the set D ∪ {(z, ..., z)} is definable by two formulas

ϕ(x1, ..., xn) and ϕ(x1, ..., xn) → (∃y)(ψ(y) ∧ ϕ(y, ..., y)) and it is closed under the action of O but

it is not closed under the action of α. Therefore α does not belong to the G-closure of O. Hence

GG(O) consists of of all α ∈ End(A) such that α(D) ⊂ D ∪ {(z, ..., z)} for any definable set D

over A, i.e. of all 0-elementary embeddings. Thus GG(O) = ElEnd0(A).

�

This example shows that one can obtain non classical G-closed sets for algebras with

zero or identity.

Consider the following natural generalization of the notion of Galois closed semigroup.

Define the correspondence G as follows. Given a subsemigroup S ⊂ End(A), define G(S) as the

set of all formulas of an extension of the first order language L such that any formula φ ∈ G(S)

is preserved under the action of S. If we denote this extension of L by L then one can take

G(S) = GL(S). A semigroup S of End(A) is G-closed if GG(S) = S.

Example 7. Let M be a subset of A. Consider semigroup S = FixM of all endomorphisms of A

which fix each element of a subset M .

Proposition 7. Semigroup S = FixM is G-closed.

Proof. Let D be a subset defined by PoEx formulas with parameters from M . Then D is closed

under the action of S because each PoEx formula is preserved by the whole End(A) and elements

of M are fixed by any β ∈ S. Let α ∈ End(A) and α /∈ S. There is a point c ∈ M such that

α(c) ̸= c. Let ϕ be a PoEx formula with the parameter c. Then ϕ is preserved by S but is not

preserved by α. Therefore α does not belong to the closure GG(S) of S. Thus S = FixM is

G-closed. �

Remark 2.10. Note that G(FixM ) consists of PoEx formulas with parameters from M . Thus

we can consider the class G(FixM ) in order to enrich the language L by a set of constants.
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Let I be the identity automorphism. We know that G(I) = L and GG({I}) = G(L).

On the other hand we can look at {I} as a G-closed object. Then G(I) = LA where the language

LA = L ∪ {a|a ∈ A} is obtained of L by adding all elements of A as constants.

Remark 2.11. If each element of M is G(FixM )-definable, then we do not need to enrich the

language by a set of constants and S = FixM is G-closed.

The following example is similar to Example 7.

Example 8. Let S = StabM be the semigroup of all endomorphisms (automorphisms) of A which

fix a subset M of A, i.e., for any f ∈ S we have f(M) ⊂M . Then S = StabM is G-closed.

We shall finish with the example based on the variety of groups.

Example 9. Let Γ be a non-abelian group with the nontrivial center Z(Γ) ̸= 1. Subgroup Z(Γ)

is definable by the formula ϕ of the form ∀x(xy = yx). Denote G(ϕ) = S. Clearly Aut(Γ) <

S. Moreover SEnd(Γ) < S, since the center is a strictly characteristic subgroup, that is an

epimorphism-invariant subgroup. It is clear that SEnd(Γ) ̸= S because endomorphism s0, defined

by s0(g) = 1 for every g ∈ Γ, belongs to S. It is well known that center Z(Γ) is not a fully

invariant subgroup (see, for example, [45]), that is Z(Γ) is not endomorphism invariant. So,

SEnd(Γ) < S < End(Γ). S also cannot be equal to IEnd(Γ) because S contains SEnd(Γ). See

below an explicit example

There are standard examples showing that Z(Γ) is not necessarily injective-invariant

subgroup. One of the examples is as follows. Take Γ to be a simple group and let H be isomorphic

to an abelian subgroup in Γ. Let Γ1 be the infinite direct product of H and of countable number

copies of Γ. Then Z(Γ1) = H × (1) × (1).... An injective endomorphism of Γ1 which sends H to

its copy in Γ and shifts the i-copy of Γ to the (i+ 1)-copy, does not preserve the center of Γ1.

Hence, S ̸= IEnd(Γ) and S is a G-closed non classical subgroup. Take G(S) = Φ. Then

by definition, Φ is a G-closed non classical set of formulas.

3. G(S)-t-definable sets in S-homogeneous algebras.

Let A be an algebra, S a subsemigroup of End(A) and I the identity endomorphism.

If I ̸∈ S then S1 = S ∪ I is a submonoid of End(A). In this section we assume that S = S1

whenever this assumption is required. In Section 2 we defined the class G(S) of the first order

formulas which corresponds to S. Recall that the G(S)-type of a point µ ∈ An is the class of all

G(S)-formulas which are satisfied by µ and we denote this class by G(S)tp(µ).

Definition 3.1. Let S = S(A) be a subsemigroup of End(A). Let µ ∈ An be a point in the affine

space.

(1) The algebraic S-trace of µ is the set Sµ = {ν = αµ|α ∈ S}.
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(2) The algebraic S-orbit of µ is the set SAO(µ) = {ν|Sµ = Sν}.

(3) The logical S-trace of µ is the set SLT (µ) = {ν|G(S)tp(µ) ⊂ G(S)tp(ν)}.

(4) The logical S-orbit of µ is the set SLO(µ) = {ν|G(S)tp(µ) = G(S)tp(ν)}.

Let S, T be subsemigroups of End(A) such that S ⊂ T ⊂ GG(S). Then it follows from

Remark 2.6 that the logical S-trace (S-orbit) of µ coincides with the logical T -trace (T -orbit) of

µ.

Now we turn to homogeneous algebras. These structures are extensively studied in the

literature (see, for example, [24], [15]).

In view of the next definition observe that the condition G(S)tp(µ) ⊂ G(S)tp(ν) means

that the point ν satisfies any system of G(S)-formulas satisfied by µ.

Definition 3.2. Let S = S(A) be a subsemigroup of End(A). We call an algebra logically S-

homogeneous if for any µ ∈ An the logical S-trace of µ is contained in the algebraic S-trace of µ,

i.e., (∀µ ∈ An)(SLT (µ) ⊂ Sµ). In other words an algebra is logically S-homogeneous if and only if

for any µ, ν ∈ An such that G(S)tp(µ) ⊂ G(S)tp(ν) there exists α ∈ S such that ν = αµ.

In particular:

An algebra A is logically End-homogeneous if for any µ, ν ∈ An such that the PoEx-type of ν

contains the PoEx-type of µ (ν satisfies any system of PoEx-formulas satisfied by µ) there exists

α ∈ End(A) such that ν = αµ.

An algebra A is logically Aut-homogeneous or just logically homogeneous if for any iso-

typed µ, ν ∈ An (µ and ν satisfy the same formulas) there exists α ∈ Aut(A) such that ν = αµ.

Definition 3.3. Let S be a subsemigroup of End(A) defined by a set of formulas Φ (see Definition

2.8). We call an algebra A algebraically S-homogeneous if, for any finitely generated subalgebra B

of A, any homomorphism φ ∈ Hom(B,A) which satisfies Φ is the restriction of some φ′ ∈ S.

In particular:

An algebra A is algebraically End-homogeneous if for any finitely generated subalgebra B of A any

homomorphism φ ∈ Hom(B,A) is the restriction of some φ′ ∈ End(A).

An algebra A is algebraically Aut-homogeneous or just algebraically homogeneous if for

any finitely generated subalgebra B of A any isomorphism φ ∈ IHom(B,A) is the restriction of

some φ′ ∈ Aut(A).

Remark 3.4. A few words about terminology. In the classical ”Model theory” by C. C. Chang

and H. J. Keisler ([14]) authors use the name w-homogeneous structures for structures we called

logically Aut-homogeneous. In the fundamental ”Model theory” by W. Hodges ([18]) the author

uses the name ultrahomogeneous structures for structures we call algebraically Aut-homogeneous.

On the other hand it seems that in most of the papers the term homogeneous structures is used for

structures W. Hodges call ultrahomogeneous (see for example [24] and the bibliography therein).
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W. Hodges also mentions this fact. The notion of homogeneous structures was developed in the

papers by B. Jonson, M. Morley and R. Vaught (see, for example, the review [19] on the paper

”Homogeneous universal models” by M. Morley and R. Vaught).

For the reader’s convenience we collect several immediate consequences of the definitions

in the following remark.

Remark 3.5. Let A be an algebra. Let S be a subsemigroup of End(A).

(1) Consider a point µ ∈ An then Sµ ⊂ SLT (µ).

(2) A is a logically S-homogeneous algebra if and only if Sµ = SLT (µ) for any point µ ∈ An.

(3) The logical S-orbit of a point µ ∈ An contains the algebraic S-orbit of µ, i.e. SAO(µ) ⊂

SLO(µ).

Definition 3.6. Let µ ∈ An. Let S be a subsemigroup of End(A).

(1) < µ > is the intersection of all t-definable sets which contain µ. We call < µ > the

t-definable set generated by µ.

(2) < µ >S is the intersection of all G(S)-t-definable sets which contain µ. We call < µ >S

the G(S)-t-definable set generated by µ.

By definition, < µ >S is the minimal G(S)-t-definable set, containing µ. Note that

< µ >=< µ >Aut(A) and that different minimal G(S)-t-definable sets can intersect.

Example 10.

(1) The left zero semigroup LZ is the semigroup of the constant maps on X, i.e., (∀a, b ∈

LZ)(ab = a). It is easy to see that any transformation of LZ is its endomorphism.

Therefore End(LZ) = T(LZ) and Aut(LZ) = Sym(LZ). LZ is both algebraically and

logically End-homogeneous, Aut-homogeneous and S-homogeneous for any subsemigroup

S of End(LZ). Logical S-homogeneity follows from Corollary 4.6.

(2) The free semigroup A = X+ is not algebraically End-homogeneous. Indeed, let x ∈ X.

Then << x2 >>∼=<< x3 >> (here << a >> denotes the monogenic subsemigroup

of X+ generated by a). Let φ ∈ End(X+), φ(x) = xi1 ...xis . Suppose that φ(x2) =

xi1 ...xisxi1 ...xis = x3. This equality is impossible because we have in the left side even

and in the right side odd number of free factors. On the other hand A = X+ is logically

End-homogeneous ([50]).

(3) The free group A = FG(X) for any set X of free generators is logically Aut-homogeneous

([34], [31]). Therefore the variety G of groups is perfect (following B. I. Plotkin ([41]),

we call a variety V perfect if each free in V algebra is logically Aut-homogeneous). The

free group is not algebraically Aut-homogeneous; to see this the reader can use reasoning
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similar to that of the previous example or just notice that the free non abelian group A is

not algebraically Aut-homogeneous since it has a non trivial characteristic subgroup A′.

Theorem 4. Let S be a submonoid of End(A). The following statements are equivalent.

(1) A is logically S-homogeneous, i.e., Sµ = SLT (µ) (see Remark 3.5).

(2) Sµ =< µ >S for any µ ∈ An.

(3) Sµ is a G(S)-t-definable set for any µ ∈ An.

(4) Any subset M of An closed under the action of S is a union of G(S)-t-definable sets.

Proof.

1⇒ 2. Suppose that A is logically S-homogeneous. Let µ ∈ An. It follows from the definition of

G(S) that Sµ ⊂ D for any G(S)-t-definable set D which contains µ. Therefore Sµ ⊂ <

µ >S . Let ν ∈< µ >S . It means that ν satisfies any system of G(S)-formulas satisfied

by µ, i.e., the G(S)-type of ν contains the G(S)-type of µ. A is logically S-homogeneous,

therefore there exists α ∈ S such that ν = αµ ∈ Sµ. Thus, Sµ =< µ >S .

2 ⇒ 3. Sµ =< µ >S is a G(S)-t-definable set by the definition of < µ >S .

3 ⇒ 4. Let M be a subset of An closed under the action of S, i.e., SM ⊂M . Since S is a monoid,

for any µ ∈M we have µ ∈ Sµ and by the assumption Sµ is a G(S)-t-definable set. Hence,

M is the union of G(S)-t-definable sets.

4 ⇒ 1. Suppose that every subset M of An closed under the action of S is a union of G(S)-t-

definable sets. Let µ, ν ∈ An. Suppose that the G(S)-type of ν contains the G(S)-type

of µ, i.e., ν ∈< µ >S . We have µ ∈ Sµ ⊂< µ >S , and < µ >S is the minimal G(S)-t-

definable set which contains µ. Therefore, Sµ =< µ >S and ν ∈ Sµ. Thus, A is logically

S-homogeneous.

�

Corollary 3.7. Let S, T be subsemigroups of End(A) such that S ⊂ T ⊂ GG(S). Then logical

S-homogeneity implies logical T -homogeneity.

Indeed, let Sµ be a G(S)-t-definable set. Then it is G(T )-t-definable (Remark 2.6).

Then Tµ = Sµ because Sµ is closed under the action of T .

Corollary 3.8. Let A be an algebra. The following statements are equivalent.

(1) A is logically Aut-homogeneous (i.e., logically homogeneous).

(2) Aut(A)µ =< µ > for any µ ∈ An.

(3) Any subset M of An closed under the action of Aut(A) is a union of t-definable sets.

Corollary 3.9. Let A be an algebra. The following statements are equivalent.

(1) A is logically End-homogeneous.
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(2) End(A)µ =< µ >End(A) for any µ ∈ An.

(3) Any subset M of An closed under the action of End(A) is a union of PoEx-t-definable

sets.

Corollary 3.10. Let A be a logically S-homogeneous algebra and µ ∈ An. Let S be a submonoid of

End(A). Then SLO(µ) = SAO(µ), i.e., the logical S-orbit of a point µ coincides with its algebraic

S-orbit in A.

Proof. A is a logically S-homogeneous algebra. Therefore it follows from Theorem 4 that < ν >S=

Sν for any ν ∈ An. SLO(µ) = {ν|G(S)tp(µ) = G(S)tp(ν)} = {ν| < ν >S=< µ >S} = {ν|Sν =

Sµ} = SAO(µ). �

Corollary 3.11. Let A be a logically S-homogeneous algebra. Let S be a submonoid of End(A)

such that different S-traces do not intersect each other. Then SLO(µ) = Sµ =< µ >S for any

µ ∈ An, i.e., the logical S-orbit of a point µ coincides with the S-trace of µ and coincides with the

minimal G(S)-definable set which contains µ in any logically S-homogeneous algebra.

Proof. A is a logically S-homogeneous algebra. Therefore it follows from Theorem 4 that < ν >S=

Sν for any ν ∈ An. SLO(µ) = {ν|G(S)tp(µ) = G(S)tp(ν)} ⊂< µ >S . Conversely, let ν ∈< µ >S .

Then Sν ⊂< µ >S= Sµ. Consequently, Sν = Sµ because different S-traces do not intersect.

Hence, ν ∈ SAO(µ) = SLO(µ). Thus, SLO(µ) = Sµ =< µ >S . �

4. Logical unification types.

4.1. The S-oligomorphic structures and the Ryll-Nardzewski G(S)-property. Let A be

an algebra, S an arbitrary subsemigroup of End(A). Let n ∈ N . We recall that the n-G(S)-type

of a point µ ∈ An is the class of all G(S)-formulas with n free variables which are satisfied by µ.

Below we define versions of the well-known model theoretic concepts with respect to

Galois correspondence G.

Definition 4.1. Let S be a semigroup of endomorphisms of an algebra A.

(1) We call a G(S)-type T principal, if there exists a formula ψ ∈ T such that ψ logically

implies any ϕ ∈ T (modulo Th(A)).

(2) We call an algebra A G(S)-atomic if the G(S)-type of any point of An is principal.

(3) We call an algebra A S-oligomorphic if there exists only finitely many algebraic S-orbits

under the action of S on An for any n ∈ N .

(4) We say that an algebra A possesses the Ryll-Nardzewski G(S)-Property if for any n ∈ N

there exist only finitely many logically non equivalent formulas with n free variables in

G(S) modulo Th(A). This means that there is a finite subset M in the set G(S)n of all

formulas of G(S) with n free variables such that any ϕ ∈ G(S)n is logically equivalent to

some ψ ∈M modulo Th(A).
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Remark 4.2. Let S be a semigroup of endomorphisms of an algebra A. The following statements

are equivalent.

(1) There exist only finitely many algebraic S-orbits on An.

(2) There exist only finitely many S-traces on An.

Remark 4.3. Let S be a semigroup of endomorphisms of an algebra A.

(1) It is well known that for S = Aut(A) and any µ ∈ An the algebraic S-trace of µ coincides

with the algebraic S-orbit of µ.

(2) If ν ∈ Sµ then Sν ⊂ Sµ for any µ, ν ∈ An.

(3) An algebraic S-orbit is the intersection of all algebraic S-traces which contain this S-orbit.

Indeed, let D be an S-orbit and a, b ∈ D. Let x = αa = βb.

Then x ∈ Sx = Sαa ⊂ Sa and x ∈ Sx = Sβb ⊂ Sb. Therefore, D ⊂ Sa ∩ Sb. Conversely,

let x, y ∈ ∩a∈DSa. Then x = αy, y = βx and Sx = Sαy ⊂ Sy. Sy = Sβx ⊂ Sx. Thus

x, y are in the same algebraic S-orbit.

(4) Points with different G(S)-types belong to different algebraic S-orbits.

(5) Points in different algebraic S-orbits have different G(S)-types in logically S-homogeneous

structures.

The next theorem is a G(S)-version of a result by Ryll-Nardzewski, Engeler and Sveno-

nius.

Theorem 5. Let A be an algebra. Let S be a subsemigroup of End(A). The following statements

are equivalent.

(1) A possesses the Ryll-Nardzewski G(S)-property.

(2) A realizes only finitely many n-G(S)-types for each n ∈ N .

(3) A is G(S)-atomic.

(4) If A is countable, then A is S-oligomorphic.

Proof.

(1) ⇔ (2). Let any formula in G(S) with n free variables be logically equivalent modulo Th(A) to

one of the formulas φ1, ..., φs. Then there are not more than 2s different n-G(S)-types.

Conversely, let T1, ..., Ts be all G(S)-types of points of An. We note that any two

formulas ofG(S) with exactly n free variables which simultaneously belong or do not belong

to any n-G(S)-type are logically equivalent modulo Th(A). We choose s pairwise non-

equivalent formulas: φ1, ..., φs;φi ∈ Ti and construct 2s formulas ψα1...αs
= φα1

1 ∧ ...∧φαs
s ,

where αi ∈ {0, 1}, φ0
i = ¬φi, φ

1
i = φi. Then any formula ϕ with n free variables in

G(S) is logically equivalent to one of the formulas ψα1...αs . Namely, if ϕ belongs to types

Ti1 , ..., Tik and only to these types then ϕ is logically equivalent to φα1
1 ∧ ... ∧ φαs

s , where
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αi = 1 ⇔ i ∈ {i1, ..., ik}. Indeed, these two formulas simultaneously belong or do not

belong to any n-G(S)-type.

(2) ⇔ (3). Suppose that A satisfies Condition (2). Then, as we have proved above, A satisfies

Condition (1). Hence, any formula with n free variables in G(S) is logically equiv-

alent modulo Th(A) to one of the formulas of the finite set M = {φ1, ..., φs}. Let

{φi1 , ..., φik} = M ∩ G(S)tpA(a). Then the formula χ ≡ (φi1 ∧ ... ∧ φik) implies every

formula of G(S)tpA(a). Thus, G(S)tpA(a) is principle and algebra A is G(S)-atomic.

Conversely, suppose that A is G(S)-atomic. Let {Ti|i ∈ I} be the set of all G(S)-

types of points of A. Since A is G(S)-atomic, all these G(S)-types are principle. Hence,

we have a list {χi|i ∈ I} of formulas such that χi generates Ti for any i ∈ I. The set

Th(A) ∪ {¬χi|i ∈ I} is inconsistent. Therefore by the compactness theorem there is a

finite subset J = {j1, ..., jk} ⊂ I such that Th(A)∪ {¬χj |j ∈ J} is inconsistent. Therefore

Th(A) |= (∀x)(χj1 ∨ ... ∨ χjk). Thus Tj1 , ..., Tjk is the list of all n-G(S)-types of points of

A. Hence there exist only finitely many n-G(S)-types.

(4) ⇒ (2). Suppose that A is S-oligomorphic. Then the action of S on A has only finitely many

orbits. If a, b ∈ An belong to the same orbit, then there exist f, g ∈ S such that f(a) = b

and g(b) = a. Therefore G(S)tpA(a) = G(S)tpA(b). Hence A realizes only finitely many

n-G(S)-types for each n ∈ N .

(3) ⇒ (4). This item is the only one where we use Fraisse type (back-and-forth) arguments and hence

we add new restriction: the countability of A. By Fraisse type arguments (see details in

the proof of Proposition 8) we obtain that for an atomic countable algebra A and any

two points µ, ν ∈ An which satisfy G(S)tp(µ) ⊂ G(S)tp(ν) there exists α ∈ S such that

α(µ) = ν. Hence A is logically S-homogeneous. Therefore by Remark 4.3, item 5, A is

S-oligomorphic.

�

In view of Remark 2.6 we have

Corollary 4.4. Let S, T be subsemigroups of End(A) such that S ⊂ T ⊂ GG(S). Then an algebra

A satisfies G(S)-properties of Theorem 5 if and only if A satisfies G(T )-properties of Theorem 5.

We remind that the notion of a Φ-definable subset of Hom(A,B) is defined in the ex-

tension of the language L (Definition 2.8). In the next Proposition we consider formulas in this

extension of L.

Proposition 8. Let S be a Φ-definable subset of Hom(A,B). If A and B are countable G(S)-

atomic algebras and Th(A) ⊂ Th(B) then there exists α ∈ S such that α(A) ⊂ B. If µ ∈ An

and ν ∈ Bn satisfy G(S)tpA(µ) ⊂ G(S)tpB(ν) then there exists α ∈ S such that α(A) ⊂ B and

α(µ) = ν.



ACTION OF ENDOMORPHISM SEMIGROUPS ON DEFINABLE SETS 21

Proof. We use the classical Fraisse-type arguments. First we prove that for any c ∈ A there

exists d ∈ B such that G(S)tpA(c) ⊂ G(S)tpB(d). Let c ∈ A and ϕ ∈ G(S)tpA(c). Then

(∃y)(ϕ) ∈ Th(A) ⊂ Th(B). Therefore there exists d ∈ B such that ϕ ∈ G(S)tpB(d). A is a G(S)-

atomic algebra. We choose ϕ to be a formula which generates G(S)tpA(c). Thus G(S)tpA(c) ⊂

G(S)tpB(d).

Let µ ∈ An, ν ∈ Bn and G(S)tpA(µ) ⊂ G(S)tpB(ν). Let us prove that for any c ∈ A

there exists d ∈ B such that G(S)tpA(µ, c) ⊂ G(S)tpB(ν, d). Let c ∈ A and ϕ ∈ G(S)tpA(µ, c).

Then (∃y)(ϕ) ∈ G(S)tpA(µ). Thus (∃y)ϕ ∈ G(S)tpB(ν). Therefore there exists d ∈ B such that

ϕ ∈ G(S)tpB(ν, d). A is a G(S)-atomic algebra. We choose ϕ to be a formula which generates

G(S)tpA(µ, c). Thus G(S)tpA(µ, c) ⊂ G(S)tpB(ν, d).

Let µ ∈ An, ν ∈ Bn satisfy G(S)tpA(µ) ⊂ G(S)tpB(ν). We construct α : A → B recur-

sively. We define α(µ) = ν. Suppose that α(an+1) = bn+1, ..., α(an+k) = bn+k are already defined.

Let an+k+1, ... be the list of all elements of A not included in {µ, an+1, ..., an+k}. We proved already

that there exists bn+k+1 such that G(S)tpA(µ, an+1, ..., an+k+1) ⊂ G(S)tpB(ν, bn+1, ..., bn+k+1).

Define α(an+k+1) = bn+k+1. Thus we obtain a map α from A to B. Since tp0A(a) ⊂ G(S)tpA(a),

α is a homomorphism. Besides that, α satisfies Φ. Therefore α ∈ S. �

In particular we obtain the following corollary.

Corollary 4.5. Let A be a countable G(S)-atomic algebra. Let µ, ν ∈ An be such that

G(S)tpA(µ) ⊂ G(S)tpA(ν). Let S be a Φ-definable subsemigroup of End(A). Then there exists

α ∈ S such that α(µ) = ν.

Theorem 5 and Corollary 4.5 imply Corollary 4.6. It gives the correspondence between

the logical S-homogeneity of a countable algebra A and the properties from Theorem 5.

Corollary 4.6. Countable S-oligomorphic algebra A is logically S-homogeneous.

4.2. Action of subsemigroups of End(A) on t-definable subsets of A. Logical

S-unification types. Unification Types theory is a part of Term Rewriting theory [2], [3]. We

extend its setting from equations to logical formulas. In particular, it can be applied to Constraint

Satisfaction Problems.

Let A be an algebra. Let S be a subsemigroup of End(A). Let D ⊂ An be a G(S)-t-

definable set (i.e., D is defined by a set Φ ⊂ G(S)). Algebraic S-trace Sµ is a subset of D for

any point µ ∈ D. There are four possibilities for covering of G(S)-t-definable sets by algebraic

S-traces:

(1) Any G(S)-t-definable set over A can be covered by algebraic trace Sµ of one point µ. In

this case A has unitary logical S-unification type.
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(2) Any G(S)-t-definable set over A can be covered by the union Sµ1 ∪ ... ∪ Sµn of algebraic

traces of a finite set of points µ1, ..., µn. In this case A has finitary logical S-unification

type.

(3) For any G(S)-t-definable set D over A there is a minimal (with respect to inclusion) set

M of points such that D can be covered by the union of algebraic traces Sµ, µ ∈M and A

has no finitary S-unification type. In this case A has infinitary logical S-unification type.

(4) There is a G(S)-t-definable set D over A such that the minimal (with respect to inclusion)

setM of points such that D can be covered by the union of the algebraic traces Sµ, µ ∈M

does not exist. In this case A has zero logical S-unification type.

Remark 4.7. Let D be a G(S)-t-definable over A set and µ1, µ2 ∈ D. We say that µ1 is less than

µ2 and use the notation µ1 <S µ2 if µ2 ∈ Sµ1 and µ1 ̸∈ Sµ2. A point ν ∈ An is called S-minimal

if it is minimal relative to the partial order <S. We say that two points are S-equivalent if they

belong to the same algebraic S-orbit.

Consider the following condition which we call the condition C(A): for any G(S)-t-

definable set D over A there exists minimal (with respect to inclusion) set M of points in D such

that D can be covered by the S-traces of points of M , i.e., D = ∪µ∈MSµ. In other words, for any

µ ∈ D either there exists ν ∈ D such that ν is S-minimal and ν <S µ or µ is S-minimal.

(1) A has unitary logical S-unification type if and only if any G(S)-t-definable set D over A

contains the minimum element.

(2) A has finitary logical S-unification type if and only if it satisfies the condition C(A) and

for any G(S)-t-definable set D over A the set of non S-equivalent <S-minimal elements

is finite.

(3) A has infinitary logical S-unification type if and only if it satisfies the condition C(A)

and there exists a G(S)-t-definable set D over A with the infinite set of non S-equivalent

<S-minimal elements.

(4) A has zero logical S-unification type if it does not satisfy the minimal cover condition

C(A).

We define the linear order on the set of logical S-unification types. The unitary logical

S-unification type is greater than the finitary logical S-unification type which is in turn greater

than the infinitary logical S-unification type which is greater than the zero logical S-unification

type. In view of Theorem 3 we have the following corollaries.

Corollary 4.8. Let A be an algebra. Let S, T be subsemigroups of End(A) and S ⊂ T . Then the

logical S-unification type of A is less than or equal to the logical T -unification type of A.

Corollary 4.9. Let A be an algebra. Let S be a subsemigroup of End(A). The logical End-

unification type of A is less than or equal to the unification type of A. For example if A has



ACTION OF ENDOMORPHISM SEMIGROUPS ON DEFINABLE SETS 23

zero unification type then A has zero logical unification type with respect to the positive existential

theory.

Proposition 9.

(1) If A is S-oligomorphic then A has finitary logical S-unification type.

(2) If A has finitary logical S-unification type and different S-traces do not intersect then A is

S-oligomorphic.

Proof.

(1) If A is S-oligomorphic, then there exist only finitely many S-orbits under the action of S

on A. Therefore, A has the finitary logical S-unification type.

(2) Let A has the finitary logical S-unification type and different S-traces do not intersect each

other. Any G(S)-t-definable set over A can be covered by the union of traces Sµ1∪...∪Sµn

of a finite set of points µ1, ..., µn. In particular the set An can be covered by the union

of traces Sµ1 ∪ ... ∪ Sµn. Any other trace should intersect one of these traces. But it is

impossible by our assumption. Therefore A is S-oligomorphic.

�

Corollary 4.10. A is Aut-oligomorphic if and only if A has finitary logical Aut-unification type.

Corollary 4.11. Let A be an algebra and S = Aut(A) or S = IEnd(A). The following conditions

are equivalent.

(1) A has the finitary logical S-unification type.

(2) A is S-oligomorphic.

(3) A satisfies any of equivalent conditions of Theorem 5.

Proposition 10. Let S be a submonoid of End(A). Any logically S-homogeneous algebra A has

the non zero logical G(S)-unification type.

Proof. Any G(S)-t-definable set has a minimal cover by algebraic orbits of the form µS and Sµ =

< µ >S for any µ ∈ An because A is logically S-homogeneous. �

Corollary 4.12. Any logically Aut-homogeneous algebra A has the non zero logical unification

type. So, if A has the zero logical unification type then it is not logically Aut-homogeneous algebra.

5. Some Problems.

Let A be an algebra, L a first-order language, S a semigroup of endomorphisms of A,

i.e., S ⊂ End(A).
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Question 1. Describe the Galois closed objects for the Galois correspondence G (Definitions 2.2

and 2.4), i.e., for an algebra A of the given class of algebras (e.g. groups, semigroups, associative

algebras) find

• subsemigroups S of End(A) such that GG(S) = S,

• subsemigroups S of End(A) such that GLGL(S) = S holds in some extension L of L,

• subsets K of L such that GG(K) = K.

• Describe the lattice of G-closed subsemigroups of End(A).

Question 2. In view of Examples 1 and 2 and Remark 2.7 we have the following question. What

are the algebras A such that

• classical semigroups of endomorphisms and sets of formulas are G-closed (cf. Proposition

4),

• classical semigroups of endomorphisms and sets of formulas are the only G-closed objects,

• in particular, what are the algebras such that any their elementary embedding into itself is

an automorphism.

The following question is closely connected with the investigation of the minimal G(S)-

t-definable sets, namely, minimal elements in the set of G(S)-t-definable sets over an algebra A

with respect to the ”subset” relation.

Question 3.

• Given class M of endomorphism subsemigroups S (injective, surjective, stabilizors etc.),

describe algebras A which have the non zero logical S-unification type.

Following [40], [39] we say that an algebra A is logically S-noetherian if any subset of

formulas of G(S) is logically equivalent to a formula modulo Th(A), i.e., any G(S)-t-definable set

over A is G(S)-definable.

Question 4. Let S and S′ be subsemigroups of End(A) and S′ ⊂ S.

• Study relations between logical S-noetherianity and logical S′-noetherianity. For example,

study the cases when S-noetherianity and S′-noetherianity do not coincide for some A.

• What are the pairs (A,S) such that A is logically S-noetherian. Vary A and S.

Partial transformations (see for example the book of Ljapin-Evseev [22]) and clones (e.g.,

[7],[36]) are extensively studied. In particular, they have many applications concerning problems

discussed in this paper.

Question 5. Generalize the G-Galois correspondence to the Galois correspondence

• between clones of transformations of algebras and sets of formulas,

• between partial transformations (endomorphisms) of algebras and sets of formulas.
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Many natural questions can be collected under the roof of the following one: when some

properties of an algebra A are inherited by an algebra B; in particular, what are the conditions

that provide the existence of φ ∈ S ⊂ Hom(A,B) such that φ(A) = B, i.e., B is an S-morphic

image of A.

In view of Proposition 8, Corollary 4.5 and Problems 14–19 from [43] we have

Question 6. • Find conditions on G(S)tp(A) and G(S)tp(B) sufficient for B to be an S-

morphic image of A. Consider relatively free algebras, vector spaces, algebraic groups,

abelian groups etc.

Question 7. It is clear that G(S)-t-definable sets in An give rise to a Zarisky-type topology. So,

we obtain a series of G(S)-topologies.

• Study G(S)-topologies in a uniform way with respect to compactness, unification theory,

countable categoricity, etc.

Let Θ be a variety of algebras and A = F (X), the free in Θ algebra over the set X =

{x1, . . . , xt} of free generators. The next problem is related to a well-known question whether the

rank of a free algebra is elementary definable.

Question 8. Given A = F (X), define the subsemigroup Tk(A) of End(A) by α ∈ Tk(A) if the

set α(X) consists of at most k elements. So, Tk(A) = {α ∈ End(A)||α(X)| ≤ k}. Recall that

subsemigroups S1 and S2 of End(A) are G-equivalent if GG(S1) = GG(S2).

• Describe GG(Tk(A)). In particular, what are algebras A such that GG(Tk(A)) = Tk(A)∪

ElEnd(A).

• Describe algebras A such that Tk(A) and Ts(A) are G-equivalent for all k, s ∈ N or for all

k, s ≥ m for some m ∈ N .
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