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Abstract

The paper is related to the field which we call Universal Algebraic
Geometry (UAG). All algebras under consideration belong to a variety
of algebras ©. For an arbitrary © we construct a system of notions
which lead to a bunch of new problems. As a rule, their solutions
depend on the choice of a specific ©. This can be variety of groups
Grp, variety of associative or Lie algebras, etc. In particular, it can be
the classical variety Com — P of commutative and associative algebras
with unit over a field.

For example, the paper concerns with the following general prob-
lem. For every algebra H € O one can define the category of algebraic
sets over H. Given H; and Hy in © the question is what are the
relations between these algebras that provide an isomorphism of the
corresponding categories of algebraic sets. Similar problem stands with
respect to situation when algebras are replaced by models and the cat-
egories of algebraic sets are replaced by the categories of definable sets.
The results on the stated problem are applicable to knowledge theory
and, in particular, to knowledge bases.



This paper was written in the time of the 70th anniversary of the victory
over fascism in Second World War 1939-1945. We would like to dedicate
this paper to this valuable date. The elder of the authors participated in this
war as a machine-gun platoon commander and was seriously wounded in the
fighting during the liberation of his native Belarus.
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1 Preliminary notions

Let O be a variety of algebras, let H be an algebrain © and X = {z1,...,2,}
be a finite set of variables. Consider points u : X — H, u is a mapping.
From one hand, these points can be viewed as tuples a = (aq,...,a,), a; =
w(z;). From the other hand, these points can be regarded as homomorphisms

pw:W(X)—H

where W = W (X) is the free in © algebra over X. Algebraic nature of points
in O is given by algebras H, W(X) and homomorphisms p : W(X) — H.
We arrive to the affine space of points Hom(W (X), H).

Take further an infinite set of variables X° and let I' be a set of finite
subsets X in X?. Define two categories ©° and ©°(H). The first one is the
category of all free in © algebras W(X), X € I'. Morphisms in O°(H) are
homomorphisms s : W(Y) — W(X). The second one is the category of all
affine spaces Hom(W (X)), H) with morphisms

s:Hom(W(X),H) - Hom(W(Y),H)

for each s : W(Y) — W(X). Here for each point p : W(X) — H we
define v = 5(p) : W(Y) — H by the rule v = pus, that is, v(w) = p(s(w)),
where w € W(Y). The transitions W(X) — Hom(W (X),H) and s — §
determine a contravariant functor ©° — ©Y(H). Tt is checked that this
functor determines duality of categories if and only if Var(H) = 0O, see [§],
[16].

Note further that for each point p : W(X) — H we have its classical
kernel Ker(u). It is a system of all equality relations w = w', w,w" € W(X),
such that w* = w". Here and throughout the paper w" = u(w). By
definition, a point ju satisfies an equality w = w’ if and only if w = w’ lies in
Ker(u). Let Mx be the set of all equalities w = w', w,w’ € W(X). Denote
by ®o(X) the free boolean algebra over M.

Consider the category ®( of all free over Mx boolean algebras ®¢(X)
where X runs I'. Observe that this category depends on the choice of ©.
Morphisms of this category are homomorphisms of boolean algebras s, :
Dy(Y) — Po(X) satistying the condition s,(w = w') = (sw = sw'). So we
assume that all s, are correlated with equalities.



For each space of points Hom(W (X), H) take the boolean power algebra
of all subsets of Hom(W (X)), H). Assign to every formula w = w’ in ®((X)
the subset A which consists of all points u € Hom(W (X), H), satisfying
w = w'. Denote this set by [w = w'] g and denote by Bool§ (H) the boolean
power algebra with the specified elements [w = w'| . We call these elements
equalities of Bool (H). The mapping w = w' — [w = w']y determines the
boolean homomorphism

Valgy : ®9(X) — Bools (H).

We say that a point p : W(X) — H satisfies the formula u € ®¢(X) if
and only if u € ValX(u). This definition fits well to the standard model
theoretic definition.

Let us define the category Boold (H). Its objects are algebras Bool (H).
Given B € Bool§(H), define s.(B) = A € Boold (H) by the rule: p € A if
and only if s(u) = v = pus € B. One can check that s, is a homomorphism
of boolean algebras. Note also that every homomorphism s, transforms
equalities of Boold (H) to equalities of Boolg (H), that is, s.[w = w']y =
[sw = sw']y. The correspondence between objects in ®y and objects in
Boold (H) gives rise to a functor from P to Boold (H).

Passing to the general case, we use models of the form F = (H, ¥, f).
Here H is an algebra in O, ¥ is a set of symbols of relations ¢ of an arbitrary
arity m (we write ¢, = @(wi,...,wy), w; € W(X)) and f is a function
which interprets each ¢,, in H. For every ., consider the set of all m-
tuples from H™ which satisfy the relation ¢, in the interpretation f. A
point p : W(X) — H satisfies ¢, if the tuple (wf,...,wh,) lies in f(om).
In the sequel we consider relations, i.e., formulas of the form p(wy, ..., wy)
along with equalities.

Warning. For the sake of convenience, in the notation of objects related
to a model F = (H, ¥, f) we use the letter H instead of pointing out the
whole model F.

Define automorphisms ¢ of the model F' as automorphisms of H which
keep every f(y) invariant under o. It is clear that if a tuple u satisfies the
formula ¢(w1,...,wy,) and o is an automorphism of the model, then the
point o(u) satisfies this formula as well. Moreover,

Theorem 1.1 ([14], cf.,[5], [7]) If o is an automorphism of the model
F = (H,V, f), then every definable set A in the category LGo(H) is in-
variant under the action of automorphism o.

Further on we will expand the algebra of formulas ®,(X) taking into
account formulas of the form p(wi, ..., wn).



2 Logical and geometrical terminology

2.1 A system of ongoing notions

We shall define some new categories. First of all, this is the category of
algebras of logical formulas ®g, whose objects are denoted by ®(X ). Mor-
phisms s, : ®(Y) — ®(X) in $g correspond to homomorphisms s : W(Y) —
W(X). They are correlated with the signature of algebras ®(X) (see 2.2).
Algebraic part of ®g will be presented by a functor 60 — ®g.

Another important category is the category Halg(H) of extended boolean
algebras Hald (H), H € ©, with morphisms s, : Hall (H) — Hald (H).
The situation of Hald (H) differs from the one of Bools (H) by adding op-
erations of existential quantifiers to Boolg (H). So, morphism s, should be
correlated with quantifier operations.

Both categories are treated also as multi-sorted algebras with the set of

sorts I based on an infinite set of variables X?. Objects of these categories
are domains of the corresponding algebras while morphisms give rise to
operations in these algebras.
_In our setting the categories H ale(H), H € © precedes the category
®g and, in some sense, determines it. We will define the variety Halg as
a variety determined by the identities of algebras Halg(H). The identities
of Halg arise naturally from the properties of Halg(H). Then, the algebra
(and the category) ®g = (®(X), X € I') is the free in Halg algebra. The
set of the atomic formulas Mp = (Mx, X € I') is a system of free generators
of this algebra. All this allows us to define ®(X) as domains of the algebra
dg.

These complications are necessary in order to pass from the propositional
calculus to first order logic. In particular, algebras ®o and Oy (X) are defined
in the very simple and natural way. The definition of &g = (®(X), X €I
is more complicated.

2.2 Extended boolean algebras

Along with the algebra of formulas ®4(X) we will consider an algebra ®(X)
enriched by quantifiers which are added to signature of operations. Recall
(see [12], [15], [16]) that an extended boolean algebra is defined for each
finite set of variables X. Its signature Lx consists of three parts:

1. Boolean operations V, A, —.

2. Atomic formulas. These are equalities w = w’ and formulas of the
form ¢(w1,...,wy,) where all w; are elements in the free in © algebra
W(X).

3. Existential quantifiers dz for x € X.



Note that an existential quantifier 3 of the Boolean algebra B is an unary
operation d: B — B with the properties

1. 30 = 0.
2. a < da.
3. 3(a A 3b) =Ja A 3b.

We have also 3(a V b) = Ja Vv 3b.
Universal quantifier V: B — B is defined dually and its properties are

1. v1=1.
2. a > Va.
3. V(a Vv ¥b) = Va V Vb.

The equalities V(a A b) = Va A Vb and —(Va) = J(—a) are always true. We
also require dzdy = Jydz for z, y in X. In the formulas above 0 and 1 are
zero and unit in B and a, b are elements in B.

Define the extended boolean algebra Hal (H). First of all, it is the
power algebra of all sets A in Hom(W (X), H). Atomic formulas [u]r in
Hal (H) are defined to be values of u € My as is in Section 1. Quantifiers
Jz on Hald (H) are defined as follows: for z € X and A € Hom(W (X), H)
we define B = dz A by the rule: a point u lies in B if there is v in A, such
that u(z') = v(2') for 2/ # z, 2’ € X. We obtained an extended boolean
algebra HalS (H).

We will define algebras ®(X) in such a way that ®(X) and Halg (H)
have the same signature. Besides, we need that for any X € I' and any
H € © we have a homomorphism Valy : ®(X) — HalX (H) which takes
every formula u € ®(X) into its value ValX (u) = [u]p. This value is, indeed,
the set of points u : W(X) — H, satisfying the formula w.

Since Val%( is a homomorphism, we have:

Valy (3zu) = IxVal (u).

We will be interested in two categories. As earlier, we proceed from an
infinite set X% and let T' be a set of all finite subsets X in X%. We had
already defined the categories ©° and ©°(H). Define now the categories ;I;@
and Halg(H).

Define the Halmos category Halg(H) of all Hal (H). Let us discuss its
morphisms

sy : Haly(H) — Hald (H)

corresponding to s : W(Y') — W(X) in more detail. We define s, in the way
as it was done in Section 1, that is, given B € Hal§(H), define s.(B) =
A e Halé((H) by the rule: p € A if and only if s(u) = v = us € B.



These s, are homomorphisms of the corresponding boolean algebras (see
Section 1). Further, on the elements [p(w1, ..., w, )]y morphisms s, act by
the rule: si[p(wi, ..., wn)|lg = [p(swi,...,swn)]Hg, ¢ € U. Thus, s, takes
atomic formulas to atomic formulas, preserving symbols of relations, but not
necessarily preserving relations themselves.

Let us discuss the interaction of s, with quantifiers Jy. Take the set
JyB, B € Haly(H). Denote z = s(y), s«(B) = A. We shall treat the
equality s,(JyB) = Jzs.(B) = Iz A which holds not for every s.

Definition 2.1 A morphism s : W(Y') — W(X) is called y-admissible, if
1. s(y) is a variable x.
2. Element x does not belong to the support of every w' = s(y'), where

Y #y.
This definition means also that if ¢’ # y and w’ = s(y’) then 2’ # z, x = s(y)
for every 2’ in the support of w’ = s(y/).

Proposition 2.2 (cf. [16]) If a morphism s : W(Y) — W(X) is y -
admissible, then for every p : W(X) — H from 3xA the point s(u) lies
i dyB. This means that

JzA C s.(JyB).

Proof. Let a point u: W(X) — H belongs to 3xA. By definition of 3z,
there exists a point v € W(X) — H, such that v € A and u(2’) = v(a’)
for every 2/ # x, ' € X. Points s(u) = ps and s(v) = vs belong to
Hom(W(Y), H). Besides, s(v) lies in B, since v € A = s,B. Apply s(u)
and s(v) to y # y. We have

(1)) = (us)(¥) = w(s(y)) = p(w')

@)

and
sW)() = (ws)(y) = v(s(y)) = v(w).

By the condition, x4 and v coincide for every 2’ # x. According to the
condition on s, element w’ is generated by the elements 2’ of such kind.
Since p(z') = v(a') for every 2’ in the support of w’, then u(w’) = v(w').
Hence, ps(y') = vs(y'), v’ # y. By definition of a quantifier Jy this means
that the point us belongs to Jy(B).

]

Moreover,

Proposition 2.3 (cf. [16]) If a morphism s : W(Y) — W(X) is y -
admissible, then for every p : W(X) — H such that s(u) € JyB, the point
w lies in su(JyB) = 3xA. This means that

JzA D s.(JyB).



Proof. Let p : W(X) — H and s(u) belong to JyB, that is p lies in
s«(JyB). We want to prove that pu € Iz A, that is there exists v € A such
that v(2') = p(a’) for all 2/ # x, x = s(y).

Since s(p) = wus € JyB, there exists £ : W(X) — H such that £ € B
and £(y") = (us)(y'), where 3 # y. Let us show that if £ : W(X) — H and
¢ € B, then there exists v : W(X) — H such that (us)(y') = (vs)(y') for
every iy #y, i.e., £ =vs. If y € B then we have a commutative diagram

Denote s(y') = w' € W(X) for every ¥/ # y. These w' induce the
homomorphism v : W((X) — H, such that v(w’) = p(w’). Define u(z’) =
v(z') for all 2’ which lie in the support of the element w’. This definition
is correct since v is the same for all w’. However, there can exist 2/ which
does not lie in the support w’. Define pu(z’) = v(2) in this case as well.

It remains to define v(x), where s(y) = x. Geometrically, the point
lies on the cylinder over the set A. So to define v we need to take the
”projection” of u on A along the x.

So we constructed a point v : W(X) — H, such that u(z") = v(2'), for
every =’ # x. The latter means that u belongs to 3z A, where A = s, B.

O

Summing up Propositions 2.2 and 2.3 above we obtain that for every
s: W(Y) — W(X) and the corresponding s, : Hal§(H) — Hald (H) the
equality
s«(JyB) =z A

where z = s(y), A = s.(B), B € Hal}(H), takes place if and only if s is
y-admissible.

From propositions above and Propositions 2.7 and 2.8 from [16] follow
the rules for morphisms s, in the category Halg(H).

Proposition 2.4 ([16]) 1. All morphisms s, are homomorphisms of boolean
algebras Bool (H), X € T

2. Let p(wi, ..., wy) € V. Then sip(wi, ..., wn)]g = [e(swi,...,swn)|g.

3. Let s1 and sy be morphisms W(Y) — W(X) and let s1(y') = s2(v/')
forally €Y,y #y. Then the equality

51.3Y(B) = s2.3y(B),

where B C Hom(W (X)), H), holds in Halg(H).



4. Let s : W(Y) — W(X) be a morphism. Takey € Y and let s(y) = x.
Let s be y-admissible. Then the equality

5.3y(B) = 3s(y)s.(B) = JrA,
where B C Hom(W(Y'), H), holds in Hale(H ).

So, each s : W(Y) — W(X) induces a morphism s, : Hal§(H) —
H alé (H) in the category Halg(H). Every s, satisfies conditions from
Proposition 2.4. The morphisms s, are not homomorphisms of the extended
boolean algebras H al)@( (H) in contrast to morphisms in the category ®y.

Now we shall present another look at the Halmos categories. Define
the subcategory ©! of ©°. These categories have the same objects which
are free finitely generated algebras W (X ). Morphisms of ©! are admissible
morphisms in 6°.

Proposition 2.5 O! is a subcategory in ©°.

Proof. Check that if s; : W(Z) — W (Y') is z-admissible morphism and
sg : W(Y) — W(X) is y-admissible morphism, then sgs; : W(Z) — W(X)
is z-admissible where s1(2) = vy, s2(y) = «.

Take 2/ € Z, 2/ # z and let s1(2') = w, w € W(Y). Then w =
w(yy,...,y,) where y, # y for all i = 1,...,n. Apply an y-admissible
s2. We have (s251)(2") = s2(w) = w(sa2(yy), - - -, s2(yl,)), that is (s2s1)(2") =
w'(wh,...,w),) where w, € W(X). Moreover, z does not belong to the
support of w’. This means that s9s1 is z-admissible morphism.

Basing on the category ©1 one can define the category of correct Hal-
mos algebras Halg, (H) exactly in the way it was done beforehand for the
category Halg(H). Since we restricted ourselves to morphisms s in O,
that is, to admissible morphisms, all morphisms s, in Halg,(H) become
homomorphisms of extended boolean algebras. In plain words the category
Halg, (H) has less morphisms than Halg(H ).

In what follows we stay on the positions of the logic defined by the
category Halg(H) because in many cases there is no reason to assume an
arbitrary morphism to be admissible. However, we impose this assumption
if we deal with formulas with existential quantifiers.

The introduced category Halg(H) gives rise to a multi-sorted Halmos
algebra Halg(H) (cf., [4]) whose domains and operations are objects and
morphisms of the category, respectively.

Define further the variety of multi-sorted algebras Halg. The construc-
tion is as follows. We use the conditions described by Proposition 2.4 as
axioms. The complete list of axioms can be found, for example, in [16],
[1]. These axioms are either identities or conditional identities. The latter
means that these conditions contain operations s which act on algebras from
0Y (see axioms 2—4 of Proposition 2.4).



Define Halg to be the class of algebras, generated by algebras Halg(H ),
H runs O, that is, the class of algebras which possess the same identities
and conditional identities as algebras Halg(H). The class of algebras of
such kind we call LG-variety (logically-geometric variety).

Straightforward calculations show that

Proposition 2.6 The class of algebras Halg is closed with respect to oper-
ators of taking subalgebras, Cartesian products and homomorphic images.

Hence, in view of Birkhoff’s theorem [11] the LG-variety Halg is a vari-
ety in the sense of universal algebra, i.e., Halg is determined by the identities
from 2.4, see also [16], [1]. Another set of identities which is more transpar-
ent can be found in [9], [10], [3]. In particular they show that ”conditional”
identities can be replaced by simpler ones. This fact requires introducing
additional morphisms.

Let £ be the absolutely free algebra (algebra of multi-sorted terms)
with respect to multi-sorted signature Lg = {Lx, s«, Mo}, where the set
of atomic formulas Mg = (Mx, X €T') is the generating set of £. Here Mx
is the set of all equalities w = w', w,w’ € W(X). Given algebra H, assign to
each formula u € M its value Val3 (u) in the algebra HalS (H). This cor-
respondence gives rise to the homomorphism £ — Halg(H). Let Ker(H) be
the kernel of this homomorphism. Define the algebra ®g = (®(X), X €I
as the quotient algebra of £ modulo (\;.q Ker(H). Then the value homo-
morphism is defined for every algebra Halg(H ), where H € ©. In particular
we have a commutative diagram for every s : W(Y) — W(X).

O(Y) l O(X)
Valgl lValif

Hall(F) ——~ Hal§ (F)

Regarding s, we call these morphisms quasi-homomorphisms meaning
that their behavior is ruled by axioms of Halg(H). Denote Valk(v) = B,
ValX (u) = A, where u = s,v, v € ®(Y), u € ®(X). Then, in particular,

Jyv —2— Jzu
Val%l l\/alfg
JyB —~ A
Consider now the Galois correspondence. Note first of all that for any
point p : W(X) — H we have its logical kernel LKer(u) consisting of for-
mulas u € ®(X) for which the points p satisfy u. This kernel is a boolean

ultrafilter in ®(X). The Galois correspondence is a correspondence be-
tween the sets T of formulas in ®(X) and the sets A of points in the space



Hom(W(X), H). We define TE = A by the rule: a point p is contained in
Aif T C LKer(u). In other words, u satisfies every w € T'. Then, in terms
of the value homomorphism we can write:

Tk =A= () Valy (u).
ueT

Here we say that the set A is a definable set which is defined by the set of
formulas T'.
Let now A C Hom(W(X), H) be given. We set:

Ak =T = ﬂ LKer(u).
HEA

According to this definition a formula u is contained in the set T if and only
if AC Val¥(u).

The set T = AL is an F-closed boolean filter in ®(X). We always have
T}%L and A%L. T = A%, then T}%L =T.If A= TFQ, then A%L = A.

3 Similarity of algebras and models

3.1 Category of definable sets

Denote the category of definable sets by LGo(H). Let us define this category
for the given model F' = (H, U, f). Its objects are the sets LG (H). Each
set consists of definable sets A of the space Hom(W (X), H). Let A; and
Aj be definable sets in Hom(W (Y), H), and let Ay = T, and Ay = T .
Proceed from the fact that 77 and T, are filters in ®(X) and make some
remarks on Galois transitions.

Take two filters T} and T3 in ®(X). Then

(MU =TFp N Ty p

follows directly from the definition of the operator L. Proceed further from
Ty NT5. We have
(Ty NTy)l > TEnTf.

Take now definable sets A; and Ay in Hom(W (X)), H). By the definition,
(A1 UAs)f = A p N Ay

and
(A;n Ak o Al U AL L

Theorem 3.1 Let Ay and Az be definable sets of points in Hom(W (X), H).
Then Ay U Ay and Ay N As are definable sets as well.

10



Proof.

‘We have also (T1 UTQ)L = TlL ﬂTQL = A{’LﬂAéL = A1NAs. So, A1NA,
is a definable set.

Prove that A; U Ay is definable. Take T7 = AlL and To = AQL. Take the
set T of all formulas u Vv, u € Ty, v € Ty. Since u € 17, then v V v also lies
in T}. The same for v € Ty. Therefore, T C Ty N Ty, T* > (Ty N Ty)~.

We have ' NTy € Ty and A; = TF ¢ (Th nTy)F. So, A;U Ay C
(T NTy)F c TE.

Take a point p: W(X) — H satisfying all formulas u Vv € T and let p
doesn’t belong to A;. Then p doesn’t satisfy some u € T1. Hence, u satisfies
every v € Ty, that is p € As. So, if p satisfies every u Vv € T, then pu is
contained in Ay U Ay = Tﬁ.

We checked that 7% = A; UAs, thus, AjUAs = (Th ﬂTg)L. The theorem
is proved.

Corollary 3.2 The system LG (H) is a lattice.

Thus, objects of the category of all definable sets LGg(H) are lattices
LGE(H). The corresponding morphisms

s.: LGS (H) — LGS (H)

are morphisms of lattices, since they preserve boolean operations.
Let us make a remark on the functor

ClH : ‘5@ — Lat.

Denote Cly(®(X)) = LFZ (H). It is the lattice of all F-closed filters T
in ®(X) for the model F. Here T = AL for A ¢ Hom(W(Y),H). The
lattice LFZ (H) is anti-isomorphic to the lattice LGS (H). The transition
A — Al = T transposes union with intersection: (A; U A9)l = Al n AL
and (Th UTh)* = TENTF. We have also: s, @ ®(Y) — ®(X) implies
s« LEY(H) — LEZ (H). Here s, is correlated with the lattice operations.
We have also the diagram

o(Y) 2 P(X)
cz;l lozfg

LFg(Y) —— LFe(X)

The next important step on the way to the main theorem is to recall the
definition of isomorphism of two functors (cf., [6]).

Definition 3.3 Let @1, p2 be two functors from a category Cy to Cy. We
say that an isomorphism of functors S : @1 — o is defined if for any
morphism v : A — B in Cy the following commutative diagram takes place

11



p1(A) 24 0y(A)
m(u)l lm(u)
p1(B) —22w 0y(B).

Here S 4 is the A-component of S, that is, a function which makes a bijective
correspondence between ¢1(A) and p2(A). The same is valid for Sp.

We have also

p2(v) = s 1 (v)(s™) 7"
A particular case of this definition is the notion of inner automorphism of
categories. An automorphism ¢ of the category C' is called inner (see [13]) if
 is isomorphic to the identity functor 1¢. This provides the commutative
diagram

A p(4)
/| Jo)
that is, p(v) = sprs,’.
In the next diagram
de 4 - g
cm ﬁHQ
Latg

¢ is an automorphism of the category &)@ meaning the substitution of vari-
ables in the algebra ®g. Commutativity of the diagram means that there is
an isomorphism of functors

ap: Cly, — Cla,e.
Here Fl = (Hlaqlafl)a F2 = (H27\II>H2)'

Definition 3.4 ([16],[2]) We call the models Fy and Fy automorphically
equivalent, if this diagram is commutative.

Recall (see [2]) that the models F and F, are similar if the categories
LGe(H;) and LGe(H2) are isomorphic.

Theorem 3.5 Let Var(Hy) = Var(Hz) = O. If the models F1 = (Hy, ¥, f1)
and Fy = (Ha, ¥, Hy) are automorphically equivalent, then they are similar.

12



Proof. Let the models (Hy, ¥, f1) and (Ha, ¥, Hy) be automorphically
equivalent. Then there is an isomorphism of functors

ap : Cly, = Cly,e.

This means that there is a commutative diagram

(ap)
Clag, (B(Y)) —200 s Clyr, o(D(Y))
ClHl(s*)l lClHng(s*)
(o)
Cli, (D(X)) —22X s Clyy, o(B(X)).

Here, (ap)g(yy and (ap)g(x) are bijections. Denote 7. = ¢(sx).

Homomorphism s : W(Y) — W(X) defines uniquely the vertical arrows
of the diagram. Our aim is to choose the horizontal arrows in such a way
that there will be an isomorphism of LGg(H1) and LGe(Ha2).

Since Var(Hy) = Var(Hs) = O, categories LGg(H;) and LGg(H2) are
isomorphic if and only if categories LFg(H1) and LFg(H3) are isomorphic.
Hence, it is enough to establish an isomorphism of the categories of the
lattices of the closed filters.

We have T in the lattice Cly, (®(Y)) and we need to construct 7™ in
the lattice Cly,(®(Y)). So, the main problem is to assign 7% to the dis-
tinguished T'.

First of all, we will define the semigroup End,(®(X)). For each W(X)
consider the semigroup End(W(X)). Take s : W(X) — W(X). The mor-
phism s, : ®(X) — ®(X) corresponds to s. Hence, for every u € ®(X)
we have an element s,u in ®(X). All s, constitute a semigroup which we
denote End,(®(X)).

Remark 3.6 [t is worth to mention that ®(X) is not a purely algebraic
structure. So, we should assume correlation with quantifiers and atomic
formulas. This correlation is given by cited above axioms of Halmos algebras
related with the morphisms s.. Moreover, in view of this remark, one can
treat End,(®(X)) as the semigroup of logical endomorphisms of ®(X).

Let an Hi-closed filter T' in ®(Y") be given. By definition, T" is a boolean
filter. Correspondingly, ®(Y')/T is a boolean algebra. Consider the homo-
morphism of boolean algebras

pr: ®(Y) — &(Y)/T.

Take elements s!, s2 in End,(®(Y)). Define the relation p on End,(®(Y))
by the rule: slps? if and only if (ursl) = (urs?), that is, (ursl)(u) =
(urs?)(u) for every u € ®(Y). This means that slu and su coincide in
O(Y)/T for every u € &(Y').
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Note that arbitrary formulas ¢; and ¢2 from ®(Y) coincide in ®(Y)/T
if and only if the formula (t; — t2) A (t2 — t1) belongs to the filter T
(Lindenbaum-Taski approach).

Apply this note to our situation, substituting ¢; and o by slu and s2u,
respectively. We have s!ps? if and only if (slu — s?u) A (s?u — slu) belongs
to T

This allows us to define the relation p on ®(Y) as follows: (slu)p(s?u)
if and only if (slu — s2u) A (s?u — slu) belongs to T. Let T = AJLLII, where
A lies in Hom(W (Y'), Hy). Using the L-Galois correspondence, the latter
condition defining p can be reformulated now as: (slu)p(s2u) if and only if
the formula (slu — s2u) A (s2u — slu) where u € ®(Y) is satisfied on A.

So, T — p(T) = p — p. Identifying p with the set of formulas (slu —

s2u) A (s2u — stu), we have,

where 7(5(T)) = (3(T))".

Define relation p* on End,p(®(Y)) = End.(®(Y’)) according to action
of the functor ¢ on morphisms. Namely, let (s!) = nl and p(s2) = n2.
Define p* = ¢(p), that is, nlp*n?2 if and only if slps?.

Take in ®(Y”) set all formulas of the form (nlv — n?v) A (n?v — niv),
where v € ®(Y') and n}p*n2. Denote this set by p*. Denote by A, = (ﬁ*)ﬁz
the corresponding definable set in Hom(W (Y'), Hz). Then the filter T* is
defined as T* = (A*)ILLI2 = (ﬁ*)ﬁé

Observe that one can define the relation p* on ®(Y”) in the way similar
to previously done with respect to p on ®(Y). Define this relation by the
rule: (nlv)p*(n2v), where v € ®(Y’) if and only if the formula (nlv —
n2v) A (n2v — nlv) is satisfied on A,. This relation characterizes T* in the
unique way.

Apply this setting to the diagram which defines isomorphism of functors

Clg, and Cly,p. Take T € Cly,(®(Y)) and denote (ap)ey)(T) by T*.
Then, T* lies is Cl(g,)p(®(Y)). We have T' = 15y)(p(T)). Hence, T* =
To@v)) (9(p(T))). This means that filter 1" defines T* uniquely. Because of
the diagram the correspondence T — T™ gives rise to the isomorphism of
categories LFg(H1) and LFg(H3).
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