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1. Introduction

1.1. Motivation

The Knowledge Bases world is extremely diverse and we would like to think over the question about
some classes of equivalent bases, yet not defining what do we exactly mean by equivalence by now.

The outcome we expect of equivalence is that the bases work equally. The knowledge need
not be represented in exactly the same way but there should be a transition allowing to infer the
replies in one knowledge base using the knowledge kept in another one. The same observation relates
also to queries, that is, queries to a knowledge base need not be literally the same but they have
to be considered up to a certain syntactical/semantical equivalence. So, the knowledge bases are
informationally equivalent if they produce the equivalent knowledge under equivalent queries. One
can also say that two knowledge bases are informationally equivalent if the whole information that
can be retrieved from one of them could be also obtained from the other one and vice versa.

1.2. Equivalence of databases

Genetically, the equivalence problem for knowledge bases goes back to the similar one for databases.
To the best of our knowledge, it was first posed in [6] and [1] and gave rise to the notion of databases
schemes equivalence. Algorithms for verification of databases equivalence using database schemes
were proposed by Beniaminov, Beeri-Mendelzon-Sagiv-Ullman and others. In this setting two rela-
tional database schemes are equivalent if their sets of fixed points coincide. Correspondingly, two
relational databases are equivalent if their sets of all fixed points intersected with the sets of feasible
instances coincide. This and other approaches to the database equivalence problem had been studied
in numerous papers (see [7], [2], [31], [14], [4], [3], [29], etc.).

1.3. Symmetries and automorphic equivalence of knowledge bases

Informational equivalence for knowledge bases requires a more extended technique (see [30] and
references therein). Being inspired by Galois theory of algebras of relations invented by M. Krasner
[17], we used the notion of automorphic equivalence of knowledge bases in [30], [28].

In plane words the general idea behind this approach is as follows.

We are very grateful to the anonymous reviewers for their valuable and helpful comments and suggestions.



2 E. Aladova, E. Plotkin and T. Plotkin

We would like to have a calculable invariant of a knowledge base, i.e., an object assigned,
which can be used for distinguishing the properties of knowledge bases in question. Moreover, we
expect coincidence of these invariants as a criterion of the informational equivalence of knowledge
bases. Such a criterion is provided by the universal ideas of the Galois theory and should use a
properly defined group of symmetries of a knowledge base, a.k.a. the group of automorphisms of a
knowledge base.

Relying rather on human perception than on mathematics let us call an object rigid, if it can be
“rigidly” defined by its group of symmetries. So, if a knowledge base is, in this sense, rigid, it can
be characterized by its group of automorphisms, which is a calculable object, much simpler than the
initial structure of a knowledge base.

The above observations resulted in the following definition (see [27], [30] for details). Let A,
B be two knowledge bases, and Aut(2), Aut(B) be their groups of automorphisms.

Definition 1.1. The knowledge bases 2l and ®B are called automorphically equivalent if their Galois
groups Aut(2l) and Aut(B) are conjugated.

It turns out, that knowledge bases are rigid ([16],[27], [30]):

Theorem 1.2. Two finite knowledge bases A and B are informationally equivalent if and only if
they are automorphically equivalent.

In fact, this theorem reduces the problem of informational equivalence of knowledge bases to
the well-developed conjugation problem for groups ([9], [22], [32]).

1.4. The main objective of the paper

Theorem 1.2 provides an algebraic criterion for the informational equivalence of knowledge bases.
It indicates the fact that knowledge bases have a formidable group of symmetries which makes it
possible to calculate how far is a knowledge base from the other one.

The current paper makes another accent and emphasizes logical characteristics instead of com-
putability. In fact, we pursue the goal of the characterization of the measure of “sameness” of two
different knowledge bases more from the positions of logic and geometry than from the side of al-
gebra. Clearly, this is yet another incarnation of the same essence, and ideally in the end one should
come up with the similar result.

So, our aim is to study the logical invariants of knowledge bases and to use for that the ideas
of logical geometry. We will see that the notion of elementary equivalence of knowledge bases is
not enough for this aim, and that the appropriate notion which works out is the notion of isotypic
knowledge bases.

The main result of the paper is the following

Theorem. Isotypic knowledge bases are informationally equivalent.

Its proof is based on several preliminary facts and is contained in the last section of the paper.

1.5. Preliminaries about the model of a knowledge base

In order to operate with mathematical characteristics of a knowledge base we use the model, de-
scribed in Section 2. Beforehand, one should underline that due to the complexity of the object each
model of a knowledge base is just a rough approximation to reality, suffering from a variety of as-
sumptions. Our model is not an exception. Nevertheless we dare state the results about arbitrary
knowledge bases in terms of our model. In any case it allows one to use the machinery of algebra
and logic and to treat the common sense notions in a proper formal way.
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1.6. Mathematical engine

We assume that queries to a knowledge base are written in a first-order language. The corresponding
logic has syntax and semantics which go side by side. We express syntax and semantics by adequate
algebraic notions allowing to represent all transitions by some functions preserving operations. This
approach naturally requires an application of structures of algebraic logic [13], [23]. In particular, a
consistent application of Halmos algebras is of ultimate importance.

The key point about Halmos algebras is that they are related to first-order logic in a way
analogous to the relationship between Boolean algebras and propositional logic. The immediate
advantage of this phenomenon is that we can view queries to a knowledge base and replies to these
queries as objects of the same nature, i.e., elements of Halmos algebras. Then the transition query-
reply is a homomorphism of such algebras. This insight attracts to the play the notions of a kernel,
of a quotient algebra, of a Galois connection and gives rise to a developed algebraic machinery.

There are two peculiarities of the algebraic logic characteristic for the aims of knowledge bases.
First of all we need a multi-sorted variant of logic, which corresponds to data and information of the
different nature. Secondly, we need to construct an algebraic logic and the corresponding logical
geometry over an arbitrary set of predicates (cf. [10]). This construction is presented in Sections 4
and 5 and takes up a valuable part of the paper.

Finally, it is not realistic to implement all the needed steps of this route in a short paper, but we
will formulate these steps and prove the main theorem on equivalence.

2. Preliminaries

For the sake of self-completeness we recall here the basic definitions and sketch the model of a
knowledge base in use. This material is mostly known (see [30] and references therein). We begin
with the definition of a model in the form of [23].

Definition 2.1. We define a model as a triple M = (H,V, f), where H is a data domain, that is,
an algebra in a variety of algebras O, W is a set of symbols of relations, and f is an interpretation
of these symbols as relations in H. Each symbol ¢ € W has an arity n,. An interpretation of the
relations is a map f which takes every ¢ € U to the subset f(p) of the Cartesian product H"¢ .
Further on we sometimes denote the model (H, U, f) by (f).

Remark 2.2. Note the misleading coincidence of the terms “model” and “model of a knowledge
base”. The first one is the main subject of model theory (see the textbook [19] and many others).
The second term is used in the sense, which is customary for applications: ”a mathematical model
of something”.

A knowledge under consideration is presented in three components:

e Description of knowledge is its syntactical component. It relies on a language in the given
logic and describes what kind of information we would like to retrieve. Knowledge description
consists of the set of sentences in the chosen language. Assuming our logic to be first-order,
the description of knowledge is presented by a set of first-order formulas. The logic is given for
the fixed variety © which serves as a data type in applications. We consider a first-order logic
equipped with predicates (relations). We also assume that our language contains the predicate
= and its interpretation is always equality, that is we deal with normal models.

For the algebraic description of knowledge we use the free in © algebra W (X) with the
finite X = {1, ..., x,} and the algebra of formulas ®(X). Then the description of knowledge
is a set of formulas 7" in ®(X) or, more precisely, in the multi-sorted algebra of formulas P
(see Subsection 4.6).
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e The next component is the subject area of knowledge for which the content of knowledge
should be computed. The subject of knowledge is represented by a model M = (H, ¥, f).
This triple presents a subject area where all replies to all queries are searched. We call the
knowledge base finite if the algebra H is finite.

e The third component is the content of knowledge. Given amodel (H, W, f), to each description
of knowledge T' C ®(X), there corresponds a content of knowledge A, where A is a subset
in H". If we regard H™ as an affine space, then the content of knowledge A can be treated
geometrically as the set of points in the affine space which satisfy the description 7" of the
searched knowledge. The most of geometry is involved in this third component.

Now we are able to complete the definition of a knowledge base. Let us define a multi-model
(H,VU,F) as a set of models (H, ¥, f), where f runs some set F' of interpretations of symbols
of relations ¥ in H. In fact, multi-models are needed in order to determine knowledge bases with
changing interpretations of the description of knowledge.

We need to introduce the following categories.

The first one is the category of logical knowledge description CT)( #)- Here, the notation 5( )
with subscript (f) indicates the fact that knowledge descriptions are considered under the given
model (H, ¥, f). Objects of this category are pairs of the form (X,7'), where X is a finite set of
variables and 7T’ is a set of first order formulas written in the variables from X. Morphisms in &)( )
will be defined in Section 6. The categories LK ¢ (f) of knowledge content, where f runs over the
set F' have the objects of the form (X, A), where A is a subset in an affine space over the given
model. Their morphisms are naturally defined (see Section 6 for details).

Let us denote the knowledge base over the given multi-model (H, ¥, F) by KB(H, ¥, F).

Definition 2.3. A knowledge base KB = KB(H,V, F') consists of the category of knowledge

description ZI;( #) and the categories of knowledge content LK (f). They are related by the contra-
variant functors

Cty: (I)(f) — LKo(f).

These functors Ct; transform knowledge descriptions to contents of knowledge and will be
defined in Subsection 6.1.

In the three subsequent sections we present mathematical apparatus needed to formalize the
intuitive definition of a knowledge base.

3. Logic for knowledge bases

In this Section we give a brief account of the logic which will be used for knowledge description and
which will be subject to algebraization. Note, however, that the precise definition of the logic in use
is left till Section 4, and is given in terms of algebraic logic.

We will start with the formal syntactic description of a first-order language used for the de-
scription of knowledge. Each language assumes some stock of variables, which serve as an alphabet,
and a number of rules which allow to construct words from a given alphabet. Formalizing all this:

Definition 3.1. A language L is given by specifying the following data.

1. A set of variables X = {z1,22,...,Zn,... }. This set can be finite or infinite. The generic
situation is an infinite X = X°.

2. A set F of function symbols p given together with their arities n,, > 0.

3. A set ¥ of relation symbols ¢ given together with their arities n, > 1. Relation symbols
¢ € U are also called predicate symbols.

4. A set C of constant symbols. These symbols are also treated as function symbols of zero arity.

5. The symbols of logical connectives —, V.
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6. The symbol of existential quantifier 3.

3% 9999

7. The punctuation symbols (", ”)”, .

The universal quantifier V can be defined in terms of the existential quantifier 3 and the con-
nective — as (Vz;u) = —=(3z;(—u)).
Now we need to define the set of formulas F of L.

Definition 3.2. Terms in a language L are defined inductively:

1. Variables are terms.

2. Constant symbols of L are terms.

3. If ty,...,tp, are terms and p is a functional symbol of arity n,, then p(t1, ... ,tnp) is a term.
4. There are no other terms.

Definition 3.3. An atomic formula is a formula of the form (¢, ..., %, ), where ¢ is a relation
symbol of arity n, and ¢1, ..., 1, are terms.

Definition 3.4. Formulas in a language IL are defined inductively:

1. Atomic formulas are formulas.

2. If uy and uy are formulas, then —uq, (u1 V ug) are formulas.

3. If uis a formula, then Jx;u is a formula, where x; is a variable.
4. There are no other formulas.

The set of axioms and the set derivation rules are peculiar to each first-order theory. Their
logical core is described in many textbooks (see, for instance [20]).

Definition 3.5. A formula u is derivable from a set of formulas 7 if and only if there exists a finite
sequence of formulas

UYy, ULy vy Up = U,
whose last term u,, is u, such that ug either belongs to 7" or is an axiom, and every formula u;,
1 <4 < n, is either an axiom, or an element of 7', or the result of applying a derivation rule to some
of preceding formulas in the sequence.

If w is derivable from axioms, we say that u is a theorem of the logical calculus and denote this
by - u. If we fix a set of formulas 7', then by theory 1" we mean the set of all formulas derivable
from T'.

The next step is related to the semantical part of knowledge, namely to a subject of knowledge.
The corresponding logical notion is a model, which was defined as a triple M = (H, ¥, f) where
H is an algebra in some variety ©, ¥ is a set of symbols of relations and f is a realization which
makes symbols ¢ € W relations in H"™¢. In this triple, realization of functional symbols from F is
hidden in the signature of operations related to the variety ©. Actually, the realization is hidden not
only in a set of symbols, but in the algebra H. As for the system ¥ of symbols of relations, its choice
is determined by problems in applications.

The traditional definition of what does it mean for a tuple @ = (a1, ...,a,) € H" to satisfy a
formula w(z1, ..., z,) on the model M is given inductively (see [19]). We say that « is valid on M
if every a € H™ satisfies u. Later on we define the value of the formula u(z1,. .., z,) in the point
a = (ay,...,a,) by means of algebraic logic.

Let us have a model M = (H, ¥, f). The set of all sentences valid on M is called elementary
theory of M. Denote the elementary theory of M by Th(M).

Definition 3.6. Two models M, = (Hy, ¥, f1) and My = (Ha,, ¥, f5) are called elementarily
equivalent, if their elementary theories coincide:

Th(M,) = Th(Ms).
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Coincidence of elementary theories of models M; and M2 means semantically that every
sentence valid on one model is valid on another one and vice versa.

Since an algebra H € O itself can be viewed as a model, one can speak also about elementary
theory of the algebra H.

4. Algebraic Logic for knowledge bases

4.1. Algebraic logic: an informal look at the subject

Our nearest aim is to convert logic to algebra not loosing all interactions between the syntax and
semantics. This leads to a geometrical intuition, which in turn yields the description of the content
of knowledge.

The idea of algebraization of logic goes back to E. Schroeder, who has published three volumes
of ”Lectures on the algebra of logic” at the turn of the 19th and 20th centuries. In its present form this
idea appeared in the works of A. Tarski and P. Halmos. Our main tool will be the Halmos algebras
which were presented under the name of polyadic algebras in [13], and introduced in [23] for the
multi-sorted case needed for the logical geometry and database/knowledge base applications.

In the very plain words, Halmos algebras are intended to replace the logical system by an
algebraic system, equivalent to the original logic. There are several advantages of this idea. We
distinguish only the ability to make all the passages between syntax and semantics to be homomor-
phisms.

This way of thinking is well-known for Boolean algebras. Indeed, to think about propositional
sentences as elements in a Boolean algebra is already a folklore. It is not so common to emphasize
that this Boolean algebra is the free Boolean algebra, that is, it can be mapped homomorphically
to any other Boolean algebra. However, this freeness property is crucial from the point of view of
representation of Boolean formulas as elements in the Boolean algebra of all subsets of some set.
This passage is explicitly stated in the Stone’s celebrated theorem. Philosophically, this means that
the formulas with the logical connectives as operations - a.k.a. syntax, are represented by the sets
with intersections and unions as operations - a.k.a. semantics.

The principal goal of algebraization of a first order logic is to do essentially the same for the
logic enriched by quantifiers and predicates. With this end it is clear that the appropriate (in the sense
of algebraization of a first-order logic) algebra should be a Boolean algebra, equipped with quan-
tifiers, defined in an abstract way as operations on Boolean algebras. This organism has to enjoy
some conditions, which are going to be the defining axioms of the algebra. Note that operations of
replacement of variables require a special attention. This was not the case for the propositional cal-
culus algebraization, since all replacements of variables in this calculus respect logical connectives
and are converted in Boolean algebras to homomorphisms of such algebras. This is the case with
the appearance of quantifiers, since replacements and quantifiers do not commute and are subject
to more complex rules. When this difficulty is treated by additional axioms the resulting object is
called a Halmos algebra.

4.2. Extended Boolean algebras

This subsection and the consequent ones deal with a formal implementation of the ideas outlined in
4.1. Let B be a Boolean algebra.

Definition 4.1. An existential quantifier on a Boolean algebra B is a map 3 : B — B subject to
conditions:

1. 30 =0.

2. b < 3b.
3. 3(by A dbg) = by A Tbs, where by, b are elements of B, 0 is the zero element of 5.
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Let W(X) be the free algebra in the variety © over the set of free generators X. Elements
w € W(X) play the role of terms in our logic which is associated with the variety O, that is, all
functional symbols are incorporated in the elements w.

Definition 4.2. We call a Boolean algebra 5 an extended Boolean algebra over the free in © algebra

W(X),if

1. There are defined quantifiers 3 for all x € X in B with 323y = JyJx forall z,y € X.

2. To every atomic formula (w1, ..., wy,) € L, where n,, is the arity of ¢, there corresponds
a constant p(wy, . .., wy,,) in B.

For example, if ¢ is a binary symbol = which stands for the equality predicate (see [20] for the
definition), then the corresponding extended Boolean algebra possesses the following properties:

E. To every pair w,w’ € W (X), there corresponds a constant (called an equality) in 13, denoted
by w = w’. Here,

El. w; = w] <w| = w.

E2. w = w is the unit of the algebra B.

E3. w1 = wo A we = w3 < wy = ws.

E4. For every n-ary operation w € €, where ' is a signature of the variety ©, we have

— ! — / — / !
W =W A AW, =W, SWp . WpW =W .. W W

Condition E4 really means that equalities respect all operations on W (X). Since p(ws, ..., wy,, ) is
a constant in B, all endomorphisms of Boolean algebras leave it unchanged.

4.3. Algebras ®(X) and Hald (f)

Fix a set of variables X, take the free algebra W (X)) in the variety © and denote by Mx the set of
all atomic formulas (w1, ..., wn, ), w; € W(X). Define the signature of operations 2x by

Qx ={V,A,—~, 3z, Mx}, forallz € X.

Denote by £x the absolutely free algebra (term algebra) in this signature over the atomic
formulas (w1, ..., wnw), where each ¢ is a relational symbol from V¥, and wy, ... , Wn, lie in
W (X) (we assume that all punctuation symbols belong to each signature).

For example, let © be the variety of semigroups, X = {z1,z2}, W = W(X). Suppose that
”="is the only symbol of relations. Then the formula (z1z22% = x2x1) A (1 = x2) belongs to
£, while the formula 212523 = (2921 V 1) does not belong.

Define the relation 7x on £x by: urxv if and only if - (v — v) A (v — u), where u,v € £x.
In other words, two formulas u and v are claimed equivalent if each of them is derivable from the
other (cf. Definition 3.5). It is easy to see that 7x is a congruence on £x called Lindenbaum-Tarski
equivalence.

Definition 4.3. The quotient algebra ®(X) = £x /7x is called the algebra of one-sorted formulas
associated with a first-order calculus.

All Boolean operations and quantifiers on ®(X) are naturally inherited from .
Proposition 4.4. Algebra of formulas ®(X) is an extended Boolean algebra.

We skip the proof of this proposition, which amounts to a direct check.

So, we have an algebra of formulas over X, which makes us free in use of the syntax of a
language, and, correspondingly, we have a necessary algebraic tool for a knowledge description.
Our next concern is semantics, that is, the subject area of knowledge and the content of knowledge.

First of all note that there is a bijection between H™ and the set Hom(W (X)), H) of all ho-
momorphisms from W (X) to H. Here n is the cardinality of X, that is | X'| = n. Take the Boolean
algebra of all subsets in Hom (W (X), H) and denote it by Bool(W (X)), H).
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Note that from now on we will use the language of homomorphisms, since it allows formulation
of many algebraic notions in the most natural way. However, keeping in mind the duality between
the languages of homomorphisms and n-tuples is quite important for applications.

Define existential quantifiers 3x,x € X to be operations in the given Boolean algebra. For
each set of points A C Hom(W (X), H) define a set B = 3z A by the rule: € B if and only if
there exists v € A, satisfying the condition p(z’) = v(z’) for every 2’ € X, 2’ # x. The operations
Jx meet the general idea of quantifier and the corresponding Definition 4.1.

Suppose we are given a model (H, U, f). Each point @ = (a1, ...,a,) in H™ can be viewed
as apoint 4 : W(X) — H with u(z;) = a;, ¢ = 1,...,n, | X| = n. Define what does it mean that
the point p satisfies the formula ¢(ws, . .., w,,) under the interpretation f. It means that the tuple

(wh', ..., wk ) belongs to the set f(p) C H™.

Denote by (w1, ..., wm)]s) the set of points in the space Hom (W (X), H) satisfying the
corresponding atomic formula. We consider the algebra Bool(W (X ), H) together with quantifiers
and specified constants [p(w1, ..., wm)](s) as an extended Boolean algebra and denote such an
algebraby Hald (H, ¥, f) or, shortly, Hald (f).

So, we constructed two extended Boolean algebras ®(X) and Halg (f) which are responsible
for syntax and semantics, respectively. In order to enforce a knowledge base work, we have to relate
them and, according to the general philosophy, this relation should be a homomorphism. The latter
is possible, because both algebras have the same signature.

Later on we will define this important value homomorphism

Valy : &(X) — Hal&(f).
Here,
Valﬁ(ga(wl, coowm)) = [e(wr, W)

Note that the set [¢(w1, ..., w,)](r) may be empty and in this case we identify it with the zero of
the algebra Bool(W (X)), H).

4.4. Multi-sorted Halmos algebras Hal3 (f)

The necessary step is to move to the case of many-sorted algebras. There are several reasons to do
that. First of all our variables x; can have quite a different nature and it would be illogical to dump
them into one pile. The second reason is not so evident. The point is that once we want a geometric
pattern, we need to work in a situation of finite-dimensional spaces. Namely, a multi-sorted glance
at variables allows us to consider a bunch of interacting finite-dimensional spaces over finite X,
running the set of sorts I', instead of one infinite-dimensional affine space over the infinite set X°.

The first stage on the way is the algebra-category Halg(f). Define the category of all alge-
bras Hal (f). Its objects are algebras of the form Halg (f), where only X is varied, while the
morphisms s, in this category are defined as follows.

To every homomorphism s : W(X) — W (Y'), there corresponds a morphism

s, : Hald (f) — Hald (f).
Let A be a subset in Hom(W (X), H). Define B = s, A by the rule: i € B if us € A. This
determines the morphism s,. This s, is a homomorphism of Boolean algebras
S« : Bool(W(X),H) — Bool(W(Y), H).
Interaction of s, with quantifiers and atomic formulas and the corresponding axioms is a separate
topic (cf. [26], Definition 2.7 or [25], Definition 1.3). Denote the list of the axioms by <». These

axioms are technical and a part of them is deliberately omitted at the moment. Note only that the
interaction of the morphisms s, with atomic formulas is controlled by

selo(wi, ..., wm)] () = el(swi, ..., 5wm)](5)
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and s,s, = (s8')..
We assume some familiarity with the notion of a multi-sorted algebra (see, for example [23]).
The defined category Halg(f) can be viewed as a multi-sorted algebra
Hale(f) = (Halg (f), X €T),
with objects as domains and morphisms
s Halll (f) — Hal}(f)
as multi-sorted operations. The axioms of Halg(f) are presented by the list .

4.5. The variety of multi-sorted Halmos algebras

Denote the variety of multi-sorted algebras generated by all Halg(f), where f runs all models
(H, ¥, f), H € ©,by Hale. Thus, the identities of the variety Halg are the identities of all possible
Halo(f) (see <» and [26]). Algebras from Halg(f) are called multi-sorted Halmos algebras.

Any algebra in the variety Halg is a multi-sorted algebra of the form $§ = (Hx, X € T),
where all Hx are extended Boolean algebras, and the operation s, : Hx — Hy corresponds to
every s : W(X) — W(Y).

4.6. Multi-sorted algebra of formulas
Let us now move to the multi-sorted algebra of formulas. Recall that Mx is the set of all atomic
formulas of the sort X . Take further

M=(Mx,X erl).

Take the multi-sorted algebra of formulas ® = (®(X),X € T) over M. It is constructed as
the quotient-algebra £/7, where £ is the absolutely free over M algebra in the signature Q, 7 =
(tx,X €T) is the multi-sorted Lindenbaum-Tarski congruence. Here the signature 2 = (Qx, X €
I') is a multi-sorted signature, consisting of various {2 x and symbols of operations of the form s.
which take the formulas from the domain ®(X) to formulas from ®(Y). So every domain ®(X)
contains elements of the form s,v, where v € ®(Z), Z € T, and in this sense, the domains ®(X)
are richer than the one-sorted algebras ®(X ). From now on ®(X) always means a domain of ®.

One can consider multi-sorted algebras of different types, say, algebras H can be multi-sorted.
Recall that in our definition of multi-sorted Halmos algebras only the set I' of variables is multi-
sorted.

Theorem 4.5 ([26]). The multi-sorted algebra of formulas ® = (®(X), X € I') is the free over the
multi-sorted set of atomic formulas M algebra in the variety Halg.

The proof of this theorem uses the semisimplicity of the algebras Hal3 (f) (cf. [13]) and
extends, in fact, the proof of the theorem of Stone for the Boolean algebras.

Theorem 4.5 has a principal consequence. To each atomic formula ¢ (w1, . . ., w,, ) corresponds
its value in Hal3 (f) denoted by [¢(wy, ..., wm)](s). This determines the mapping M — Hale(f).

Since the algebra P is freely generated by the set M, we have a homomorphism
Val(sy : ® — Hale(f).
We have also componentwise homomorphisms
Valé) c®(X) — Hald (f),
which lead to the commutative diagram
O(X) ——— (V)
Val();)l lValzjﬂ

Halg(f) e, Halg(f).
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It follows from Theorem 4.5 that the congruence 7 coincides with the verbal congruence of the
identities of the variety Halg. Thus, the mappings s, satisfy all identities of Halg. In particular,
they respect Boolean operations and interact with quantifiers and formulas from M x according to
. Moreover, take u € ®(X). We want to calculate the value of s,u € ®(Y). This can be done
according to diagram above, since the mappings s, : H alég (f)y = H alg (f) are defined explicitly
(see Section 4.4).

We conclude with the fact that the upper row reflects syntax and knowledge description, while
the lower one reflects semantics and knowledge content. Vertical arrows link description of knowl-
edge with its content.

4.7. What is the logic for knowledge description?

For the sake of transparency we start from the one-sorted case. So, assume X is fixed and we want
to understand, how the formulas from ®(X) look like. First of all, we consider the classes of equiv-
alent formulas with respect to Lindenbaum-Tarski equivalence. In simple words this means that we
identify formulas which take the same values under each interpretation, or, what is the same, they are
derivable each from the other. So, we do not care about appearance of the formulas, it is important
that they are indistinguishable syntactically and semantically.

The next question is how to survey the representatives of the classes of equivalence. According
to definition, these are the formulas constructed on the base of atomic formulas with the help of
Boolean operations and quantifiers.

Suppose, for simplicity, that we have only one relational symbol, namely, the symbol of equal-
ity. Then, the atomic formulas of our theory are of the form w = w’, where w and w’ are taken from
W (X). Then the formula

VIQ(_‘(wl = wg) A (wg = 'LU4)) \Y 31’1(102 = 'LU3)

belongs to ®(X), while the formula (w; V wy) = w3 is not. If we have a set of relational symbols
U, then all atomic formulas p(ws, ..., wy), ¢ € U play the role of the foundation of ®(X).

However, our formulas are, generically, multi-sorted and belong to ® = (®(X), X € I).
Each ®(X) contains just defined one-sorted formulas, but they do not exhaust the scope of ®(X),
since it contains also formulas of the form u = s.v, where v € ®(Z). The meaning of s, operations
is as follows. The substitutions of variables, or more generally, of the words w; — w; play a crucial
part in logic (associated with some variety of algebras ©). The role of operations s, is to represent
these substitutions as operations on the algebra of formulas.

The operations s, are, evidently, permutable with all Boolean operations. On the other hand,
their interplay with quantifiers and relations is regulated by axioms <> and can be very sophisticated.

5. Logical Geometry

In this section we deal with the Galois correspondence between sets of formulas 7" in ®(X) and sets
of points A in the affine space Hom(W (X)), H). We constantly use the term “affine space” for H™
and Hom(W (X)), H) because of the following reason. Suppose we take © to be the variety of all
associative commutative algebras over a fixed field K. Instead of arbitrary sets of formulas 7, confine
ourselves to sets of equations. Then we arrive to the area of classical algebraic geometry, since a free
algebra in © is just the algebra K[X] of polynomials over the set of variables X = {z1,...,z,}
with coefficients in K. The sets of equations lie in K[X], while the sets of solutions (that is, the
algebraic sets) are situated in the affine space K". If K = C or K = R, then we obtain the cases of
classical and real geometry, respectively. Although the variety O is arbitrary in our setting, we keep
for H™ and Hom (W (X), H) the term “affine space”, since this is where solutions of equations are
located (see, for example, [5]).
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The correspondence between sets of equations in the polynomial algebra and algebraic sets
in the affine space is one of the basic points for classical algebraic geometry (see [15] for the nice
exposition). If © is arbitrary, the similar correspondence gives rise to universal algebraic geometry
(see [11], [24]). If we consider arbitrary first-order formulas instead of equations, then arising system
of notions can be called logical geometry.

5.1. Galois correspondence
Let a homomorphism Val(}, : ®(X) — Hal§(f), a point u : W(X) — H and a formula
u € ®(X) be given.

Definition 5.1. We say that the point x satisfies the formula w if
e Valé) (u).

So, if u € ®(X), then Valé) (u) is the set of points p in Hom(W (X), H) satisfying the
formula . It is easy to prove that the standard inductive definition of validity corresponds to this
relation between a point and a formula.

For a point p : W(X) — H define LKer(u) to be a system of all u € ®(X) satisfied by
the point p. We call LKer(u) the logical kernel of the point p. It follows immediately from the

definitions:

Proposition 5.2. A formula uw € ®(X) belongs to the logical kernel LKer(u) of a point  if and
only if 1 € Valé) (u).

Straightforward check shows that L Ker(u) is a Boolean ultrafilter in ®(X'). We consider this
ultrafilter as LG-type of the point p:

LKer(u) = LGH ().

There is a closely related notion of a type tp? (1) in model theory.

Ker(Valy) = Th(f), Ker(Val();)) =Th¥(f).

Hence, Th(f) is the elementary theory of the model (f). Note that previously (Section 3) the el-
ementary theory was defined as the set of all closed formulas (sentences) valid on (f). Thus, we
allow some abuse of notation and slightly enlarge here the elementary theory, without going into the
reasons. We call Th (f) the X-theory of the model (f). We can also present the X-theory of the
model (f) as
ThX(f)= (| LKer(n).
pW(X)—H

Now we are ready to define the Galois correspondence between sets of formulas 7" in ®(X)
and sets of points A in the affine space Hom(W (X), H).

Let T be a subset in the set (X ). Assign to the set T' a subset T(I}) = A in the set of points
Hom (W (X), H) defined by the rule:

A= T(I]‘e) ={p:W(X)— H|T C LKer(u)}.
The latter means that the point y satisfies each formula v € T, i.e., u € Valé)(u). We call a set A
of such kind definable (by T') set. The definable sets can be also presented as

_ L _ X
u€eT
Let, on the other hand, A be a set of points. Define the corresponding set of formulas by

T= A(Lf) = ﬂ LKer(u).
HEA
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Here, T is a Boolean filter in the algebra ®(X). We call Boolean filters T of the form T' = A(Lf),
(f)-closed filters. Such filters can be also presented as

T = A(Lf) ={ued(X)|AC Valé)(u)}.
The two-sided correspondence
L _ L _

is a Galois correspondence. This means that A; C A, implies AY C AL and Ty C Ty implies
TE c TE. Moreover, A C ALY and T C TEL. Here ALL and THE are Galois-closed objects, the
closures of the sets A and T, respectively.

5.2. Categories 5( s and LKe(f)

Let us return to the category of knowledge content LKg(f). The category of knowledge content
LKg(f) is just a category of definable sets whose objects are pairs (X, A), where A is a definable
set for the given f.

Define morphisms [s] : (Y, B) — (X, A) of LKg(f). Lets : W(X) — W(Y) be given. If
(Y, B) and (X, A) are objects in LKg(f), B C Hom(W (Y'),H) and A C Hom(W (X), H), then
we have a mapping [s] : B — A determined by the condition us = v € A for u € B. Mappings of
the form [s] are taken as morphisms of LKg(f).

Take Ty = A{‘f) and Ty = B(Lf) for A and B.

Proposition 5.3. The inclusion us € A takes place for each i € B if and only if s,u € Ty for every
u € T.

Proof. Let us € A. According to the assumption, 7 = A. This means that if u € T}, then every
point v € A satisfies the formula u. In particular, the point ps satisfies the formula u. We have us €
Val(y (u), p € s.Val§) (u) = Val(} (ssu) (see the rule for s, in Section 4.4 and the commutative
diagram in Section 4.6). This is valid for each ;1 € B. This means that s,u € B(Lf) = T5. The
proposition is proved in one direction.

Let now s, : ®(X) — ®(Y) and s,u € T5 for each u € Ty. We have Tg(Lf) = B. The point
1 € B satisfies every formula v from 75. In particular, each point y satisfies each formula s, u,
u € Ty. We have p € Val()})(s*u), s € Val();) (u), us € Tl(Lf) = A O

Now we can define the category of knowledge descriptions 5( 7)- Its objects have the form
(X, T) where T is a closed filter in the algebra of formulas ®(X) with respect to model ( f) . Define
morphisms s, : (X,7T1) — (Y¥,72) in &)U) as restrictions of s, : ®(X) — ®(Y) on 7Tj. This
definition is correct in view of Proposition 5.3.

6. Knowledge base model and isotypic knowledge bases

6.1. Informationally equivalent knowledge bases

In fact, a knowledge base defined in 2.3 is represented now as a sort of automata model, where
queries are objects of the defined category of descriptions of knowledge 5( £)- The requesting in-
formation is searched in the subject area presented by a model (H, U, f), where all relations are
implemented by the interpretation f in the Cartesian powers of H. The replies have the form of ob-
jects of the category of knowledge content LK g (f). The objects of the latter category are definable
sets in an affine space, which means that they are geometric figures, described by sets of first-order
sentences, like a unitary disk is described by the sentence VxVy(z2 + y* < 1) in the affine space
R?, where R is the set of real numbers. Of course, the format of the output data is irrelevant and can
be chosen to be tables, graphs, etc.
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In order to vitalize the whole structure we need to add a dynamical passage which connects
queries and replies. Thus, one needs a functor connecting the categories ® ;) and LKe(f).
Since we have obtained a well-defined Galois correspondence between objects (see Picture 1),

Description (Syntax)
T T T

A A AL

Picture 1 Content (Semantics)

the Galois connections between the (f)-closed filters in the syntax and definable sets in semantics
can be taken for the definition of a functor between the categories of knowledge description and
knowledge content.

Define the knowledge functor

th : &)(f) — LK@(f)
on objects by
L
This is the way how the functor Ct; transforms a description of knowledge to its content. Take
now s : W(X) — W(Y) and the closed filters 73 C ®(X) and 7o C ®(Y). Then we have
sy 1 (X, Th) — (Y, T3). Define C'ty on morphisms by
L L

So, Ct; is a contravariant functor and this observation completes Definition 2.3 of a knowledge base.

Now we are in a position to define the notion of knowledge bases informational equivalence in

terms of the knowledge base model. Given knowledge bases KB(H;, ¥y, F1) and KB(Ha, Vs, F5),
consider the diagrams

~ ~ ~ ’

1 2 1 H2
@) ) ) )
th tha th ltha
LEL(f) —~ LK3(f*) LKL(f) ~— LK3(f*)

where o : I} — F5 is a bijection of the sets of interpretations, 3, 3 are functors of the categories
of knowledge description, vy is an isomorphism of the categories of knowledge content.

Definition 6.1. [30] The knowledge bases K By = KB(H1, V1, Fy) and K By = KB(Hz, U, F»)
are called informationally equivalent if it is possible to choose «, 3, 3’ and ~ such that they match
the commutative diagrams above.

Existence of o« : I} — F5 means that the knowledge bases have the same subject areas and can
be represented by the same models. Functors 3, 3’ say that everything that can be asked from one
knowledge base can be asked from another. Finally, isomorphism ~y gives the possibility to compare
contents of knowledge obtained by the first base and by the second one and to conclude that this is
the same information.
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Suppose we have a query T to the first knowledge base. The functor 3 transfers it to a query
(T?) to the second knowledge base. Functors C't; and Ct s« calculate replies 77 and (7°)7" in the
first and second knowledge bases, respectively. Commutativity of both diagrams precisely means that
there is one-to-one correspondence between the replies to queries in knowledge bases in question.
This means that any information obtained with the help of the first base can be obtained by means
of the second one and vice versa. If we identify the queries by the correspondences 3 and 3’ and
the replies by v and y~!, then once again using some abuse of language, we can say that the same
queries to two knowledge bases in question return the same replies.

6.2. Elementarily equivalent knowledge bases

From now on the goal is to recognize the informational equivalence of knowledge bases in the sense
of Definition 6.1. Our main interest is to find out how the informational equivalence is related to the
logical description of knowledge. In this concern, define elementarily equivalent knowledge bases.

Definition 6.2. The knowledge bases KBy = KB(Hy,V,F;) and KBy = KB(H,, VU, Fy) are
called elementarily equivalent if there exists a bijection o : Fy — Fj and for every f € Fj the
models (Hq, U, f) and (Hs, ¥, ) are elementarily equivalent.

The elementary equivalence of models ([19], [23], Section 3, Section 5, etc.) means that any
first-order formula (sentence) v which is true on one model takes the same value on another one.
In other words these models have the same logical description. It is used to say that two mod-
els (Hy,V, f1) and (Ho, U, f5) are elementarily equivalent if the elementary theories Th(H;) and
Th(H3) coincide (see Definition 3.6).

So, the question is:

Problem 6.3. Whether the elementary equivalence of knowledge bases implies their informational
equivalence.

In more down-to-earth terms Problem 6.3 asks if the notion of elementary equivalence is pow-
erful enough to distinguish the knowledge bases. Theorem 1.2 says that the symmetries of a knowl-
edge base are powerful in this sense and “rigidly” determine the base. It would be desirable to have
the same fact with respect to the logical formulas valid on the knowledge base. However, this is not
the case:

Proposition 6.4. There exist two knowledge bases which are elementarily equivalent, but not infor-
mationally equivalent.

Proof. The proof is, in fact, a variation of the £.0$’s theorem [18] which, in particular, states that
every model M is elementarily equivalent to its ultrapower M. Thus, take K B; = K B(H;, ¥, F})
and consider a model M = (Hy,V, f1), fi € Fi. Let M be an ultrapower of M corresponding
to some Boolean ultrafilter. We can do the same procedure for every f € F; and come up with the
multi-model (Hs, ¥, F5) which can be viewed as an ultrapower of (Hy, ¥y, F). By £0§’s theorem
the associated knowledge bases K B1 (M) and K B> (M) are elementarily equivalent. However, they
are not informationally equivalent, since M and M are not necessarily isomorphic, and, thus, one
can show that the isomorphism y from Definition 6.1 does not exist (for the details of the latter

statement see [21], [24]). O

The ultraproduct construction used in Proposition 6.4 assumes a substantial enlargement of the
knowledge base. This is not the case for finite algebras, but if, for example, D is a finite-dimensional
vector space, then its ultrapower is not, anymore, finite-dimensional. However, one can construct
more difficult examples which are free from this drawback.
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6.3. Isotypic knowledge bases

Recall (Subsection 5.1) that from a geometric viewpoint, the category of subject content coincides
with the category of definable sets. Definable sets are geometric objects defined by sets of first order
formulas exactly in the same way as curves, surfaces, etc., are defined by systems of equations. This
observation suggests the following definition:

Definition 6.5. The models (H1, ¥, f1) and (Hs, ¥, fo) are called LG-equivalent if for any X € T’
and T' C ®(X) we have

LL LL
T(5) = 1(5,)-

Referring to Picture 1, one can say that LG-equivalence means that if we start with any de-
scription of knowledge 7", jump to the knowledge content 7'F and then return to knowledge descrip-
tion, we should arrive to the same set of formulas 7% regardless of with respect to which model
(H, ¥, f) the closure T&? is taken. Allowing some abuse of language two models (H, W, f1) and
(Hs, W, f5) are LG-equivalent if the subject area algebras H; and H have equal possibilities with
respect to solution of logical formulas from 7.

Definition 6.6. The models (Hy, ¥, f1) and (Hs, U, f5) are called LG-isotypic, if for each point
w: W(X) — Hj there is a point v : W(X) — Hy and, vice versa, for each v : W (X) — Hsy we
have p : W(X) — Hy, such that LKer(u) = LKer(v).

Remark 6.7. Observe that for each atomic formula ¢(wy, . . ., w,,) of the sort X the point y satisfies
the relation ¢ under the interpretation f; if and only if the point v satisfies the same ¢ under the
interpretation fo. This follows from our definition of the logical kernel of a point. Indeed, consider
the equality LKer(u) N Mx = LKer(v) N Mx along with LKer(u) = LKer(v). Let an atomic
formula p(wy, ..., w,,) belong to the left and right parts of the equality. Since it belongs to the left
part, then the tuple (wf, ..., w") satisfies the relation ¢ under the interpretation f;. On the other
side, since this formula belongs to the right part, then the tuple (wY, ..., wk,) satisfies the same

m
relation ¢ under the interpretation fo.

)

Theorem 6.8. The models (Hy, %V, f1) and (H2,V, f3) are LG-equivalent if and only if they are
LG-isotypic.

Proof. Let the models (Hy, ¥, f1) and (Ha, U, f2) be LG-equivalent. Take a point 1 : W(X) —
Hy. Then {u}{;,) = LKer(u). One can show that {u}(;,) = {}{;,, for some point v : W (X) —
H,. Then LKer(u) = LKer(v). This implies isotypeness of the models. The opposite follows from
the fact that every (f)-closed filter in ®(X) is the intersection of logical kernels. O

Definition 6.9. The knowledge bases KB, = KB(H,,V,F1) and KBy = KB(H, ¥, F5) are
called isotypic if there exists a bijection « : F; — F5 and for every f € F the models (H;, ¥, f)
and (Ho, U, f*) are LG-isotypic.

Proposition 6.10. If the models (Hy, 'V, f1) and (Ha, ¥, f2) are LG-isotypic, then they are elemen-
tarily equivalent.

Proof. Let a formula v in ®(X) and a point i : W (X) — H be given. By definition, u € LKer(u)
if and only if ;2 € Val: (u). Furthermore, for any algebra H we have

ThY(H)= ()| LKer(p).
wW(X)—H
So, any Boolean ultrafilter LK er(u) contains the X -elementary theory of H. Since for each point
w: W(X) — Hj there is a point v : W(X) — Hj and, vice versa, for each v : W(X) — Hy we
have p: W(X) — Hy, such that LKer(u) = LKer(v), we have Th(Hy) = Th(H>).
O
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Corollary 6.11. Isotypic knowledge bases are elementarily equivalent.

Proof. 1f the knowledge bases KBy = KB(Hy,V, F1) and KBy = KB(H,, ¥, F3) are isotypic,
then the models My = (Hy, ¥, f1) and My = (Ha, ¥, f3) are isotypic. By Proposition 6.10, M1
and M are elementarily equivalent. Hence, the knowledge bases KBy = KB(H;, ¥, F}) and
KBy = KB(H,,V, F,) are elementarily equivalent. O

Theorem 6.12. If the models (Hy, ¥, f1) and (Ha, ¥, f2) are LG-isotypic, then the categories of
definable sets over the given models are isomorphic.

Proof. We start with some general remarks. Take s : W(X) — W(Y') and, correspondingly, s, :
O(X) - ©(Y).ForT C &(Y) weset s,T = {u € ®(X) |s,u € T }. Dually, for T C &(X)
we have s*T = {s.u | u € T}. Further, s induces § : Hom(W(Y),H) — Hom(W(X), H).
Take B = s,A = s 1A for A C Hom(W(X),H).For B C Hom(W (Y), H) we have s*B =
{8(w)|u € B}.
We have the properties:

1. If T C ®(X), then (s*T)E = s, TL.

2. If BC Hom(W(Y), H), then (s*B)% = s,.BL.

3. If AC Hom(W(X), H), then s* AL C (s.A)k.
We view these properties as rules of behavior of definable sets under the moves of affine spaces. The
first rule implies that if A is an definable set, then so is s, A. The second rule says that if 7" is an
H-closed filter in ®(Y"), then so is s, T in ®(X).

Now we can prove that if (Hy, %, f1) and (Hs, ¥, fy) are LG-isotypic, then the categories
LKo(f1) and LKg(f2) are isomorphic.

By Theorem 6.8 we can suppose that (Hy, U, f1) and (Hz, U, f2) are LG-equivalent. We shall
define the isomorphism F : LKg(f1) — LKe(f2). Let (X, A) be an object in LKg(f1). We set
F(X,A) = (X,B), where B = (A(Lfl))(sz). Here F' determines a bijection on the objects of the
category.

Take a morphism [s]y, : (X, A1) — (X, A2) in LKg(f1). We have s : W(Y) — W(X) and

5:Hom(W(X),H;) - Hom(W(Y), Hy).

If v € Ay, then §(v) € Aj. Let us check that for the same s we have §(u) € By if u € Bj.
Here By = (A1(},)){s,)» B2 = (A2(},)){},)- Our aim is to define [s]s, : (X, B1) — (X, By). The
embedding 3(v) = vs € Ay means that v € 371 Ay = s, Ay. This is equivalent to A; C s, As. We
have further
(Al(Lfl)) > (S*A2)(Lf1) = S*A2(Lf1)
and
(A7) (i) = Br C (5" Aa(3,)) (3 = 5(A2(1,))(1,) = 5+ B2

Thus, By C s.Bs and we have 5(u) € B, for every u € By. Analogously one can check that
if 5(u) € By for every u € By, then §(v) € A for every v € A;.

Let us show that for s1, 52 : W(Y) — W(X) the equality §;(v) = $2(v) forevery v € A; =
A is equivalent to §1(u) = S2(u) for every p € By = B.

Let 51(v) = vs; = vss = $§2(v) be given. For every w € W(Y) we have vsi(w) =
vso(w). Consider the equation s;w = sow. Then v is a solution of this equation. This gives A C
Val()icl)(slw = sow), and 51w = sow € Aépl). Since A(Lfl) = B(sz), we have s;w = sqw € B(sz)
and B C Val();)(slw = sow). This means that for every u € B we have psjw = psow. This is
true for every w € W (Y'), and, hence, pus; = s, i.e., 51(p) = S2(p). The converse statement is
also true.

It is clear now that F([s]s, ) = [s]y, is correctly defined since it does not depend on the choice
of the representative. Thus, we get the isomorphism of categories: F : LKo(f1) — LKg(f2).
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The theorem is proved. |

Remark 6.13. The notion of isotypic knowledge bases is defined with respect to the case, when the
set of relations W is the same for both underlying multi-models. This assumption can be dropped
and replaced by bijection between ¥, and Us.

The following corollary of Theorem 6.12 is the main result of the paper.
Theorem 6.14. The isotypic knowledge bases are informationally equivalent.

Proof. Let the knowledge bases K B1 = KB(H;, ¥, Fy) and K By = K B(H», ¥, F5) be isotypic.
Then, there is a bijection « : F; — F5, and we can compare the isotypic models M = (Hy, ¥, f1)
and My = (Ha, U, f3) with fo = f{. The isomorphic categories of definable sets LKg(f1) and
LKg(f2) are the categories of knowledge content for K By and K Bs, respectively. By Theorem
6.12 the functor F provides an isomorphism of these categories. Take F for the isomorphism ~y from
the definition of informationally equivalent knowledge bases.

The objects of the category ;I;( ) have the form (X,7"), where T' is an (f;)-closed filter.
Since M and M, are isotypic, every ( f1)-closed filter is ( f2)-closed, and vice versa. So, we have
B (I)(fl) - (I)(fz)‘

It remains to observe, that by the definition of the functors C't, F and 3 we have

Cts, F = BCtss.
O

We conclude with some explanatory words regarding Theorem 6.14. There is an essential
difference between elementary equivalence and isotypeness of knowledge bases.

Take a knowledge base K B(M), where M = (H, U, f). Any point y in the affine space
Hom(W (X), H) represents some knowledge from the knowledge area. This knowledge is de-
scribed by the set of formulas wu, such that p € Val();) (u), that is, by the formulas « valid on
the point p. This is exactly the logical kernel LKer(u) of u. Take another point . The descrip-
tion of knowledge represented by v gives us another set of formulas LKer(v). The intersection
LKer(u) N LKer(v) is the set of formulas which describes a common part of knowledge pecu-
liar to © and v. Hence, the elementary theory of the model provides us with the description of the
common knowledge which can be extracted from the model. It makes no distinction between the par-
ticular points, it characterizes the model as an entire entity. It is clear from positions of the common
sense, that such description can be enough to characterize a knowledge base rigidly if and only if we
have some additional information about the structure of a knowledge base. These speculations are
confirmed by the meaning of the Theorem 6.4, which states that elementarily equivalent knowledge
bases can be not informationally equivalent.

Theorem 6.14 says that the latter cannot happen in the case of isotypic knowledge bases and
that the property of being isotypic characterizes a knowledge base rigidly. The whole point is that
isotypeness of models compares the description of the knowledge peculiar to the points not uni-
formly, like in the case of elementary equivalence, but takes into account the logical individualities
of the points. More precisely, isotypeness of models M, = (Hy, VU, f1) and My = (H;y, ¥, fo)
claims that for every knowledge associated with the point y in the affine space Hom(W (X), Hy),
there exists a point v in Hom(W (X), H2) such that their logical descriptions coincide, that is
LKer(u) = LKer(v). This type of logical correspondence between knowledge bases turns out
to be strong enough to characterize the operation of a knowledge base rigidly.

We finish the discussion with the following conjecture, which seems quite plausible:

Conjecture 6.15. Two finite knowledge bases KBy = KB(H1,V, Fy) and K By = KB(H,, ¥, F5)
are informationally equivalent if and only if they are isotypic.
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