
THE GROUP SL2(C): WORD MAPS AND RELATED TOPICS

NIKOLAI GORDEEV AND EUGENE PLOTKIN

Introduction

Let G be a group, and let Fn = 〈x1, . . . , xn〉 be the free group of rank n. For every word
w ∈ Fn, the word map is defined as w̃ : Gn → G, where w̃(g1, . . . , gn) = w(g1, . . . , gn).

In group theory, many problems are associated with word maps. For instance, the well-
known Burnside problem asks about the finiteness of the quotient group Fk/〈〈Imw〉〉,
where n = 1, Fn = 〈x〉, G = Fk, k > 1, w = xm for some m ∈ N, and 〈〈Imw〉〉 is the
normal subgroup generated by the image of the word map w : Fk → Fk. Another example

is the Ore problem: is G
?
= Imw, where n = 2, w = [x, y], and G is a finite simple group.

The surjectivity of word maps. The question G
?
= Imw has been studied for various

types of words and groups in recent years. The particular interest here is the case when G
is a simple algebraic group. One of the first results in this direction is A. Borel’s theorem
([Bo1]) which states: for any non-trivial word w ∈ Fn and any semisimple algebraic group
G the word map w̃ : Gn → G is dominant. This means that the image Im w̃ of the word
map w̃ contains a non-empty open subset of G, that is, it contains “almost all” elements
of G. However, in the same paper Borel presented the simplest counterexample to the
surjectivity of word maps. Namely, if n = 1, w = x2 and G = SL2(C), then −u /∈ Im w̃
where u ∈ SL2(C) is a non-trivial unipotent matrix.

Certainly we can avoid such kind of counter-examples on SL2(C) if we consider the
group PGL2(C) = SL2(C)/Z(SL2(C)). It has been shown (see [BZ]) that every non-
central semisimple element of SL2(C) is contained in Im w̃ for any w 6= e. This implies
that every element of PGL2(C), except possibly non-trivial unipotent elements, is in
Im w̃. We have examples of surjective word maps w̃ : PGL2(C)n → PGL2(C) (see [BZ],
[GKP1]-[GKP4], [GG], [JS]). In particular, there exist series of such words, satisfying

wk ∈ F (k)
n \ F (k+1)

n , where {F (k)
n }∞k=0 is the derived series of Fn.

It remains unproven that Im w̃ = PGL2(C) for every w 6= e, even for n = 2. Specifically,
it is not established whether substituting 2 × 2 complex matrices for x, y in the word
xl1ym1 · · ·xlrymr can yield a unipotent matrix. This unresolved question is sometimes
referred to as The Shame Problem.

So, the major problem which stands behind all considerations of the current paper is
the following old open question:

Problem 0.1. Is it true that a word map w̃ : PGL2(C) × PGL2(C) → PGL2(C), where
w = w(x, y) 6= 1, is surjective? In other words is it true that every equation w(x, y) = a,
where a is a matrix from PGL2(C), has a solution?

Unfortunately, nowadays after many years of intensive research and numerous attacks
we are forced to state the absence of the decisive approach to this problem. Despite
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the apparent ease of formulation, the problem is deep, difficult and toxic. We need to
feel better how the geometry of verbal varieties behave in various cases. Hopefully this
will give rise to still unearthed totally new ideas. This paper deals with two methods
of geometrical nature which look promising. Generally speaking, our goal is to study
algebraic properties of groups related to specific word varieties.

The situation with the problem Im w
?
= G for the general case of simple algebraic

groups G is much more complicated. Unlike the case of SL2(C), no general results exist
for semisimple elements (not even for SL3(C)). Counterexamples to surjectivity for word
maps are currently limited to cases involving powers wl of words (see [GKP3]). Further-
more, we have only a few types of word maps for that we may guarantee the surjectivity
of word maps on simple algebraic groups (see [GKP3], [G]). Meanwhile, the general
conjecture is as follows.

Problem 0.2. Is it true that a word map w̃ : PGLn(C) × PGLn(C) → PGLn(C), where
w = w(x, y) 6= 1, is surjective? In other words is it true that every equation w(x, y) = a,
where a is an element of PGLn(C), has a solution?

We cannot expect surjectivity of word maps w̃ : Gn → G for every simple algebraic
group G of adjoint type. Say w̃ : PSpn(C) → PSpn(C) where w = x2 is not surjective
[GKP3]. Possibly we have to exclude words w = ωk, ω ∈ Fn, k > 1.

A gloomy picture with word maps on algebraic groups prompts us to find new ap-
proaches which use more deep connections between the group and the topological nature
of algebraic groups. Any additional information can be an essential help. In particular,
methods of AI can be useful in this concern. For instance, solutions of the equation
w(x, y) = 1 for various types of w, or at least dimensions of the irreducible components
of the variety w(x, y) = 1 can deliver a yet missing hint towards the solution of Problems
0.1 and 0.2.

The variety of representations. The problem of the surjectivity of word maps on the
group G = SL2(C) is closely tied to the structure of the variety of representations of
finitely generated groups with one relation (see [GKP1]).

For a group G and a word map w̃ : Gn → G let

Ww := w̃−1(e)

(here e is the identity of G). Let Γw := Fn/〈〈w〉〉 be the group of n-generators 〈x̄1, . . . , x̄n〉
and one relation w. Here 〈〈w〉〉 := 〈fwf−1 | f ∈ Fn〉 is the normal subgroup of Fn
generated by the conjugates of w, and the generators of Γw are x̄i ≡ xi(mod〈〈w〉〉). Ele-
ment g = (g1, . . . , gn) ∈ Ww corresponds to the homomorphism ρg ∈ Hom(Γw, G) where
ρg(x̄i) = gi. On the other hand, every homomorphism ρ ∈ Hom(Γw, G) corresponds to
the element gρ = (ρ(x̄1), ρ(x̄2), . . . , ρ(x̄n)) ∈ Ww. Thus we have one-to-one correspon-
dence between the elements of the algebraic set Ww in Gn and the elements of the set of
homomorphisms Hom(Γw, G).

If G is a simple algebraic group, then the set Ww is a Zariski closed subset of Gn. In
general, it is a reducible set. The set Ww is called the variety of representations of the
group Γw, see [LM], [PRR]. In the case when G = SL2(C) we have dimWw ≤ 5 and if
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there is an irreducible component W i
w of W i

w such that dimW i
w < 5 then the image Im w̃

contains a non-trivial unipotent element of G = SL2(C) (and therefore the induced map
w̃ : PGL2(C)n → PGL(C) is surjective; see [GKP1]). However, the inverse assertion:

Im w̃ contains a non-trivial unipotent element⇒ dimW i
w < 5 for some i,

is an open problem.

The paper is organized as follows. Its first part is devoted to the variety of
representations. We define a word equivalence �G related to w and G, which, in its
turn, naturally implies the order relation on the set of words. Finally, all these notations
are used in the definition of the radical G

√
w of the word w with respect to the group G.

It is our pleasure to note that this geometric insight resembles general ideas of universal
geometry introduced by B.Plotkin. He considers a kind of Galois correspondence between
sets of equations over free algebras in some variety of algebras A and their solutions in
the Affine space Gn ≡ Hom(Fn, G), Fn is a free in A algebra, G ∈ A. Given a system
of words T one can consider its solution A = T ′ ∈ Gn and the set RadG(T ) of all words
having the same solution A. Two algebras G1 and G2 are called geometrically equivalent
if for every system T we have RadG1(T ) = RadG2(T ) [Pl1], [Pl2]. It is a rare case when
one can explicitly describe radicals RadG(T ). In these cases we can speak about explicit
Nullstellensatz.

It would be a great advancement to get a classification of equivalence classes of words
with respect to equivalence �G and semisimple algebraic groups G over complex numbers
or, at least, with respect to G = PGL2(C). Even more ambitious question is to obtain a
kind of Nullstellensatz in this case.

Section 2 is focused on simple algebraic groups and, first of all, on the irreducible
components of the variety of representations. Let, for simplicity, G = SL2(C). Let
w ∈ Fn be a word and letWw be the corresponding variety of representations.This variety
splits into a finite number of the irreducible components W i

w. To each component W i
w

one can associate its radical G
√
w

i ≤ Fn such that the quotient group ∆i
w := Fn/ G

√
w
i

is
isomorphic to the group 〈g1, . . . , gn〉 for “almost all points” g = (g1, . . . , gn) ∈ W i

w and
for every point g = 〈g1, . . . , gn〉 ∈ W i

w there exists the epimorphism ∆i
w → 〈g1, . . . , gn〉.

The group ∆i
w is called the group of general position of the component W i

w or W i?
w -group.

In some sense the groups ∆i
w are responsible for groups having faithful representation in

G, see Proposition 2.1 for the precise meaning. The rest of the Section deals with the
example G = SL2(C), w = [x, [x2, yxy−1]] ∈ F2(x, y). The results are accumulated in
remarks and the diagram before Section 3 and reveal a quite complicated picture.

The last Section considers the similar problems from the positions of matrix calculation.

Notations and Terminology. Here:

• N,Z,C represent the set of natural numbers, the ring (group) of integers, and the
field of complex numbers, respectively.
• Zm = Z/mZ is the cyclic group of order m.
• Zm = Z⊕ Z⊕ · · · ⊕ Z (m times); Z∞ = ⊕∞i=1Ai, where Ai ≈ Z for every i ∈ N.

For any groups Γ and H:
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• e ∈ Γ denotes the identity element of the group Γ.
• ord g represents the order of the element g ∈ Γ.
• Z(Γ) is the center of the group Γ.
• ∆ = H·Γ denotes a semidirect product, whereHC∆ and ∆ = (h, γ) | h ∈ H, γ ∈ Γ.
• H ∗ Γ is the free product of the groups H and Γ.

If G is a simple algebraic group, then B, T, U denote:

• B: a fixed Borel subgroup.
• T : a maximal torus, where T ≤ B.
• U : the maximal unipotent subgroup, where U ≤ B and B = TU .

For the group SL2(C), we denote:

• B: the subgroup of upper triangular matrices.
• T : the subgroup of diagonal matrices.
• U : the group of upper triangular matrices with eigenvalues 1.

Given field K denote:

• Mm(K): the set of all m×m matrices with the entries mi,j ∈ K.

Let K be a field and let X be an algebraic variety over K.
• Y : closure (with respect to Zariski topology) of a subset Y ⊂ X.
• dimY : the dimension of a closed subset Y ⊂ X.

If K has a big enough transcendence degree over the prime field F ≤ K (in particular,
tr degF K =∞), then the set

X \
( ∞⋃
i=1

Xi

)
,

where Xi $ X is a proper closed subset for every i, is a dense non-empty subset of X(see
[Bo1]). We call such sets countably open or c-open.

1. G-equivalence and G-orders on words

1.1. G-equivalence on words.

Definition 1.1. We say that the words w1, w2 ∈ Fn are G-equivalent if Ww1 = Ww2. If
w1, w2 ∈ Fn are equivalent words then we will write

w1 �G w2.

The simple criterium of the equivalence of words is the following

Proposition 1.2. Let G be a group, w ∈ Fn, and let ς : Fn → Fn be an automorphism of
Fn that stabilizes the normal subgroup 〈〈w〉〉C Fn . Then

w �G ς
(
w±1

)
.

Proof. Since ς
(
〈〈w〉〉

)
= 〈〈w〉〉 we may consider the map ς as an automorphism of the

group Γw = Fn/〈〈w〉〉. If ρ : Γw → G is a homomorphism then

ς(ρ) : Γw → G where ς(ρ)(γ) := ρ
(
ς(γ)

)
for every γ ∈ Γw
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is also a homomorphism. Hence

Hom(Γw, G) = ς
(

Hom(Γw, G)
)

= Hom(Γς(w), G)⇒Ww =Wς(w) ⇒ w �G ς(w).

The equivalence w �G w±1 is obvious. �

Remark 1.3. The condition ς
(
〈〈w〉〉

)
= 〈〈w〉〉 is essential. Indeed, let w = xy ∈ F2 and

G be any group G which has an element g of order 3. Let ς : F2 → F2 be the automorphism
such that ς(x) = x, ς(y) = xy. Then ς(w) = x2y and (g, g) ∈ Wς(w), (g, g) /∈ Ww.

Example 1.4. Let G = Z/2Z, w1 = xa1i1 x
a2
i2
· · ·xakik , w2 = xb1j1x

b2
j2
· · · xbljl . Then

w1 �G w2 ⇔Ww1 =Ww1 ⇔ ai ≡ bi(mod 2) for every i = 1, . . . , n.

Example 1.5. Let G = SU2(C) and let || || be the norm on G. Then for every 0 < ε ∈ R
there exists a word ω ∈ F2 = 〈x, y〉 such that

||E2 − ω̃(g1, g2)|| < 1

2
for every (g1, g2) ∈ G2 (1.1)

(see [T]). Then
[x, [x, ω]] �G [x, ω].

Proof.

Lemma 1.6. For every α ∈ C, |α| = 1, we have

ẇα :=

(
0 α
−ᾱ 0

)
/∈ Im ω̃, for every α ∈ C, |α| = 1.

Proof. Indeed,

||E2 − ẇα|| =
∥∥∥(1 −α

ᾱ 1

)∥∥∥ =
1√
2

√
12 + 12 + | − α|2 + |ᾱ|2 =

√
2 >

1

2
.

�

Suppose [x, [x, ω]] 6�G [x, ω]. Then there exists a pair (σ, τ) ∈ G2 such that

[σ, ω̃(σ, τ)] 6= E2, [σ, [σ, ω̃(σ, τ)]] = E2. (1.2)

Note, that σ in (1.2) is a non-central element. Thus we may assume σ =

(
s 0
0 s̄

)
where

|s| = 1, s 6= ±1. Then condition (1.2) implies

[σ, ω̃(σ, τ)] =

(
z 0
0 z̄

)
where |z| = 1, z 6= ±1. (1.3)(

Indeed, [σ, [σ, ω̃(σ, τ)]] = E2 and therefore [σ, ω̃(σ, τ)] 6= E2 is a diagonal matrix. Suppose
[σ, ω̃(σ, τ)] = −E2. Then ||E2 − [σ, ω̃(σ, τ)]|| = ||E2 − (−E2)|| = 2||E2|| = 2. But

||E2 − ω̃(σ, τ)|| < 1

2
⇒ ||E2 − [σ, ω̃(σ, τ)]|| ≤ 2||E2 − ω̃(σ, τ)|| < 1.

That is a contradiction.
)

Now let

ω(σ, τ) =

(
a b
−b̄ ā

)
∈ SU2(C).
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Then

[σ, ω(σ, τ)] =

(
s 0
0 s̄

)(
a b
−b̄ ā

)(
s̄ 0
0 s

)(
ā −b
b̄ a

)
=(

a s2b
−b̄s̄2 ā

)(
ā −b
b̄ a

)
=

(
|a|2 + |b|2s2 ab(s2 − 1)
āb̄(1− s̄2) |a|2 + |b|2s̄2

)
(1.2)
=

(
z 0
0 z̄

)
⇒

⇒


a = 0⇒ ω(σ, τ) =

(
0 b

−b̄ 0

)
(this case is impossible by Lemma 1.6),

or

b = 0⇒ ω(σ, τ) =

(
a 0

0 ā

)
⇒ [σ, ω(σ, τ)] = E2

(
a contradiction with (1.3)

)
.

Thus we have proved [x, [x, ω]] �G [x, ω].
�

Example 1.7. Let G = SL2(C), ω ∈ F2 = 〈x, y〉. Then

[x, [x2, ωxω−1]] �G [x2, ωxω−1].

Proof. Suppose [x, [x2, ωxω−1]] 6�G [x2, ωxω−1]. Then there exists a pair (σ, τ) ∈ G2 such
that

ζ := [σ2, ωσω−1] 6= E2, [σ, ζ] = E2. (1.4)

Case I. σ is a semisimple element. We may assume σ =

(
s 0
0 s−1

)
where s 6= ±1, 6= ±i.

Then condition (1.4) implies

[σ2, ωσω−1︸ ︷︷ ︸
=:µ/∈T

] =

(
z 0
0 z−1

)
where z 6= 1⇒ µ =

(
0 r
−r−1 0

)
. (1.5)

However,

tr

(
0 r
−r−1 0

)
= 0 = tr

(
ω

(
s 0
0 s−1

)
ω−1

)
⇒ s = ±i

that contradicts to our assumption.

Case II. ±σ is a unipotent element. We may assume σ = ±
(

1 1
0 1

)
∈ U . Then

ζ = [ σ2︸︷︷︸
∈U

, ωσω−1︸ ︷︷ ︸
:=µ

] = ±
(

1 z
0 1

)
where z 6= 0⇒ µ ∈ B.

(
Indeed, if µ /∈ B then µ ∈ BẇB and µ = u1ẇtu2 where u1, u2 ∈ U and t ∈ T . Hence

µσ−2µ−1 = (u1ẇtu2)

=u∈U,u 6=1︷︸︸︷
σ−2 (u−1

2 t−1ẇ−1u−1
1 ) = u1 (ẇ

=u′∈U,u′ 6=1︷ ︸︸ ︷
tu2σ

−2u−1
2 t−1 ẇ−1)︸ ︷︷ ︸

=±

1 0
δ 1

, δ 6=0

u−1
1 /∈ B.
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It is a contradiction with the equality ζ = [σ2, µ] = σ2(µσ−2µ−1) = ±
(

1 z
0 1

)
where

z 6= 0.
)

Hence

B 3 µ = ω σ︸︷︷︸
=±

1 1
0 1


ω−1 = ±

(
1 β
0 1

)
(1.6)

Thus we have a contradiction between (1.6) and (1.4).
�

1.2. G-order on the words.

Definition 1.8. We say that a word w1 ∈ Fn is G-deeper than the word w2 ∈ Fn if
Ww1 ⊃ Ww2 . In this case we will write

w1 <G w2.

If w1 �G w2, then it holds that w1 <G w2.

Proposition 1.9. Let w, ω ∈ Fn. Then:
i. ω ∈ 〈〈w〉〉 ⇒ ω <G w; in particular, wa <G w, [w,w′] <G w for every a ∈ Z, w′ ∈

Fn;
ii. if ρg : Γw → G is a faithful representation for some g ∈ Ww, then

〈〈w〉〉 = {ω ∈ Fn | ω <G w}.
Proof.

i. The set Ww is invariant under the conjugations by elements of G and therefore
Ww =Wfwf−1 for every f ∈ Fn. Then

ω =
m∏
i=1

(fiwf
−1
i )⇒Wω ⊃ Ww.

Now the inequalities wa <G w, [w,w′] <G w follow directly from the definitions of <G
and 〈〈w〉〉.

ii. Let ρg : Γw → G be a faithful representation for some g = (g1, . . . , gn) ∈ Ww.
Suppose ω <G w for some word ω /∈ 〈〈w〉〉. Since ρg is a faithful representation then
〈g1, . . . , gn〉 ≈ Γw = Fn/〈〈w〉〉 and therefore ω(g1, . . . , gn) 6= e. On the other hand,
ω <G w. Hence ω(g1, . . . , gn) = e. It is a contradiction.

�

Remark 1.10. If w1 6<G w2 then [w1, w2] 6�G w1.
Indeed, if Ww1 # Ww2 then there exists an element g = (g1, . . . , gn) ∈ Ww2 \ Ww1.

Hence
w̃1(g) 6= e, w̃2(g) = e⇒W[w1,w2] 6=Ww1 .

Definition 1.11. The subgroup
G
√
w = {ω ∈ Fn | ω <G w} ≤ Fn

will be called the G-radical of the word w.

Remark 1.12. Obviously, G
√
w is a normal subgroup of Fn and 〈〈w〉〉C G

√
w.
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2. Case of a simple algebraic group G over C

2.1. Irreducible components of the representation variety Ww. Let G be a simple
algebraic group which is defined over C and G = G(C).

Let w̃ : Gn → G be a word map. Then Ww ⊂ Gn is a Zariski closed subset which
consists of the union of finite number of irreducible components

Ww =
m⋃
i=1

W i
w

(see [GKP1]). We define

G
√
w

i def
= {ω ∈ Fn | Wω ⊃ W i

w}.

Theorem 2.1.
i. The set G

√
w

i ⊂ Fn is a normal subgroup of Fn and G
√
w C G

√
w

i
for every i.

ii. The set W i ?
w

def
= {g = (g1, . . . , gn) ∈ W i

w | 〈g1, . . . , gn〉 ≈ Fn/ G
√
w

i} is a non-empty
c-open subset of W i

w.

iii. For every g = 〈g1, . . . , gn〉 ∈ W i
w there exists the epimorphism Fn/ G

√
w

i →
〈g1, . . . , gn〉.

iv. The homomorphism Fn/ G
√
w

∏m
i=1 λi−→

∏m
i=1 Fn/

G
√
w

i
, where λi : Fn/ G

√
w → Fn/ G

√
w

i

are natural epimorphisms, is an injection.
v. A faithful representation ρ : Fn/ G

√
w → G exists if and only if the homomorphism

λi : Fn/ G
√
w → Fn/ G

√
w

i
is an isomorphism for some i.

Proof.
i. It follows directly from the definitions and Proposition 1.2.

ii. Let ω /∈ G
√
w

i
. Then there exists a point g ∈ W i

w such that ω(g) 6= e. Hence
Wω ∩W i

w is a proper closed subset of W i
w. Then the set

W i
w \
( ⋃
ω/∈ G√w i

Wω

)
is a non-empty c-open subset ofW i

w and this set consists of all elements g = (g1, . . . , gn) ∈
W i

w such that 〈g1, . . . , gn〉 ≈ Fn/ G
√
w

i
.

iii. Since ω(g) = e for every g = (g1, . . . , gn) ∈ W i
w and for every ω ∈ G

√
w

i
, the group

〈g1, . . . , gn〉 is the quotient group of Fn/ G
√
w

i
.

iv. Let

λ : Fn/
G
√
w

∏m
i=1 λi−→

m∏
i=1

Fn/
G
√
w

i

and let ω ∈ Fn be a word such that ω ∈ Kerλ where ω = ω(mod G
√
w) . Then ω ∈ Kerλi

for every i where λi : Fn/ G
√
w → Fn/ G

√
w

i
. Hence

ω ∈ G
√
w

i
for every i ⇒ ω ∈ G

√
w ⇒ ω = e.

v. Suppose ρ : Fn/ G
√
w → G is a faithful representation. Let

g = (ρ(x̄1), . . . , ρ(x̄n)) = (g1, . . . gn) where gi = ρ(xi).
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Then 〈g1, . . . , gn〉 = ρ
(
Fn/ G
√
w
)
≈ Fn/ G

√
w. Hence ω(g) = e for every ω ∈ G

√
w. In

particular, w(g) = e and therefore g ∈ Ww. Let W i
w be an irreducible component that

contains g. We have ω(g) = e for every ω ∈ G
√
w

i
. However, ω′(g) 6= e if ω′ /∈ G

√
w.

Hence G
√
w = G

√
w

i
and we have the isomorphism λi : Fn/ G

√
w → Fn/ G

√
w

i
. The inverse

statement is obvious.
�

Definition 2.2. The group ∆i
w := Fn/ G

√
w
i

is called the group of general position of the
component W i

w or W i?
w -group.

2.2. An example. Consider the case from Example 1.7:

w1 = [x2, yxy−1], w2 = [x, yxy−1], w3 = [x, y].

Hence w �G w1 (by Example 1.7). Also, it follows directly from the definitions

w1 <G w2 <G w3.

Put

V3 := {g(t1, t2)g−1 | g ∈ G, (t1, t2) ∈ T × T} ⊂ G×G,

V2 := {g(t1, wt2)g−1 | g ∈ G, (t1, t2) ∈ T × T} ⊂ G×G,

V±2 := {g(±u, t)g−1 | g ∈ G, (u, t) ∈ U × T} ⊂ G×G,
V1 := C4 ×G, where C4 is the conjugacy class of the order 4.

Proposition 2.3. The sets V3, V2, V±2 , V1 are closed irreducible subsets of Ww1 and

Ww3 = V3, Ww2 = V3 ∪ V2 ∪ V+
2 ∪ V−2 , Ww1 = V3 ∪ V2 ∪ V+

2 ∪ V−2 ∪ V1.

Proof. V1 is the product of two closed irreducible subsets of G. V2, V±2 , V3 are closures of
the images of closed irreducible sets T ×T , T ×wT, U ×T, −U ×T and G with respect
to the map ϕ : G×G×G→ G×G where ϕ(x, y, z) = z(x, y)z−1. Thus, V1, V2, V±2 , V3

are closed irreducible subsets of G×G.
The first equality Ww3 = V3 is well-known (see [GKP1]).
Consider the setWw2 . Suppose (x, y) ∈ Ww2 \V3. Then x 6= ±e. Let x be a semisimple

element. We may assume x ∈ T, x 6= ±e, y /∈ T . Then

[x, yxy−1] = e⇒ yxy−1 ∈ T y/∈T
=⇒ y ∈ wT ⇒ (x, y) ∈ V2 ⇒

⇒ xyxy−1 = e and y4 = e.

Let ±x be a unipotent element. We may assume x = ±u where u ∈ U, u 6= e. Let x = u.
Then

[x, yxy−1] = e⇒ ±yuy−1 ∈ U ⇒ y = b ∈ B ⇒ (x, y) ∈ (u,B).

On the other hand,

(u,B) = {v(u, t)v−1 | t ∈ T, v ∈ U} ⊂ V+
2 .

Hence (u, b) ∈ V+
2 ⊂ Ww2 . The same arguments show (−u, b) ∈ V −2 ⊂ Ww2 . Thus

Ww2 = V3 ∪ V2 ∪ V+
2 ∪ V−2 .
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Let (x, y) ∈ Ww1 \Ww2 . Then
[x2, yxy−1] = e⇔ [y−1x2y, x] = e,

[x, yxy−1] 6= e,

x2 6= e.

⇒

{
[x2, y] = e,

x4 = e.

Hence (x, y) ∈ C4 ×G.
�

The equivalence w �G w1 and the Proposition 2.3 imply that the closed irreducible
components of Ww are exactly the sets Vi. Put

W3
w = V3, W2

w = V2, W2+
w = V+

2 , W2−
w , W1

w = V1.

Thus we have 5 irreducible components of Ww. The equivalence w �G w1 implies

G
√
w = G

√
w1 = {ω ∈ F2 | ω <G w1}.

Proposition 2.4.

A. G
√
w

3
= 〈〈w3 = [x, y]〉〉, ∆3 = F2/ G

√
w

3 ≈ Z2 is the W3?
w - group,

B. G
√
w

2
= 〈〈w′2 = xyxy−1, w′′2 = y4 〉〉, ∆2 = F2/ G

√
w

2 ≈ Z · Z4

is the W2?
w - group,

C. G
√
w

2+
= 〈〈

{
w2j = [x, yjxy−j]

}
j∈Z〉〉, ∆2+ = F2/ G

√
w

2+ ≈ Z∞ · Z
is the W2+?

w - group,

D. G
√
w

2−
= 〈〈

{
w2j = [x, yjxy−j]

}
j∈Z〉〉, ∆2− = F2/ G

√
w

2− ≈ Z∞ · Z
is the W2−?

w - group,

E. G
√
w

1
= 〈〈w′1 = [x2, y], w′′1 = x4〉〉, ∆1 = F2/ G

√
w

1 ≈
(
Z4 ∗ Z

)
/Z,

where Z = 〈〈[σ2, τ ]〉〉, 〈σ, τ〉 is the image of (x, y) in Z4 ∗ Z, ∆1 is the W1?
w - group.

(2.1)

Proof.
A. For any g = (gt1g

−1, gt2g
−1), t1, t2 ∈ T, ord t1 = ord t2 =∞, g ∈ G we have

∆3
w = 〈gt1g−1, gt2g

−1〉 ≈ Z2.

Here dimW 3
w = 4 (see [GKP1]).

B. For any g = (gt1g
−1, gwt2g

−1), t1, t2 ∈ T, ord t1 =∞, g ∈ G we have

∆2
w = 〈gt1g−1, gwt2g

−1〉 ≈ Z · Z4.

Here dimW 2
w = 4. (Indeed, consider the map χ : W2

w → T which is defined on dense
subset {g(t1, wt2)g−1 | g ∈ G, (t1, t2) ∈ T × T} by the formula χ(g(t1, wt2)g−1) =
t1. For t1 6= ±1 we have dimχ−1(t1) = 3. Since dim Im χ = 1 we have dimW2

w =

dim {g(t1, wt2)g−1 | g ∈ G, (t1, t2) ∈ T × T} = 4).
C. Let g = (gug−1, gtg−1) where

u =

(
1 r
0 1

)
, r 6= 0, t =

(
s 0
0 s−1

)
where s ∈ C and s is a transcendent number.
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Then 〈u, t〉 ≈ Z∞ · Z (see [KM]). Also, the relation on the generators (x, y) of Z∞ ·
Z are generated by commutators [yixy−i, ykxy−k] for every i, k ∈ Z. The commutator
[yixy−i, ykxy−k], in its turn, is conjugate to [x, yk−ixyi−k].

Here dimW2+
w = 4 (the same arguments as in the case B).

D. Here we take g = (g(−u)g−1, gtg−1) and use the same arguments as in the case C.
E. Here any element g = (g1, g2) ∈ C4 ×G satisfies the equations g4

1 = e = [g2
1, g2] and

〈g1, g2〉 ≈
(
Z4 ∗ Z

)
/Z for every point g = (g1, g2) ∈ X where X is some c-open subset of

C4×G (It follows from the fact that the group SL2(C) has no “identities with constants”,
see [G2]). Here dimW1

w = dimC4 + dimG = 5.
�

Now consider the radical G
√
w.

Proposition 2.5. G
√
w = 〈〈

{
[x2, yjxy−j]

}
j∈Z
〉〉.

Proof.

Lemma 2.6. Let Ξ = 〈〈
{

[x2, yjxy−j]
}
j∈Z
〉〉, Ξ1 = 〈〈[x2, y], x4〉〉, Ξ2 = 〈〈

{
[x, yjxy−j]

}
j∈Z
〉〉.

Then ΞC Ξ1, ΞC Ξ2.

Proof. Obviously,

[x, yjxy−j] = e⇒ [x2, yjxy−j] = e

and

[x2, y] = e⇒ [x2, yjxy−j] = e for every j ∈ Z.
�

Lemma 2.7. Let Λ = 〈
{
yi x y−i

}
i∈Z
〉. Then

i. ΛC F2;

ii. Λ/Ξ2 = Λ/[Λ,Λ] is a free abelian group which is generated by elements
{
ȳjx̄ȳ−j

}
j∈Z

where x̄, ȳ are the images of x, y in the quotient group F2/Ξ2.

Proof.
i. We have the identity

xk1ym1xk2ym2 · · ·xkrymr = xk1
(
ym1xk2y−m1

)(
ym1+m2xk3y−m1−m2

)(
ym1+m2+m3 · · · (2.2)

· · ·
(
ym1+···+mr−1xkry−m1−···−mr−1

)
ym1+m2+···+mr .

Hence Λ = {xk1ym1xk2ym2 · · ·xkrymr | m1 +m2 + · · ·+mr = 0}C F2.

ii. The group Λ is a free subgroup of F2 of infinite rank with generators yjxy−j.
The commutator group [Λ,Λ] is generated by the commutators [yixy−i, ykxy−k] where
i, k ∈ Z. Since Λ C F2 and since the commutator [Λ,Λ] is the subgroup invariant under
any automorphism of Λ we have [Λ,Λ]C F2. On the other hand,

Ξ2 = 〈〈
{

[x, yjxy−j]
}
j∈Z
〉〉 = 〈〈

{
[yixy−i, ykxy−k]

}
i,k∈Z
〉〉 = [Λ,Λ].
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Hence Λ/Ξ2 is a free abelian group which is generated by elements
{
ȳjx̄ȳ−j

}
j∈Z

where

x̄, ȳ are the images of x, y in the quotient group F2/Ξ2. �

Lemma 2.8. Let Σ = 〈〈
{
yi x2 y−i

}
i∈Z
〉〉. Then Σ/Ξ ≤ Z(Λ/Ξ).

Proof. We have [x2, yi x y−i] ∈ Ξ⇒ [yjx2y−j, yi+j x y−i−j] ∈ Ξ for every i, j ⇒

Σ/Ξ = 〈〈
{
ȳi x̄2 ȳ−i

}
i∈Z
〉〉/Ξ ≤ Z(Λ/Ξ).

�

Now we can prove Proposition 2.5.
Lemma 2.6 implies Ξ ⊂ Ξ1∩Ξ2. Further, the groups F2/Ξ1 ≈

(
Z4∗Z

)
/Z, F2/Ξ2 ≈ Z∞·Z

are W i?
w -groups for components W 1

w and W±2
w (see Proposition 2.4) and for the other

components the W i?
w -groups are quotient groups of F2/Ξ2. Thus, it is enough to prove

(see, Theorem 2.1)
Ξ = Ξ1 ∩ Ξ2. (2.3)

Suppose ω ∈ Ξ1 ∩ Ξ2. Since ω ∈ Ξ2 = 〈〈
{

[x, yjxy−j]
}
j∈Z
〉〉 we have

ω =
r∏
i=1

[(
ymixpiy−mi

)
,
(
ylixqiy−li

)] Lemma 2.8≡
r′∏
i′=1

[(
ymi′x±1y−mi′

)
,
(
yli′x±1y−li′

)]
(mod Ξ).

Further,

Ξ = 〈〈
{

[x2, yjxy−j]
}
j∈Z
〉〉 ≤ Ξ1 = 〈〈{[x2, y], x4〉〉︸ ︷︷ ︸

3ω

≤ Ξ? := 〈〈x2〉〉.

Hence
r′∏
i′=1

[(
ymi′x±1y−mi′

)
,
(
yli′x±1y−li′

)]
=

s∏
j=1

(
ykjx±1y−kj

)
≡ ω ≡ e(mod Ξ?)

where kj 6= kj+1 for every j = 1, . . . , s − 1. But F2/Ξ
? is a free product ≈ Z2 ∗ Z and

therefore ω ∈ Ξ. �

Remark 2.9. The equivalence w �G w1 does not exist for simple algebraic groups of rank
> 2. Indeed, if the rank of G is more than 2, then the Weyl group W of G contains an
element w ∈ W such that w2 /∈ Z(G) and [t2, w] 6= e for t = g−1wg ∈ T for some g ∈ G.
If we put x = t, y = g, we get [x2, yxy−1] 6= e and [x, [x2, yxy−1]] = e. Hence for a group
G when rankG > 1 we have

w �G w1 and w 6�G w1.
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The diagram of the descent from the group Γw to W i?
w - groups

Here we present natural epimorphisms from the one-relator group Γw to the groups ∆i
w ≤ SL2(C) that correspond to the

group of general position of irreducible components Wi
w of the variety of representations Γw → SL2(C)

Remark 2.10. The set
{

[x2, yjxy−j]
}∞
j=1

is a minimal subset of generators (as a normal

subgroup of F2) of the radical G
√
w. Thus, the group F2/ G

√
w = F2/〈〈

{
[x2, yjxy−j

}∞
j=1
〉〉

is not a finitely presented group.

Remark 2.11. Here neither the group Γw nor the group Γ G√w has no faithfull represen-
tation in SL2(C).

3. The projectivization

3.1. Extensions of word maps from the matrix groups to sets of matrices.
For a word

w = x
ai1
i1
x
ai2
i2
· · · xaikik · · ·x

ais
is
∈ Fn (3.1)

and any group G, a word map

w̃ : Gn → G

is defined by the formula w̃(g1, . . . , gn) = w(g1, . . . , gn).
13



For any field K and any matrix g ∈ Mm(K) let us denote by g∗ the transpose of the
cofactor matrix for g. The matrix g∗ satisfies gg∗ = g∗g =

(
det g

)
Em. Then we may

define the map
w̃∗ : Mm(K)n → Mm(K) (3.2)

by the following rule:
for (g1, . . . , gn) ∈ Mm(K)n and for every power x

aik
ik

in (3.1) we write instead of this

power the matrix g
aik
ik

if aik > 0 and (g∗ik)|aik | if aik < 0.

Proposition 3.1. Let w be a word (3.1) and let

Aj−w = {aik | aik < 0, xik = xj}, b−j =
∑

aik∈A
j−
w

| aik |,

where j = 1, . . . , n. Then for every (g1, . . . , gn) ∈ GLm(K)n we have

w̃∗(g1, . . . , gn) =
( n∏
j=1

(
det gj

)b−j )w̃(g1, . . . , gn).

Proof. Let g ∈ GLm(K). Then g∗ = (det g)g−1. From (3.1) we get

w̃(g1, . . . , gn) = g
ai1
i1
g
ai2
i2
· · · gaikik · · · g

ais
is
. (3.3)

The value of w̃∗(g1, . . . , gn) is calculated by the same formula (3.3) by changing of powers
g
aik
ik

in the cases when aik < 0 for

(g∗ik)|aik | =
(

det gik
)|aik |(gaikik ).

Hence the difference between w̃∗(g1, . . . , gn) and w̃(g1, . . . , gm) is the scalar( n∏
j=1

(
det gj

)b−j ).
�

Lemma 3.2. Let w ∈ [Fn, Fn] be the word of the form (3.1) and let

Aj−w = {aik | aik < 0, xik = xj}, Aj+
w = {aik | aik > 0, xik = xj},

b−j =
∑

aik∈A
j−
w

| aik |, b+
j =

∑
aik∈A

j +
w

| aik |

for every j = 1, . . . , n. Then
i. b−j = b+

j for every j = 1, . . . , n;
ii. for every g1, . . . , gn ∈ GLm(K) and every α1, . . . , αn ∈ K∗

w̃((α1g1), . . . , (αngn)) = w̃(g1, . . . , gn).

Proof.
i. Since w ∈ [Fn, Fn], we have

w̃(e, . . . , e, g︸︷︷︸
jth−place

, e, . . . , e) = e⇒ b+
j − b−j = 0

14



for every j.
ii. From 3.1

w̃((α1g1), . . . , (αngn)) =
(
αi1gi1

)ai1(αi2gi2)ai2 · · · (αikgik)aik · · · (αisgis)ais =( n∏
j=1

(αj)
(b+j −b

−
j )
)

︸ ︷︷ ︸
=1 by the item i.

g
ai1
i1
g
ai2
i2
· · · gaikik · · · g

ais
is

= w̃(g1, . . . , gn).

�

3.2. Word maps over polynomial ring.
Let

S = K[{xµνj}{1≤µ,ν≤m, 1≤j≤n}]
be the polynomial ring of m2n variables {xµνj}{1≤µ,ν≤m, 1≤j≤n} over the field K. For
j = 1, . . . n we define the matrix

Xj =


x11j x12j · · · x1mj

x21j x22j · · · x2mj

· · · · · · · · · · · ·
xm1j xm2j · · · xmmj

 ∈ Mm(S).

Then the entries of the cofactor matrix X∗j are homogeneous polynomials on the variables
{xµνj}{1≤µ,ν≤m, 1≤j≤n} of degree m− 1 and

XjX
∗
j = X∗jXj =


detXj 0 · · · 0

0 detXj · · · 0
· · · · · · · · · · · ·
0 · · · 0 detXj


where detXj is the homogenous polynomial of degree m. Moreover

detX∗j =
(

detXj

)m−1
. (3.4)

For a word w ∈ Fn of the form (3.1) we have

w̃∗(X1, . . . , Xn) = X̂
|ai1 |
i1

X̂
|ai2 |
i2
· · · X̂ |aik |ik

· · · X̂ |ais |is
∈ Mm(S),

where

X̂ik =

{
Xik if aik > 0,

X∗ik if aik < 0.

Proposition 3.3. Let w ∈ Fn be the map of the form (3.1) and let X = w̃∗(X1, . . . , Xn)
be the corresponding word map matrix. Then every entry Xpq of the matrix X is a ho-
mogenous polynomial on m2n variables {xµνj}{1≤µ,ν≤m, 1≤j≤n} of the degree

n∑
j=1

(b+
j + (m− 1)b−j ).
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In particular, if w ∈ [Fn, Fn] then

degXpq = m
n∑
j=1

b+
j = m

(
| ai1 | + | ai2 | + · · ·+ | ais |

)
2

.

Proof. The entries of the matrix X̂ |aik | are homogenous polynomials on xµνj of degree
| aik | if aik > 0 and of degree (m− 1) | aik | if aik < 0. Then the degree of Xpq is equal to

n∑
j=1

( ( ∑
ik=j,aik∈A

j−
w

| aik |
)

︸ ︷︷ ︸
=b+j

+(m− 1)
( ∑
ik=j,aik∈A

j +
w

| aik |
)

︸ ︷︷ ︸
=b−j

)
=

n∑
j=1

(b+
j + (m− 1)b−j ) =

if w∈[Fn,Fn]
=

n∑
j=1

(b+
j +(m−1)b+

j ) =
n∑
j=1

mb+
j = m

n∑
j=1

b+
j = m

(
| ai1 | + | ai2 | + · · ·+ | ais |

)
2

.

�

Proposition 3.4. Let w ∈ Fn be the map of the form (3.1) and let X = w̃∗(X1, . . . , Xn)
be the corresponding word map matrix. Then

detX =
n∏
j=1

(
detXj)

(b+j +(m−1)b−j ).

In particular, if w ∈ [Fn, Fn] then

detX =
n∏
j=1

(
detXj)

mb+j .

Proof. It follows from the definitions of X = w∗(X1, . . . , Xn), b+
j , b

−
j and 3.4.

�

3.3. Case n = 2,m = 2.
Now let m = 2, that is, we consider the group F2 = 〈x, y〉 and

w(x, y) = xc1yd1xc2yd2 · · ·xckydk · · ·xcrydr , (3.5)

where | c1 |, | dr |≥ 0 and | d1 |, | c2 |, . . . , | cr |> 0. Further, let

C+
w = {cj | cj ≥ 0}, C−w = {cj | cj < 0}, D+

w = {dj | dj ≥ 0}, D−w = {dj | dj < 0}.

Then put

c+ =
∑
cj∈C+

w

| cj |, c− =
∑
cj∈C−w

| cj |, d+ =
∑
dj∈D+

w

| dj |, d− =
∑
dj∈D−w

| dj | .

Here S = K[x11, x12, x21, x22, y11, y12, y21, y22] is the polynomial ring of 8 variables,

X =

(
x11 x12

x21 x22

)
, Y =

(
y11 y12

y21 y22

)
∈ M2(S),
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where

X̂ci =

{
Xci if ci ∈ C+

w ,(
X∗
)|ci| if ci ∈ C−w ,

Ŷ di =

{
Y di if di ∈ D+

w ,(
Y ∗
)|di| if di ∈ D−w .

From Proposition 3.3 we get here

degXpq =| c1 | + · · ·+ | cr | + | d1 | + · · ·+ | dr | . (3.6)

Now consider the maps

w̃∗ : M2(C)2 → M2(C), w̃ : GL2(C)2 → GL2(C).

By Proposition 3.1 for every pair (g1, g2) ∈ GL2(C)2 we have

w̃∗(g1, g2) =
(

det g1

)c−(
det g2

)d−
w̃(g1, g2). (3.7)

Theorem 3.5. Let w ∈ [F2, F2] and let α ∈ C. Then
i. there exists a pair (g1, g2) ∈ M2

2(C) such that

X11(g1, g2) = 0, X22(g1, g2)− α
(
detg1

)c−(
det g2)d

−
= 0,

where Xpq(g1, g2) is the (pq)-entry of the matrix w̃∗(g1, g2) ∈ M2(C);
ii. if (g1, g2) ∈ GL2(C)2 where (g1, g2) is a pair which satisfies the condition i., then

there exists a non-central element g ∈ Im w̃ such that tr g = α.

Proof. Let

w̃∗(X, Y ) = X =

(
X11 X12

X21 X22

)
=

= X̂c1Ŷ d1X̂c2Ŷ d2 · · · X̂ck Ŷ dk · · · X̂cr Ŷ dr ∈ M2(S)

where

X =

(
x11 x12

x21 x22

)
, Y =

(
y11 y12

y21 y22

)
.

The entries Xpq are homogenous polynomials of degree
∑r

i=1 | ci | +
∑r

j=1 | dj | (see

(3.6)). Since w ∈ [F2, F2], we have by Proposition 3.3

degXpq = 2c− + 2d−.

Thus we have the system of 2 homogenous equations{
X11 = 0,

X22 − α
(

detX
)c−(

detY
)d−

= 0
(3.8)

on 8 variables xij, ykl. The system of equations (3.8) has a non-zero solution (g1, g2) ∈
M2(C)2 and, therefore, the item i. holds.

Now suppose that (g1, g2) ∈ GL2(C)2. Then g1 = δg′1, g2 = γg′2 for some g′1, g
′
2 ∈

SL2(C), γ, δ ∈ C∗ and δ2 = det g1, γ
2 = g2. Now if we substitute in w̃∗(X, Y ) the values

of matrices g1, g
′
1 instead of corresponding entries xij and the values of matrices g2, g

′
2

instead of corresponding entries ykl we get

w̃∗(g1, g2) = w̃∗(γg′1, δg
′
2) = γ2c−δ2d−w̃∗(g′1, g

′
2) =

(
det g1

)c−(
det g2

)d−
w̃∗(g′1, g

′
2).
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The entries Xpq(g1, g2), Xpq(g′1, g′2) of the matrices X (g1, g2) := w̃∗(g1, g2), X (g′1, g
′
2) :=

w̃∗(g′1, g
′
2) satisfy the equations (see (3.8)){
X11(g1, g2) =

(
det g1

)c−(
det g2

)d−X11(g′1, g
′
2) = 0,

X22(g1, g2) =
(

det g1

)c−(
det g2

)d−X22(g′1, g
′
2)− α

(
det g1

)c−(
det g2

)d−
= 0.

Hence {
X11(g′1, g

′
2) = 0,

X22(g′1, g
′
2)− α = 0.

Since g′1, g
′
2 ∈ SL2(C) then

g = X (g′1, g
′
2) = w̃∗(g′1, g

′
2) = w̃(g′1, g

′
2) =

(
0 ∗
∗ α

)
∈ SL2(C)⇒ tr g = α.

�

Corollary 3.6. Let w ∈ [F2, F2]. If there exists a pair (g1, g2) ∈ GL2(C)2 that satisfies
condition i. of Theorem 3.5 with α = 2 or α = −2 then the map

w̃ : PGL2(C)2 → PGL2(C)

is surjective.

Proof. We may assume (g1, g2) ∈ SL2(C)2 and tr w̃(g1, g2) = 2 or tr w̃(g1, g2) = −2 by ii.
of Theorem 3.5. Moreover,

g = w̃(g1, g2) =

(
0 ∗
∗ ±2

)
∈ SL2(C).

Hence g is a non-trivial unipotent element u or −u. �

3.4. The varieties Vαw̃, P(Vαw̃).
For a fixed α ∈ C define

Vαw̃ := {(X, Y ) ∈ M2(C)2 | X11(X, Y ) = 0, X22(X, Y )− α
(
detX

)c−(
detY )d

−
= 0}.

Then Vαw̃ are closed algebraic subsets of M2(C) ×M2(C) ≈ A8
C and all their irreducible

components have dimensions ≥ 6. Since the equations that define the variety Vαw̃ are
homogenous with respect to both sets {xij}, {ykl} of variables, we define the corresponding
closed projective sets

P(Vαw̃) := {(X̄, Ȳ ) ∈ P(M2(C))× P(M2(C)) | (X, Y ) ∈ Vαw̃}
where X̄, Ȳ are the images of the matrices X, Y in P(M2(C)). All irreducible components
of P(Vαw̃) have the dimension ≥ 4.

Further, let

DX,w̃ := {(X, Y ) ∈ M2
2(C) | detX = 0, X11(X, Y ) = 0, X22(X, Y ) = 0},

DY,w̃ := {(X, Y ) ∈ M2
2(C) | detY = 0, X11(X, Y ) = 0, X22(X, Y ) = 0}

be the corresponding closed subsets of A4
C × A4

C and let P(DX,w̃), P(DY,w̃) be their pro-
jectiviation in P3

C×P3
C. Then we can reformulate Theorem 3.5.
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Theorem 3.7. Let w ∈ [F2, F2] and let α ∈ C. Then
i. dimVαw̃ ≥ 6 (respectively, dim P(Vαw̃) ≥ 4);
ii. if Vαw̃ * DX,w̃ ∪DY,w̃ (respectively, P(Vαw̃) * P(DX,w̃) ∪ P(DY,w̃)), then there exists a

non-central element g ∈ Im w̃ such that tr g = α.

Proof.
i. Here the inequality dimVαw̃ ≥ 6 is some strengthening of the part i. of Theorem 3.5

which is equivalent to Vαw̃ 6= ∅.
ii. The condition (g1, g2) ∈ GL2(C)2 is equivalent to Vαw̃ * DX,w̃ ∪ DY,w̃. �

Note, that for every α ∈ C we have

DX,w̃ ∪ DY,w̃ ⊂ Vαw̃, P(DX,w̃) ∪ P(DY,w̃) ⊂ P(Vαw̃). (3.9)

Indeed, if the pair (X, Y ) satisfies the equations detX = 0 (or detY = 0), X11(X, Y ) =
0, X22(X, Y ) = 0, then this pair also satisfies the equation

X22(X, Y )− α
(
detX

)c−(
detY︸ ︷︷ ︸

detX=0 or detY=0

)d
−

= 0.

There is a pair (g1, g2) ∈ SL2(C)2 such that tr(w̃(g1, g2)) = α ([BZ]) for every α ∈ C.
If α 6= ±2 then the matrix w̃((g1, g2)) is non-central and therefore it is conjugate to

the matrix of the form

(
0 ∗
∗ α

)
([EG1]). The image of the map w̃ is invariant under

conjugations. Hence we may assume that just for (g1, g2) the matrix w̃(g1, g2) has the
appropriate form and therefore (g1, g2) ∈ Vαw̃ \

(
DX,w̃ ∪ DY,w̃

)
. Thus we have the family

of closed subsets {
Vαw̃
}
α∈C

,
{

P(Vαw̃)
}
α∈C

(3.10)

such that the inclusions (3.9) hold for every α and

Vαw̃ 6= DX,w̃ ∪ DY,w̃, P(Vαw̃) 6= P(DX,w̃) ∪ P(DY,w̃) for every α 6= ±2. (3.11)

In order to prove the surjectivity of w̃ : PGL2(C)2 → PGL2(C) we have to prove that
the inequality (3.11) holds also for α = 2 or α = −2 (see Corollary 3.6). For instance, it
would hold if dim

(
DX,w̃∪DY,w̃

)
≤ 5 (the set is defined by three equations in 8-dimensional

space). Indeed, all components of Vαw̃ have dimension ≥ 6.

3.5. The varieties Vα,gw̃ , DgX,w̃.
One of the problems to prove the inequality 3.11 for α = ±2 is a rather big dimension

of varieties. Here we propose a reduction of dimensions of the considered varieties using
the word maps with constants ([G2], [GG], [GKP2]).

Let g ∈ SL2(C), g 6= ±E2 and let

Vα,gw̃ := {(X, g) ∈ Vαw̃}, D
g
X,w̃ = {(X, g) ∈ DX,w̃},

P(Vα,gw̃ ) := {(X, g) ∈ P(Vαw̃)}, P(DgX,w̃) := {(X, g) ∈ P(DX,w̃)}.
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Now we get the families of closed affine
{
Vα,gw̃

}
α∈C

or projective
{

P(Vα,gw̃ )
}
α∈C

sets that

satisfy the following conditions

DgX,w̃ ⊂ V
α,g
w̃ , P(DgX,w̃) ⊂ P(Vα,gw̃ )

for every α ∈ C. To prove the surjectivity of w̃ : PGL2(C)2 → PGL2(C) we have to prove
the inequality

Vα,gw̃ 6= DgX,w̃ or P(Vα,gw̃ ) 6= P(DgX,w̃) for α = 2 or α = −2

for some appropriate g.

3.6. Example: w = [x, y].
Here consider the simplest example when the word w = [x, y] is just the commutator

of x, y. It is a known fact that Im w̃ = SL2(C) (see [GKP3]). Let

g =

(
0 1
−1 0

)
, X =

(
x y
z t

)
.

Then

w̃∗(X, g) =

(
x y
z t

)(
0 1
−1 0

)(
t −y
−z x

)(
0 −1
1 0

)
=

=

(
x y
z t

)(
x z
y t

)
=

(
x2 + y2 ty + xz
ty + xz z2 + t2

)
.

Then

X11 = x2 + y2, X22 = z2 + t2,

DgX,w̃ = {(X, g) | detX = 0, X11 = 0, X22 = 0} =

{(X, g) | x = iy, z = it}
⋃
{(X, g) | x = −iy, z = −it}.

Thus, DgX,w̃ is a union of two planes in 4-dimensional space.
Further,

Vα,gw̃ = {(X, g) | x = ±iy, z2 + t2 − α(xt− yz) = 0}.
We have

z2 + t2 − α( x︸︷︷︸
=±iy

t− yz) = (z + it)(z − it) + αy(z ± it)⇒ Vα,gw̃ =

= {(X, g) | x = iy, (z−it)(z+it+αy) = 0}
⋃
{(X, g) | x = −iy, (z+it)(z−it+αy) = 0}.

Thus Vα,gw̃ is a union of four planes in 4-dimensional space and therefore Vα,gw̃ 6= DgX,w̃
for every α. Hence, for every α ∈ C there exists an element g′ ∈ GL2(C) such that
(g′, g) ∈ Vαw̃ and therefore in the image of the map w̃ : SL2(C)2 → SL2(C) there exists
a non-central element g′′ such that tr(g′′) = α. Then the map w̃ : SL2(C)2 → SL2(C) is
surjective.
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