THE GROUP SL,(C): WORD MAPS AND RELATED TOPICS

NIKOLAI GORDEEV AND EUGENE PLOTKIN

INTRODUCTION

Let G be a group, and let F,, = (x1, ..., z,) be the free group of rank n. For every word
w € F),, the word map is defined as w : G™ — G, where w(gy,...,9,) = w(g1, .-, Gn)-

In group theory, many problems are associated with word maps. For instance, the well-
known Burnside problem asks about the finiteness of the quotient group Fj/{{Imw)),
where n = 1, F,, = (z), G = Fi, k > 1, w = 2™ for some m € N, and ((Imw)) is the
normal subgroup generated by the image of the word map w : Fj, — F}. Another example

is the Ore problem: is G ~ Im w, where n = 2, w = [x,y], and G is a finite simple group.

The surjectivity of word maps. The question G Z Tmw has been studied for various
types of words and groups in recent years. The particular interest here is the case when G
is a simple algebraic group. One of the first results in this direction is A. Borel’s theorem
([Bol]) which states: for any non-trivial word w € F,, and any semisimple algebraic group
G the word map w : G" — G is dominant. This means that the image Imw of the word
map w contains a non-empty open subset of (G, that is, it contains “almost all” elements
of G. However, in the same paper Borel presented the simplest counterexample to the
surjectivity of word maps. Namely, if n = 1, w = 22 and G = SLy(C), then —u ¢ Imw
where u € SLy(C) is a non-trivial unipotent matrix.

Certainly we can avoid such kind of counter-examples on SLy(C) if we consider the
group PGLy(C) = SLy(C)/Z(SLy(C)). It has been shown (see [BZ]) that every non-
central semisimple element of SLy(C) is contained in Imw for any w # e. This implies
that every element of PGLy(C), except possibly non-trivial unipotent elements, is in
Imw. We have examples of surjective word maps w : PGLy(C)" — PGLy(C) (see [BZ],
[GKP1]-[GKP4], [GG], [JS]). In particular, there exist series of such words, satisfying
wy, € FP\ FMY | where {Fygk)}?’:o is the derived series of F,.

It remains unproven that Imw = PGLy(C) for every w # e, even for n = 2. Specifically,
it is not established whether substituting 2 x 2 complex matrices for z,y in the word
ghy™ ... glry™ can yield a unipotent matrix. This unresolved question is sometimes
referred to as The Shame Problem.

So, the major problem which stands behind all considerations of the current paper is
the following old open question:

Problem 0.1. Is it true that a word map w : PGLy(C) x PGLy(C) — PGLy(C), where
w =w(x,y) # 1, is surjective? In other words is it true that every equation w(x,y) = a,
where a is a matriz from PGLy(C), has a solution?

Unfortunately, nowadays after many years of intensive research and numerous attacks

we are forced to state the absence of the decisive approach to this problem. Despite
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the apparent ease of formulation, the problem is deep, difficult and toxic. We need to
feel better how the geometry of verbal varieties behave in various cases. Hopefully this
will give rise to still unearthed totally new ideas. This paper deals with two methods
of geometrical nature which look promising. Generally speaking, our goal is to study
algebraic properties of groups related to specific word varieties.

The situation with the problem Im w ~ G for the general case of simple algebraic
groups G is much more complicated. Unlike the case of SLy(C), no general results exist
for semisimple elements (not even for SL3(C)). Counterexamples to surjectivity for word
maps are currently limited to cases involving powers w' of words (see [GKP3]). Further-
more, we have only a few types of word maps for that we may guarantee the surjectivity
of word maps on simple algebraic groups (see [GKP3], [G]). Meanwhile, the general
conjecture is as follows.

Problem 0.2. Is it true that a word map w : PGL,(C) x PGL,(C) — PGL,(C), where
w=w(x,y) # 1, is surjective? In other words is it true that every equation w(z,y) = a,
where a is an element of PGL,(C), has a solution?

We cannot expect surjectivity of word maps w : G"™ — G for every simple algebraic
group G of adjoint type. Say w : PSp,(C) — PSp,,(C) where w = 22 is not surjective
[GKP3]. Possibly we have to exclude words w = w* w € F,,, k > 1.

A gloomy picture with word maps on algebraic groups prompts us to find new ap-
proaches which use more deep connections between the group and the topological nature
of algebraic groups. Any additional information can be an essential help. In particular,
methods of AI can be useful in this concern. For instance, solutions of the equation
w(z,y) = 1 for various types of w, or at least dimensions of the irreducible components
of the variety w(z,y) = 1 can deliver a yet missing hint towards the solution of Problems
0.1 and 0.2.

The variety of representations. The problem of the surjectivity of word maps on the
group G = SLy(C) is closely tied to the structure of the variety of representations of
finitely generated groups with one relation (see [GKP1]).

For a group G and a word map w : G" — G let

W, = w0 '(e)

(here e is the identity of G). Let I, := F,,/({w)) be the group of n-generators (Z1, ..., Z,)
and one relation w. Here ((w)) := (fwf™' | f € F,) is the normal subgroup of F,
generated by the conjugates of w, and the generators of I, are z; = z;(mod{(w))). Ele-
ment g = (¢1,...,9n) € W, corresponds to the homomorphism p, € Hom(I',,, G) where
pg(Z;) = gi- On the other hand, every homomorphism p € Hom(I',, G) corresponds to
the element g, = (p(Z1), p(Z2),...,p(Z,)) € W,. Thus we have one-to-one correspon-
dence between the elements of the algebraic set W,, in G™ and the elements of the set of
homomorphisms Hom(T',,, G).

If G is a simple algebraic group, then the set W, is a Zariski closed subset of G". In
general, it is a reducible set. The set W, is called the variety of representations of the
group Ty, see [LM], [PRR]. In the case when G = SLy(C) we have dimW,, < 5 and if
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there is an irreducible component WY of W., such that dim W¢ < 5 then the image Im w
contains a non-trivial unipotent element of G = SLy(C) (and therefore the induced map
w : PGLy(C)" — PGL(C) is surjective; see [GKP1]). However, the inverse assertion:

Imw contains a non-trivial unipotent element = dim W', < 5 for some i,

is an open problem.

The paper is organized as follows. Its first part is devoted to the variety of
representations. We define a word equivalence =g related to w and G, which, in its
turn, naturally implies the order relation on the set of words. Finally, all these notations
are used in the definition of the radical {/w of the word w with respect to the group G.

It is our pleasure to note that this geometric insight resembles general ideas of universal
geometry introduced by B.Plotkin. He considers a kind of Galois correspondence between
sets of equations over free algebras in some variety of algebras A and their solutions in
the Affine space G = Hom(F,,G), F, is a free in A algebra, G € A. Given a system
of words T" one can consider its solution A = 7" € G™ and the set Radg(T) of all words
having the same solution A. Two algebras GG; and G5 are called geometrically equivalent
if for every system 7' we have Radg, (T') = Radg,(T) [P11], [P12]. It is a rare case when
one can explicitly describe radicals Radg(T). In these cases we can speak about explicit
Nullstellensatz.

It would be a great advancement to get a classification of equivalence classes of words
with respect to equivalence <4 and semisimple algebraic groups GG over complex numbers
or, at least, with respect to G = PGLy(C). Even more ambitious question is to obtain a
kind of Nullstellensatz in this case.

Section 2 is focused on simple algebraic groups and, first of all, on the irreducible
components of the variety of representations. Let, for simplicity, G = SLy(C). Let
w € F,, be a word and let W,, be the corresponding variety of representations.This variety
splits into a finite number of the irreducible components W¢. To each component W/
one can associate its radical {/w "’ < F, such that the quotient group Al := F,/ {/w" is
isomorphic to the group (g1, ..., g,) for “almost all points” g = (g1,...,9,) € W, and
for every point g = (g1,...,9,) € W' there exists the epimorphism A’ — (g1, ..., gn)-
The group A’ is called the group of general position of the component W' or Wi*-group.
In some sense the groups A’ are responsible for groups having faithful representation in
G, see Proposition 2.1 for the precise meaning. The rest of the Section deals with the
example G = SLy(C),w = [z, [2%,yzy~']] € Fa(x,y). The results are accumulated in
remarks and the diagram before Section 3 and reveal a quite complicated picture.

The last Section considers the similar problems from the positions of matrix calculation.

Notations and Terminology. Here:
e N, Z, C represent the set of natural numbers, the ring (group) of integers, and the
field of complex numbers, respectively.
® 7, = Z/mZ is the cyclic group of order m.
o LM =ZDLD---BZ (m times); Z® = @2, A;, where A; ~ Z for every i € N.
For any groups I' and H:



e € I" denotes the identity element of the group T'.

ord g represents the order of the element g € I'.

Z(I") is the center of the group I

A = H-T denotes a semidirect product, where H<A and A = (h,v) | h € H, v € I
e H x I is the free product of the groups H and I'.

If G is a simple algebraic group, then B, T, U denote:

e B: a fixed Borel subgroup.
e 7. a maximal torus, where T' < B.
e UU: the maximal unipotent subgroup, where U < B and B =TU.

For the group SLy(C), we denote:

e B: the subgroup of upper triangular matrices.
e T the subgroup of diagonal matrices.
e U: the group of upper triangular matrices with eigenvalues 1.

Given field K denote:
e M,,(K): the set of all m x m matrices with the entries m, ; € K.

Let K be a field and let X be an algebraic variety over K.
e Y: closure (with respect to Zariski topology) of a subset Y C X.
e dimY: the dimension of a closed subset Y C X.

If K has a big enough transcendence degree over the prime field F' < K (in particular,
trdeg, K = 00), then the set

[e.e]
i=1
where X; ; X is a proper closed subset for every i, is a dense non-empty subset of X (see
[Bol]). We call such sets countably open or c-open.
1. G-EQUIVALENCE AND (G-ORDERS ON WORDS
1.1. G-equivalence on words.

Definition 1.1. We say that the words wy,wy € F), are G-equivalent if Wy, = Wh,. If
wy,wy € F, are equivalent words then we will write

w1 Xg Wa.
The simple criterium of the equivalence of words is the following

Proposition 1.2. Let G be a group, w € F,, and let ¢ : F,, — F,, be an automorphism of
F,, that stabilizes the normal subgroup ((w)) < F,, . Then

w =g < (wt).

Proof. Since ¢(({w))) = ((w)) we may consider the map ¢ as an automorphism of the
group I'y, = F,/((w)). If p: ', = G is a homomorphism then

¢(p) : Ty = G where g(p)(vzL = p(s(v)) for every y €T,



is also a homomorphism. Hence

Hom(l',, G) = ¢(Hom(Ty, G)) = Hom(L(u), G) = Wiy = Wew) = w =g s(w).

+1 ig obvious. O

Remark 1.3. The condition <(({(w))) = ((w)) is essential. Indeed, let w = zy € Fy and
G be any group G which has an element g of order 3. Let ¢ : Fy — F5 be the automorphism
such that () =z, <(y) = xy. Then ¢(w) = 2y and (g,9) € Wew), (9,9) & Wa.

The equivalence w =g w

Example 1.4. Let G = Z/27, wy = x}}xi} - x7*, wy = x?ix?i = x?f Then
wy Xg We < Wy, = Wy, < a; = bj(mod 2) for every i =1,... n.
Example 1.5. Let G = SU5(C) and let || || be the norm on G. Then for every0 < e € R
there exists a word w € Fy = (x,y) such that
~ 1
|| By — @(g1,92)|] < 5 for every (g1, 92) € G* (1.1)

(see [T]). Then

[z, [z, w]] <¢ [z, w].
Proof.

Lemma 1.6. For every a € C, |a] =1, we have

Wy 1= ( Od g) ¢ Im w, for every a € C, |of =1.

Proof. Indeed,

T I O A R ST e T e 1
s wa||—H (a | ) H_ ﬁm TP+ [—aP+[aP=v2> 3.
U
Suppose [z, [z,w]] #¢ [z,w]. Then there exists a pair (c,7) € G? such that
[0,0(0,7)] # Ea, [o,]0,w(0,T)]] = Es. (1.2)

. . 0
Note, that o in (1.2) is a non-central element. Thus we may assume o = <8 5) where

|s| =1, s # £1. Then condition (1.2) implies

(0,5(0, 7)] = (g 2) where |2 = 1,2 # +1, (1.3)
(Indeed, [0, [0,@(0, 7)]] = E» and therefore [0,&(0, 7)] # E» is a diagonal matrix. Suppose
[0,0(0,7)] = —Ey. Then ||Ey — [0,0(0,7)]|| = ||E2 — (—E»)|| = 2||E2|| = 2. But

- 1 ~ -
182 = (o, 7)l| < 5 = ||E2 = [0, (0, || < 2[| Bz — &(o, 7| < L.

That is a contradiction.)
Now let



Then

et 3 (596 )6 -
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a=0=w(oT1)= ( 5 > (this case is impossible by Lemma 1.6),

N———

o

N

e}

a
0 a

b=0= w(o,T1)= < ) = [o,w(0,7)] = B> (a contradiction with (1.3)).

(
Thus we have proved |z, [z, w]] <¢ [z, w].

Example 1.7. Let G = SLy(C), w € Fy = (x,y). Then
[z, [2?, wrw™]] x¢ [2%, wrw™].

Proof. Suppose [z, [2%, wzw™]] #¢g [2%, wzw™!]. Then there exists a pair (o,7) € G? such
that

Ci= [0 wow ] £ By, [0,(] = B (1.4)
Case I. 0 is a semisimple element. We may assume o = (g 501) where s # +1, # +i.

Then condition (1.4) implies

- z 0 0 r
(0% wow™ ] = (0 z1> where z # 1= p = <—7“1 0) : (1.5)

0 s 0 _ .
tr(_r1 O):O:tr(u}<0 Sl)w1>:>s::|:2

that contradicts to our assumption.

However,
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Case II. £0 is a unipotent element. We may assume o = £ (O 1

) € U. Then

N~~~ 0
cU =

C:[UQ,waw_l]:j:(l i) where 2z # 0= p € B.
(Indeed, if 4 ¢ B then p € BwB and p = ujwtuy where uy,us € U and t € T. Hence
=uelU,u#1 =u/eUu'#1

~~ —_——
po 2ut = (upituy) o (up 't T u ) = ug (Wtugo Puy 't T upt ¢ B.

—11057&0
\s 1)




It is a contradiction with the equality ¢ = [0, u] = o0?(uo2u™1) = &+ (1 z) where
z # 0.) Hence
Bop=w o wl =4+ L f (1.6)
L .

0 1
(11
o1

Thus we have a contradiction between (1.6) and (1.4).

1.2. G-order on the words.

Definition 1.8. We say that a word wy € F, is G-deeper than the word ws € F, if
Wiy D W, - In this case we will write
Wy 7 Wa.

If wy =g ws, then it holds that wy =g wo.
Proposition 1.9. Let w,w € F,,. Then:

i. w € ((w)) = w =g w; in particular, w* =g w, [w,w'] = w for every a € Z, w' €
Fy;

it. if pg : 'y = G 1s a faithful representation for some g € W, then

() ={weF | wzcw}

Proof.

i. The set W, is invariant under the conjugations by elements of G and therefore
Wi = Why s for every f € F,,. Then

w=[[(fawf7") = W D W,
i=1

Now the inequalities w® =g w, [w,w'] =¢ w follow directly from the definitions of =g
and ((w)).

ii. Let py; : I'y = G be a faithful representation for some g = (g1,...,9,) € W
Suppose w =g w for some word w ¢ ((w)). Since p; is a faithful representation then
(g1,---.9n) = Ty = F,/{{w)) and therefore w(gi,...,9,) # e. On the other hand,

w =¢ w. Hence w(gy,...,g,) = e. It is a contradiction.
|

Remark 1.10. If wy %#¢ ws then [wy, we] ¢ w;.
Indeed, if Wy, g W, then there exists an element ¢ = (g1, -, 9n) € Wiy \ Wi, -
Hence

wi(g) # e, w2(g) = €= Wi, un) 7 Wy
Definition 1.11. The subgroup
Jw={weF, | wsqw}<FE,
will be called the G-radical of the word w.

Remark 1.12. Obviously, {/w is a normal subgroup of F,, and ((w)) < §/w.
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2. CASE OF A SIMPLE ALGEBRAIC GROUP (G OVER C

2.1. Irreducible components of the representation variety W,,. Let G be a simple
algebraic group which is defined over C and G = G(C).

Let w : G — G be a word map. Then W,, C G" is a Zariski closed subset which
consists of the union of finite number of irreducible components

W, =i
=1

(see [GKP1]). We define
Yw' C{weF, | W,o>W.}

Theorem 2.1.

1. The set {"/El C F,, is a normal subgroup of F,, and §/w < {"/EZ for every i.

i. The set W'* & {9="(91,....9.) EWL | {g1,....9:) ~ F,/ w"} is a non-empty

c-open subset of W .

iii. For every g = (g1,...,9,) € W: there exists the epimorphism Fn/\G/EZ —
(91, Gn)- "

w. The homomorphism F,/ {/w iz [, F./ §w’, where \; : F,/ {/w — F,/ §w’
are natural eptmorphisms, is an injection.

v. A faithful representation p : I,/ {/w — G exists if and only if the homomorphism

i F,) Yw— F,//w" is an isomorphism for some i.

Proof.

i. It follows directly from the definitions and Proposition 1.2.

ii. Let w ¢ {w'. Then there exists a point g € W such that w(g) # e. Hence
W, NW! is a proper closed subset of W¢. Then the set

Wi (U )
we w '’
is a non-empty c-open subset of W¢ and this set consists of all elements g = (g1,---,0n) €
Wi such that (g1,...,9,) ~ F,/ Yw". .
iii. Since w(g) = e for every g = (g1,...,9,) € W,, and for every w € ¢w", the group

{(g1,...,gn) is the quotient group of F,/ {/w".
iv. Let

N Fy/ G st ﬁFn/%"
and let w € F,, be a word such that & € Ker A vthlere @ = w(mod {/w) . Then @ € Ker \;
for every i where \; : F,/ {/w — F,,/ {/w . Hence
w € %iforevery i =>we Yuw=w=ec.
v. Suppose p: F,,/ {/w — G is a faithful representation. Let
g=(p(Z1),...,p(Tn)) = (9817 .- gn) where g; = p(z;).



Then (g1,...,9,) = p(Fn/ Yw) =~ F,/§/w. Hence w(g) = e for every w € {w. In
particular, w(g) = e and therefore g € W,,. Let W: be an irreducible component that

contains g. We have w(g) = e for every w € Yw'. However, u'(g) # e if ' ¢ w.
Hence {/w = {/w' and we have the isomorphism \; : F},/ {/w — F,,/ {/w . The inverse

statement is obvious.

g

Definition 2.2. The group Al =F,/ W 1s called the group of general position of the
component W, or W, -group.

2.2. An example. Consider the case from Example 1.7:
wi = [2%,yzy™Y, wy = [z, yry ™, ws = [2,y).
Hence w =g wy (by Example 1.7). Also, it follows directly from the definitions
Wy FGq W2 7G W3.

Put

Vi :i={g(t1,t2)g7' | g€ G, (t1,t2) eT xT} CGxG,
Vo :={g(t1,wta)g™! | g€ G, (t1,ts) e T xT} C G %G,
Vi = {g(+u,t)g! | g€G, (u,t)eUxT}CGxG,
V) = Cy x G, where C} is the conjugacy class of the order 4.

Proposition 2.3. The sets Vs, Vs, VQi, V1 are closed irreducible subsets of W,,, and
Wiy = V3, Wy, = Vs UV, UV UV, Wy, = VUV UV UV, UV

Proof. V, is the product of two closed irreducible subsets of G. Vs, V3, Vs are closures of
the images of closed irreducible sets T'x T" , T'x wT, U x T, —U x T and G with respect
to the map ¢ : G x G x G — G x G where ¢(x,y, 2) = z(x,y)z~'. Thus, Vi, Vo, Vi, Vs
are closed irreducible subsets of G x G.

The first equality W,,, = Vs is well-known (see [GKP1]).

Consider the set W,,,,. Suppose (z,y) € Wiy, \ V3. Then x # te. Let x be a semisimple
element. We may assume x € T, = # e, y ¢ T. Then

[z, yry ] = e = yay ! ETgyEwTj (x,y) € Vo =

= zyry ' =e and y! =e.
Let £x be a unipotent element. We may assume x = +u where u € U, u # e. Let x = u.
Then
[z, yzy ' =e= tyuy ' €eU=y=be B = (x,y) € (u, B).
On the other hand,

(u, B) ={v(u,t)o=t | t€T, velU}C V.
Hence (u,b) € V¥ C W,,. The same arguments show (—u,b) € V,” C W,,. Thus

W, = Vs UV, UV UV,
9



Let (x,y) € Wy, \ Wa,. Then

[z, yoy™] # e,
% #e.
Hence (z,y) € Cy x G.

(22, yzy~' = e & [y 2%y, 2] = e,
i {

g

The equivalence w =g w; and the Proposition 2.3 imply that the closed irreducible
components of W, are exactly the sets V;. Put

W2 =Vs, W2 =V, W2F =V; W2 Wl =V
Thus we have 5 irreducible components of W,,. The equivalence w =g w; implies
Jw= ¢uw={wel | wxguw}

Proposition 2.4.

(A0’ = ((wy = [,y])), D= B/ §w’ ~ L7 is the W3- group,
B. {/w’ = ((wh = zyzy ", wi = y')), Dy =B/ Y’ ~ L L
is the W~ group,
C.¢/w™" = (({wy; = [2,y7xy ™|} ), Doy = Bof ™" ~ 7% - Z
is the W2~ group,
D.§w’” = ({{wy; = [e.yxy )}, ), Do = Byf Y™ ~ T
is the W27~ group,
E. ¢uw' = (] = [2%,y], wi = 2%), Ay = B/ Yw' ~ (Zs+1)/Z,
| where Z = (<[02,T]>>, (o,7) is the image of (x,y) in Zy* Z, Ay is the WY - group.
(2.1)

Proof.
A. For any g = (gt1g7 1, gtag™t), 11,12 € T,ordt; = ordty = 0o, g € G we have

A3 = (ghig~" gtag™") =~ 22
Here dim W32 = 4 (see [GKP1]).
B. For any g = (gt1g™ %, gwtag™!), t1,ty € T,ordt; = 0o, g € G we have
A2 = (gt1g7", gutag™t) = Z - Zy.

Here dim W2 = 4. (Indeed, consider the map x : W2 — T which is defined on dense
subset {g(tl,wtg) 1| g€ @G, (ti,ts) € T x T} by the formula x(g(t,wtz)g™!) =
t;. For t; # +1 we have dim x~'(¢;) = 3. Since dimIm x = 1 we have dim W? =
dim{g(t1,wt2)g™t | g€ G, (ti1,t2) €T xT} =4).

C. Let g = (qug™, gtg~') where

U= (1 T) , T#0, t= (8 3(_)1) where s € C and s is a transcendent number.

10



Then (u,t) ~ Z*>* - Z (see [KM]). Also, the relation on the generators (z,y) of Z* -
Z are generated by commutators [y‘zy = y*zy~F] for every i,k € Z. The commutator
[yizy =t y*ay~*], in its turn, is conjugate to [z, y*tzy'*].

Here dim W2" = 4 (the same arguments as in the case B).

D. Here we take g = (g(—u)g™!, gtg™') and use the same arguments as in the case C.

E. Here any element g = (g1, ¢92) € Cy x G satisfies the equations g{ = e = [¢?, go] and
(g1, 92) ~ (Z4 * Z) /Z for every point g = (g1, g2) € X where X is some c-open subset of
Cy x G (It follows from the fact that the group SLy(C) has no “identities with constants”,
see [G2]). Here dimW,, = dim Cy + dim G = 5.

O

Now consider the radical {/w.

Proposition 2.5. {/w = <<{[$2,yj$y_j]}jez>>-

Proof.
Lemma 2.6. Let = = (({ [+, oy ]} ), Z0= (e y),0"), = = ({lo.vioy ]}
Then = < El, =< Eg.

Proof. Obviously,

JEZL

2,y ay T = e = [2? ylay ] = e
and
[2%,y] = e = [2°, vy 7] = e for every j € Z.

Lemma 2.7. Let A = <{yixy_’}iez>. Then

i. A< Fy

ii. NJZs = NJ[A,A] is a free abelian group which is generated by elements {gjji'?j_j} -
where T,y are the images of x,y in the quotient group Fy/=s. !

Proof.
i. We have the identity
xklymll.kaWQ . xk7-ymr = k1 (ymlzkzy—nu) (yml—&-mzxkgy—ml—mz) <ym1+m2+m3 . (2‘2)

. (ym1+“'+m'r'71xkry*mlf'“*mrfl ) ym1+Tn2+---+mr )

Hence A = {aFiymighzym2 ... gbryme | my +my + - +m, =0} < Fy.

ii. The group A is a free subgroup of F, of infinite rank with generators y/zy /.
The commutator group [A,A] is generated by the commutators [yixy %, y*zy—*] where
i,k € Z. Since A < F, and since the commutator [A, A] is the subgroup invariant under
any automorphism of A we have [A, A] < Fy. On the other hand,

== (({ley'orl} )= ({ ety ™)) =[AAL

JET '
11

i,kEZL

)



Hence A/Z, is a free abelian group which is generated by elements {yjj fgj*j} where
€T
z,y are the images of z,y in the quotient group Fy/=s. U

Lemma 2.8. Let ¥ = (({yl 22 y‘l} ). Then £/ < Z(A/2).
S

Proof. We have [z%,y'zy~'] € 2 = [y/2%y 7,y 2y 7] € = for every 1,7 =

pE= ({7 @} /=< 2(1/3).
4

Now we can prove Proposition 2.5.

Lemma 2.6 implies = C Z1NZ=,. Further, the groups Fy /=) ~ (Z4*Z) /2, Fy)Zy = L7
are Wir-groups for components W) and WE? (see Proposition 2.4) and for the other
components the Wi*-groups are quotient groups of F,/=,. Thus, it is enough to prove
(see, Theorem 2.1)

==5,N5, (2.3)
Suppose w € =1 N Zy. Since w € Zp = (({[x, ijy*j]} 'eZ>> we have
j

r /

w = H [(ymzmpzy—mz)7 (ylia:qiy_li)} LemgaQ.S H [(ym /xily ) (yli/iﬁily_li/)] (mod E)

i=1 =1
Further,

Hence

.H [(ymea=ty™), (v ey~ )] = [T (v9a™'y™) = w = e(mod =)

/=1 j=1

where k; # kjyq for every j = 1,...,s — 1. But F,/=* is a free product ~ Zy * Z and
therefore w € =. O

Remark 2.9. The equivalence w =<g wy does not exist for simple algebraic groups of rank
> 2. Indeed, if the rank of G is more than 2, then the Weyl group W of G contains an
element w € W such that w? ¢ Z(G) and [t*,w] # e fort = g twg € T for some g € G.
If we put x = t,y = g, we get [2?, yry~'] # e and [z, [2*, yzy~']] = e. Hence for a group
G when rank G > 1 we have

w =g wy and w Eg wi.

12



The diagram of the descent from the group I',, to in:- groups

ru' == FQ.M{“" = [J‘ [3'2=yr.y_1})>

Luy = B/ ((wr = [2%, yey ™)

TMrad
Pem= Fz.fH{[f?- 3ﬂ'ry”‘]}}_ez))
= N e
(wer): o= (wi); At = T (m2): al=
—Fe=F= —F==. = =F-Ta=
/(. vy} ) R/ (({le, vz} ) Fo/((wh = wyay ™ uf = y*))
(ws); a3 = (Wi); AL =
=FxE= ‘:zwzz
Fof ((ws = [z.y])) Ba/((w} = [2, 9], wf = %))

Here we present natural epimorphisms from the one-relator group I'y, to the groups AZJ < SL2(C) that correspond to the

group of general position of irreducible components Wi, of the variety of representations I'y, — SLa(C)

Remark 2.10. The set {[mz, ijy_j]}oo is a minimal subset of generators (as a normal
i=1
subgroup of Fy) of the radical §/w. Thus, the group Fy/ {/w = Fg/(({[ﬁ,yja:y’j} ))
j=1

15 not a finitely presented group.

Remark 2.11. Here neither the group 'y, nor the group I' ¢q; has no faithfull represen-
tation in SLy(C).

3. THE PROJECTIVIZATION

3.1. Extensions of word maps from the matrix groups to sets of matrices.
For a word

w=x;" a:?k”“ ezt e Fy (3.1)
and any group G, a word map
w:G" =G

is defined by the formula w(gy, ..., g,) = w(g1,.-.,gn)-
13



For any field K and any matrix g € M,,(K) let us denote by g* the transpose of the
cofactor matrix for g. The matrix ¢* satisfies gg* = g*g = (det g)Em. Then we may
define the map

w* : M, (K)" = M,,(K) (3.2)
by the following rule:
for (g1,...,9n) € My, (K)"™ and for every power xai in (3.1) we write instead of this
power the matrix gfk”“ if a;, >0 and (g )|%| if a;, < 0

Proposition 3.1. Let w be a word (3.1) and let
A =Aai, | @i, <0, @ =a} by = Y fai |,

aik GAZU_

where j = 1,...,n. Then for every (g1, ...,9n) € GLy(K)™ we have

(g1, gn) = (1_] (det ;)" )ian....0.)

Proof. Let g € GL,,,(K). Then g* = (det g)g~!. From (3.1) we get

W(grs - Gn) = 6, G - Gt g (3.3)
The value of w*(gy, . .., gs) is calculated by the same formula (3.3) by changing of powers
gfkk in the cases when a;, < 0 for

(g5) ! = (det gi,) ! (g7%).

Hence the difference between w*(gy, ..., g,) and w(g, ..., gm) is the scalar

(Jli[l detgJ >

Lemma 3.2. Let w € [F,, F,] be the word of the form (3.1) and let

Al =Aay, | a, <0, ;= a5}, ALY ={a;, | a, >0, z;, =5},

bj_: Z |aik|v bj_: Z |a2k|
aik EAZU_ aik EAZU+
for every 5 =1,... ,n. Then
i. by :b;r for every g =1,...,n;
ii. for every gi,...,gn € GL,(K) and every aq, ..., a, € K*

w((a1g1), - (Qngn)) = W(g1,- - -, Gn)-

Proof.
i. Since w € [F),, F,], we have

~ _ + - _
wie,...,e, g e...,e)=e=b—b =0
~
jth—place
14



for every j.
ii. From 3.1

w((1g1), -, (agn)) = (amgzl)a“ (amgig)ai? (Oéikgik)aik (Oéisgz's)ais =

- —+ a; Qg ~
(H )5 )gh G2 gt gl = w(gr, ., Ga)-

Jj=1

=1 by theitemi.

3.2. Word maps over polynomial ring.
Let

S = K[{zw;} p<pwem, 1<i<ny]

be the polynomial ring of m?n variables {@,.;}11<uv<m,1<j<n} Over the field K. For
7 =1,...n we define the matrix

115 L1250 Timg

| ®21; Xagi ccr Tomy
Xp= 00 T T e Mu(S).

Tml; Tm2j *°° Tmmj

Then the entries of the cofactor matrix X7 are homogeneous polynomials on the variables
{2 t1<pp<m,1<j<ny of degree m —1 and

detX; 0 - 0
XX =xix = | 0 At e 0
0 co 0 det X;

where det X is the homogenous polynomial of degree m. Moreover
det X} = (det X;)™ . (3.4)
For a word w € F), of the form (3.1) we have
T (X, X,) = X[l el oDl e (),

where

Xl-k _ sz lf Q) > 0,
Xpoif a;, <0.

Proposition 3.3. Let w € F,, be the map of the form (3.1) and let X = w*(X1,...,X,)
be the corresponding word map matriz. Then every entry X,, of the matriz X is a ho-
mogenous polynomial on m*n variables {x,;} (1<pv<m,1<j<ny Of the degree

n



In particular, if w € [F,, F,,] then

- @iy | ] ay, |44 | as,

)

2

Proof. The entries of the matrix Xloul are homogenous polynomials on x,,; of degree
| a;, | if a;, > 0 and of degree (m —1) | a;, | if a;, < 0. Then the degree of &), is equal to

n n

SO X da)+m=1( D lal)) =D +m-1;) =
j=1 ik:jvaikeAZu_ ik:jﬂikEAffr j=1
if wE[Fa,Fu] o ’ i, |+ iy |+ + | ai, | )
= (b7 +(m—1 bJr mlfr =mY b = .
; : Z Z 5

Proposition 3.4. Let w € F,, be the map of the form (3.1) and let X = w*(Xy,...,X,)
be the corresponding word map matrix. Then

det X = H (det Xj)(bj“m*l)bf).
J=1

In particular, if w € [F,, F,] then

det X = [ (det X;)™

j=1
Proof. Tt follows from the definitions of X = w*(Xy,...,X,), b, b; and 3.4.
U
3.3. Case n =2, m = 2.
Now let m = 2, that is, we consider the group F» = (x,y) and
w(z,y) = xCyBge2y® L gty L glrydn (3.5)

where | ¢; |,| d, |[>0and | dy |,|c2|,...,| ¢ |[> 0. Further, let
Co={e | =0}, Cy={e | ¢;<0}, Dy={d; | d; 20}, D, ={d; | dj <0},
Then put
=Yl =Y lel d =Y |dil, d= Y |di].
c; €CH c;€Cy d;eDy d;jeDy
Here S = Kz11, Z12, T21, T22, Y11, Y12, Yo1, Yoo is the polynomial ring of 8 variables,

X — (xn 9612) Y = (yn 912) c MQ(S),
T21 T22 Y21 Y22
16



where
Xe¢i if CZ‘EC:g, }A/di: Y if dz‘ED$7
(v it ¢, € D.
From Proposition 3.3 we get here

degXpy=|c1 |+ -+ || +|di|+-+]d|. (3.6)

Now consider the maps
w* MQ(C)Q — MQ(C), W : GLQ(C)Q — GLQ((C)
By Proposition 3.1 for every pair (g1, g2) € GLy(C)? we have

(g1, 92) = (det g)" (det 92)d7@(91792)- (3.7)
Theorem 3.5. Let w € [Fy, F3] and let « € C. Then
i. there exists a pair (g1, g2) € M5(C) such that
Xi1(91.92) = 0, Xna(g1,92) — a(detgr) (detga)” =0,

where Xpy(91,92) is the (pq)-entry of the matriz w* (g1, g2) € Ma(C);
i. if (g1,92) € GLo(C)? where (g1, 92) is a pair which satisfies the condition i., then
there exists a non-central element g € Im w such that tr g = «.

Proof. Let
~ X1 Ao
X, Y)=X = =
X, Y) <X21 Xm)
_ ey ey L gaph . goph ¢ My(S)
where

X — <$11 xu) Y = (yn y12> '
To1 T2z Y21 Y22
The entries ), are homogenous polynomials of degree >, | ¢; | +> 7, | d; | (see
(3.6)). Since w € [Fy, F3], we have by Proposition 3.3

deg X,q = 2¢™ +2d".

Thus we have the system of 2 homogenous equations

Xll - 07
- . (3.8)
ng—a(detX) (detY) =0

on 8 variables x;;, yx. The system of equations (3.8) has a non-zero solution (g1, g2) €
M,(C)? and, therefore, the item 7. holds.

Now suppose that (gi,¢2) € GLy(C)%.. Then g, = dg}, 92 = g, for some ¢, g5 €
SLy(C), 7,8 € C* and ¢6* = det g1,7* = go. Now if we substitute in w*(X,Y) the values
of matrices g1, ¢; instead of corresponding entries x;; and the values of matrices gs, g5
instead of corresponding entries y; we get

27620 5% (g), g5) = (detg)® (det go)” @* (g}, gb).
17
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The entries X,;(91,92), Xpg(g1, g5) of the matrices X (g1, g2) == W*(91,92), X(g1,95) =
w* (g}, gb) satisfy the equations (see (3.8))

{X11(91,g2) = (detg1)" (det gz)dfxn(gi,gé) _0,
a1, 92) = (det gl)c_ (det 92)(1_)(22(91’9%) — a(det 91)6_ (det 92)d_ = 0.
Hence
X191, 93) =0,
{XM(QLQ&) —a=0.
Since g1, g5 € SL(C) then
0

s ~ *
= X(gho58) = T(Ghdh) = T(6h58) = (| ) €S1lC) = trg =

U

Corollary 3.6. Let w € [Fy, Fy]. If there exists a pair (g1,92) € GLo(C)? that satisfies
condition 1. of Theorem 3.5 with a = 2 or a = —2 then the map

1S surjective.

Proof. We may assume (g1, g2) € SLy(C)? and trw(gi, g2) = 2 or trw(gy, g2) = —2 by ii.
of Theorem 3.5. Moreover,

g =w(g1,92) = (S £2> € SLy(C).

Hence g is a non-trivial unipotent element v or —u. U

3.4. The varieties V2, P(V2).
For a fixed v € C define

2= {(X,Y) € My(C)? | X1(X,Y) =0, Xoa(X,Y) — (detX)" (detY)? =0}.

Then V2 are closed algebraic subsets of My(C) x My(C) ~ A and all their irreducible
components have dimensions > 6. Since the equations that define the variety V3 are
homogenous with respect to both sets {z;;}, {yx } of variables, we define the corresponding
closed projective sets

P(V5) == {(X,Y) € P(My(C)) x P(M2(C)) | (X,Y) € V5}

where X, Y are the images of the matrices X,Y in P(My(C)). All irreducible components
of P(V2) have the dimension > 4.
Further, let

Dygi={(X,Y) € M2(C) | det X =0, X1 (X,Y) =0, Xpp(X,Y) =0},
Dy = {(X,Y) € M2(C) | detY =0, X1 (X,Y) =0, Xoo(X,Y) =0}

be the corresponding closed subsets of A¢ x A% and let P(Dx.z), P(Dyg) be their pro-

jectiviation in P¢ x PZ. Then we can reformulate Theorem 3.5.
18



Theorem 3.7. Let w € [Fy, Fy| and let « € C. Then

i. dim V2 > 6 (respectively, dimP(V2) > 4);

. if V& € Dx5UDyg (respectively, P(VY) € P(Dx.5) UP(Dy,g)), then there exists a
non-central element g € Im w such that tr g = a.

Proof.

i. Here the inequality dim V§ > 6 is some strengthening of the part ¢ of Theorem 3.5
which is equivalent to V& # ().

#. The condition (g1, g2) € GL2(C)? is equivalent to V2 ¢ Dx 5 U Dy 5. O

Note, that for every a € C we have
DX@ U 'Dyﬂ’g C V%, P('DX@) U P(’Dy@) C P(V%) (39)

Indeed, if the pair (X,Y) satisfies the equations det X = 0 (or detY = 0), X1, (X,Y) =
0, Xao(X,Y) =0, then this pair also satisfies the equation

Xoa(X,Y) — a(detX)® (detY)? =0.
det X=0 :); det Y=0
There is a pair (g1, 92) € SLy(C)? such that tr(w(gi,g2)) = « ([BZ]) for every a € C.

If @ # £2 then the matrix w((g1,g2)) is non-central and therefore it is conjugate to

the matrix of the form 2 Z ([EG1]). The image of the map w is invariant under

conjugations. Hence we may assume that just for (g;,¢g2) the matrix w(g;, g2) has the
appropriate form and therefore (g1, g2) € V& \ (DX@ U Dy@). Thus we have the family

of closed subsets
e}, {P09) . (8.10)

such that the inclusions (3.9) hold for every a and
Ve # DxsUDys, P(Va)# P(Dxg) UP(Dys) for every a # +2. (3.11)

In order to prove the surjectivity of w : PGLy(C)? — PGLy(C) we have to prove that
the inequality (3.11) holds also for o = 2 or a = —2 (see Corollary 3.6). For instance, it
would hold if dim (D X, UDy@) < 5 (the set is defined by three equations in 8-dimensional
space). Indeed, all components of V& have dimension > 6.

3.5. The varieties V37, DY .
One of the problems to prove the inequality 3.11 for o = 42 is a rather big dimension

of varieties. Here we propose a reduction of dimensions of the considered varieties using
the word maps with constants (|G2], [GG], [GKP2]).

Let g € SLy(C), g # +FE5 and let
Ve? ={(X,9) € Vi}, Dk =1{(X,9) € Dxa},

PVE?) = {(X,9) e POV3)}, P(Dx 5) = {(X,9) € P(Dxa)}-
19



Now we get the families of closed affine {Vg’g }

satisfy the following conditions

Diw C Vi’ P(Dxg) C POVEY)

or projective { PV )} sets that

aeC acC

for every a € C. To prove the surjectivity of @ : PGLy(C)? — PGLy(C) we have to prove
the inequality

Vg? # Dggor P(VGY) # P(D% ) for a=2o0ra= -2
for some appropriate g.
3.6. Example: w = [z, y].

Here consider the simplest example when the word w = [z, 3] is just the commutator
of z,y. It is a known fact that Im w = SLy(C) (see [GKP3]). Let

(0 1 (T oy
o= (40) ¥ (17)

e [z oy 0 1 t —y\ (0 -1\
“’(X’g)_(z t> <—1 0) <—z x)(l 0)~
S oy\ [z 2\ _ (2P +y? ty+az
“\z t)\y t)  \ty+az 2+t2)°
XH = ZE2 + yz, XQQ = 22 +t2,

ngﬁ:{(X,g) | det X =0, &3 =0, Ay =0} =

{<Xag) ‘ .T:Zy,Z:Zt}U{(X,g) | J::—z'y,z:—it}.

Thus, D%  is a union of two planes in 4-dimensional space.
Further,

Then

Then

V3! ={(X.g) | ===y, &+ —alat —yz) =0},
We have

2+t —a( x t—yz) = (z+it)(z —it) + ay(z £ it) = V3 =
=+tiy

={(X,9) | z=1iy, (z—it)(z+it+ay) = 0} | J{(X,9) | == —iy, (z+it)(z—it-+ay) = 0}.

Thus Vg is a union of four planes in 4-dimensional space and therefore V3? # DY
for every a. Hence, for every a € C there exists an element ¢’ € GLy(C) such that
(¢',g) € V2 and therefore in the image of the map w : SLy(C)? — SLy(C) there exists
a non-central element ¢g” such that tr(¢”) = a. Then the map w : SLy(C)? — SLy(C) is

surjective.
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