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Abstract. In this paper we give a sketch of the evolution of Universal Algebraic
Geometry and Logical Geometry. These topics were systematically developed in
the works by B.Plotkin and his followers starting from 1996. A similar theory
was constructed by V.Remeslennikov, A.Miasniakov and others. We provide the
reader with the examples of problems typical to universal algebraic geometry
and discuss thoroughly the open problem on isomorphism of isotypic finitely
generated groups.

1. Boris Plotkin recalls

1.1. Universal Algebraic Geometry. The idea of universal algebraic geometry
arose in the middle of the 1990s. I attended the algebraic seminar in Jerusalem
(now this seminar is named after Shimshon Amitsur). The talk of Zlil Sela was
devoted to geometric ideas and methods related to the solution of the Tarski
problem.

This model-theoretic problem remained open since the end of the 1940s. Its
meaning is whether it is possible to distinguish between two free non-abelian groups
by means of their elementary theories.

During the talk Sela claimed that the way to a solution of the Tarskii problem
goes through the theory of solutions of systems of polynomial equations over a free
group. In other words, the problem has a geometrical nature, since a geometrical
object (solution of a system of equations) comes to play. By that time such a
theory was built in Moscow by V.Makanin and A.Razborov, and E.Rips told me
about that. He was sure that this theory yields solutions of the various model
theoretic problems and accelerates a new model theory related to free groups.

In his talk Zlil Sela mentioned the words that touched me deeply. I mean the
notions of ideal, radical and the Nullstellensatz with respect to a free group.

After the talk I spoke to Eliyahu Rips about the topic of the lecture and gradually
the feeling that under an appropriate technique all these concepts can be defined
for arbitrary groups and even for arbitrary algebras captured me. The bus ride
from Jerusalem to Tel Aviv takes about an hour. During this trip thoughts that
were unclear and fuzzy at the beginning turned into the very well-determined
concepts. On the way back I stopped at Bar Ilan University and told Zhenya and
other algebraists about them. This was the initial point of the work on the new
topic which subsequently received the name Universal Algebraic Geometry.
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It became clear pretty quickly that studying the theory of solutions of systems
of equations over arbitrary algebras gives an opportunity to gather under one
roof three related sciences: algebra, geometry, model theory. This combination
looked to me extremely promising and very attractive. Hilbert’s theorem, known
as the Nullstellensatz, served as a testing example. Essentially, it describes all
consequences that can be derived from a given system of equations. In other words,
given a system of equations, one can consider all its solutions and then take all
equations having the same solutions as the initial system. Then, it immediately
became clear that this situation lies within the frame of the classical abstract
Galois correspondence. Moreover, we proceed from the system of equations over
algebra. We are interested in a geometrical object, namely in the set of solutions of
this equation. Evidently, it is an algebraic set lying in the appropriate affine space,
that is a Galois-closed object. On the other hand, another closed object is the set
of all consequences derived from the given system of equations, i.e., formally, a
logical object having a syntactical nature.

The classical Hilbert theorem states that in the case when we consider equa-
tions in the class of commutative associative algebras with unit over a good field,
the Galois closure has the far more clear algebraic characterization. E.Rips ex-
plained to me that something similar happens for the far more complicated case
of equations over a free group. This brought me the idea to consider Nullstellen-
satz problem in the most general Galois correspondence of closed syntactical and
semantical objects.

Another important motivating factor was my experience with algebraic logic.
This science provides a complete algebraization of first-order methods and theo-
rems. Algebraic logic appeared in the works of Henkin, Monk and Tarski under
the name of cylindric algebras [8]. Almost simultaneously, Paul Halmos came to
another algebraization of first-order calculus and defined the so-called polyadic
algebras [7]. In my papers [18], [20] I introduced a multi-sorted version of alge-
braic logic. These algebras got the name Halmos algebras. I felt that multi-sorted
algebraic logic is a necessary ingredient for constructing a general harmonious
semantic-syntactic Galois correspondence (see Section 2 for the details).

In this language Galois-closed objects acquired a natural look of algebraic sets
of the corresponding closed systems of equations. I realized that the Galois corre-
spondence may be related to the given variety, while the identities of the variety
play the role of the data type, and the free algebras of the variety can be viewed
as atomic algebras containing atomic formulas. Moreover, I got the feeling that
we need not be restricted by equations and may consider arbitrary systems of
formulas.

The entire structure of consistent model-theoretic concepts of geometrical and
algebraic nature was developed within a few months. As a result, the paper “Vari-
eties of algebras and algebraic varieties” [23] appeared in 1996 in the Israel Math-
ematical Journal. In the following year these notions acquired an almost modern
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form in the paper “Varieties of algebras and algebraic varieties. Categories of
algebraic varieties” [24] published in the Siberian Mathematical Journal. An im-
portant digression must be made here. Classical algebraic geometry, especially
over algebraically closed fields, deals with the description of the structure of so-
lutions of systems of algebraic equations. In other words, we are focused on the
question how various algebraic manifolds can look like and what are the properties
they can possess. Step by step dimension theory and the problem of classification
of such manifolds came to stage.

It became clear pretty soon that the classification of algebraic manifolds for the
case of an arbitrary variety of algebras is extremely complicated, and, in a sense,
a meaningless problem. Only in rare cases of special simple systems of equations
and of rather good varieties of groups and Lie algebras one can hope to manage
a description of solutions. Thus, it became of utmost importance to look for
new problems and new approaches that match the goals and general viewpoints
of universal algebraic geometry. The notion of geometric equivalence of algebras
became a cornerstone of the future theory.

I was looking for the notion that expresses the idea that algebras possess the
same possibilities with respect to solution of systems of polynomial equations.
For example, let us take two algebras: a field and its extension. It is clear that
the possibilities of these algebras in relation to solving equations are different.
Hence, given two algebras one needs to formulate a condition that guarantees the
coincidence of solutions of any equation over both algebras. Such a condition was
successfully formulated in a very natural way which fits well with the constructed
Galois correspondence between pairs of elements in a free algebra and points in an
affine space.

The only catch was a representation of an affine space as a Cartesian product
Hn. I replaced it with the space of homomorphisms Hom(W (X), H), where W (X)
is a free finitely generated algebra, H is the algebra under consideration, and
everything fell into the right place. From that moment the theory began to develop
according to laws dictated by the internal logic of concepts.

Two algebras H1 and H2 are called geometrically equivalent if for any system of
equations their radicals calculated with respect to the first and the second algebra
coincide. If one considers these radicals syntactically, then it means basically that
the quasi-identities of the algebras H1 and H2 coincide. In its turn, semantically
such a definition implies coincidence of quasi-varieties generated by H1 and H2.
This is a rather effective fact falling under a Birkhoff-type theorem. But one sub-
tlety immediately became visible. In usual algebraic geometry we do not encounter
infinite systems of equations since any ideal in a polynomial algebra is finitely gen-
erated. The same situation occurs for equations over a free group, thanks to the
Guba-Briant theorem. But what can be said about infinite systems of equations
in the general case of an arbitrary variety of algebras?
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This obstruction was quite natural, and this is the reason to introduce the notion
of geometrically noetherian algebras. An algebra is called geometrically noetherian
if any system of equations over this algebra is equivalent to a finite subsystem. One
note to make here. In parallel to my ideas, a similar theory began to be developed
by V.Remeslennikov and his collaborators A.Miasnikov, E.Daniyarova and others
(see [4], [15] and references therein). Amazingly our thoughts resonated and some
notions arose almost simultaneously. In the future this cooperation turned out to
be extremely fruitful and important. The difference was in the nature of emergence
of concepts but in the end everything came together for the best.

Returning to geometrical equivalence of algebras, it became clear that there
are a lot of non-geometrically noetherian algebras. Hence, two algebras will be
geometrically noetherian if their infinitary quasi-identities coincide. Since such
formulas are not included in the elementary theory of an algebra, geometrical
equivalence of algebras does not follow from classical elementary equivalence of
algebras.

The corresponding example for varieties of groups was brilliantly built by Remeslen-
nikov and Miasnikov. The question of geometric noetherianity of algebras turned
out to be rather hard. For instance, the problem of geometric noetherianity of a
free Lie algebra is still open and there are no visible ways of its solution!

Despite the clearly successful definition of geometric equivalence of algebras, for
me there was an important flaw in it. I mean that for the whole constructed theory
the key idea was the concept of a point not as a set of elements of a fixed algebra,
but as a special homomorphism from a free algebra into a specific algebra from
a variety, that “computes” the value of each specific coordinate. In its turn, this
means that the theory should be constructed not on consideration of each object
separately but rather on the base of interactions of the objects. Therefore I decided
to attract categorical notions and modify the definitions in such a way that they
take into account dynamics of the transition from one algebra to another.

All categories arose naturally. First, equations were built over some free algebra
W (X), where X = {x1, . . . , xn}, needless to say, should vary. This is how the cat-
egory Θ0 of finitely generated free algebras appeared. A category of affine spaces
Hom(W (X), H) where H runs the whole fixed variety of algebras Θ corresponds
to Θ0. The next two necessary categories are the dual categories of closed con-
gruences and algebraic sets, that is, precisely those categories that are subject of
the classical algebraic geometry. Moreover, for any variety of algebras Θ rational
mappings as morphisms are defined naturally for algebraic sets thus determining
the corresponding category. By the Galois correspondence categories of coordi-
nate algebras are defined immediately for an arbitrary variety of algebras. This is
how a set of categories that stimulated further theory emerged. In addition to the
categories I have defined several functors that play an important role in the entire
theory. The main one was the closure functor CH that associates a set of H-closed
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congruences to each free algebra W (X). Here H is an arbitrary algebra from the
variety Θ.

My desire was to incorporate the definition of geometrical equivalence into some
setting taking into account the categorical nature of the objects. A lot of papers
were published on this topic, theorems were proved, but in fact search for the
categorical definition of geometrical equivalence lasts till now.

Very soon, in the beginning of the 2000s, it became clear that objects which had
not been considered yet in algebra play a special role in the whole picture. I mean
the group of automorphisms of a category and the notion of inner automorphism of
a category. An automorphism ϕ of the category C is called inner if it is isomorphic
to the identity isomorphism of the category C. Expanding this definition using
the concept of isomorphism of functors, its similarity to the definition of inner
automorphism of a group becomes obvious. Anyway, all inner automorphisms form
a subgroup Inn(C) of the group of all automorphisms Aut(C) of the category C.

It turned out that the group Aut(Θ0) is very important to the entire theory
[31], [32], [33], [40], [41], [42]. Remind that Θ0 is the category of all free finitely
generated algebras of the basic variety Θ.

Let us give a generalization of geometrical equivalence of algebras. Let us call
two algebras H1 and H2 geometrically similar if the categories of algebraic sets
AG(H1) and AG(H2) over these algebras are isomorphic. It is clear that if two
algebras are geometrically equivalent, then they are geometrically similar. When
the converse is true?

The situation is as follows. Let us imagine an algebra possessing some geometri-
cal properties and try to deform it preserving geometry. Deform in this case means
to define a derived structure so that the geometry of the new algebra coincides
with the geometry of the old one. It happens that such a nontrivial deformation
is possible if the group Aut(Θ0) has outer automorphisms! If all automorphisms
of Aut(Θ0) are inner then the notions of geometrical equivalence and geometrical
similarity coincide.

At the same time there were defined geometrical automorphic equivalence of
algebras and many other important notions which dictated the path of development
of universal algebraic geometry. It is very interesting to find out how the arising
notions look like for specific varieties of algebras. But with no doubt the most
tempting was the feeling that besides geometrical theory there exists a parallel
logical theory of general geometrical character. This idea was the one that was
realized.

1.2. Logical geometry. At some point I realized that I can construct a Galois
correspondence also for a general case of systems of First Order formulas. It was a
real event since it meant that I can investigate solutions of systems of formulas in
such a manner like solutions of systems of equations. This is offering us a universal
ability to apply algebraic geometry methods to a logical event and spread all ideas
of universal algebraic geometry to the absolutely new situation of model theory.
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I decided that first of all it is necessary to describe in detail the philosophy of
universal algebraic geometry and having this soil in one’s pocket to publish a long
paper on the foundations of logical geometry. That is what was done.

First of all, the one hundred pages paper “Algebraic logic, varieties of algebras
and algebraic varieties” [21] appeared in the volume dedicated to the anniversary
of E.S.Liapin. Then the consistent presentation of the theory “Algebras with
the same algebraic geometry” [25] was published in the MIAN volume. Finally,
the entire theory was accumulated in the preprint “Seven lectures on universal
algebraic geometry” [22] published by the Hebrew University. This series of papers
gave rise to a detailed exposition of the basics of Universal Algebraic Geometry. It
also allowed one to concentrate on the logical geometry case. This work resulted
in the principal paper “Algebraic geometry in first-order logic” (2006) [26] and in
the draft of the book “Algebraic logic and logical geometry” (2013) [19]. After
all universal algebraic geometry and logical geometry began to represent a single
organism and went together all the time.

How to make logic and model theory geometry? Thinking about this question
I came to the conclusion that the necessary connecting link is algebra. We would
like to view systems of formulas as an algebraic object like systems of equations
are just congruences over the free algebra of a variety. Therefore we need to find
an algebraic place where systems of first-order formulas live in a comfortable way.
Algebraic logic gave us a hint.

As I already mentioned, I had a lot of expertise with the methods of algebraic
logic. It was the middle of the 1980s when I became interested in the works of
Henkin, Monk, Tarski, Halmos, Pigocci, Nemeti and others on algebraic logic. As
a result I came up with the notion of multi-sorted algebraization of first order logic
which entered mathematics under the name of Halmos algebras. This construction
turned out to be very successful not only for logic itself but also for solution of
some old algebraic problems. In particular, it was applied for the solution of a
classical problem of quasigroups theory by A.Gvaramia [6]. I summarised all the
accumulated information on Halmos algebras in a large monograph “Universal
algebra, algebraic logic and databases” [18].

Syntactical Halmos algebra is that very object in which first order formulas live
in the most natural way. Fortunately, but rather due to the matter of things,
Boolean algebra of all subsets of an affine space perceives the action of quanti-
fiers and can be christened semantical Halmos algebra. Then the procedure of
calculation of truth value of a system of formulas has acquired the form of a ho-
momorphism of a Halmos algebra into another one. At this point everything was
ready for constructing a logical Galois correspondence by algebraic means.

In any Galois correspondence the main role is played by Galois-closed objects.
In geometrical Galois correspondence closed objects “from below” are algebraic
sets, while “from above” they are closed congruences. This gives coincidence of
closed Galois-objects with the closed objects in Zariski topology. In logical Galois
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correspondence closed objects “from below” are definable sets, while the closed
“from above” systems of formulas are just closed filters in a syntactical Halmos
algebra. This correspondence gave a universal way to transfer ideas of algebraic
geometry to the logical case, and therefore to the problems of model theory. This
was exactly what I was looking for.

Now everything was ready to define the notion of a logical kernel of a point.
A few words need to be said about it. Let a point in an affine space be given.
Recall that a point is a homomorphism from W (X) into an algebra H. Like
any homomorphism, it has a kernel. By definition, this kernel is a set of equations
satisfied by a given point. Since we have now a homomorphism of Halmos algebras,
we can similarly define a logical kernel LKer(µ) of the point µ as a set of elements
of a syntactical Halmos algebra, i.e., first order formulas which get the value “true”
on this point. That is, the logical kernel of a point is the set of formulas satisfiable
on this point, i.e., it is an ultrafilter of the Halmos algebra, i.e., it is exactly
the type of a point in model theoretic terms. This gave a bridge linking logical
geometry and classical model theory and allowing one to view model theory from
the perspectives of geometry and algebra.

We just follow the internal logic of universal algebraic geometry substituting
the notions by their dual ones in the logical geometry. So, the notions of logically
equivalent algebras, logically noetherian algebras, logically homogeneous algebras,
isotypic algebras and many others come out naturally on this way. In the next
section we will dwell on isotypicity of finitely generated groups. This problem is
probably the most difficult problem of logical geometry.

2. How do the problems arise? Problem of isotypicity of algebras

It somehow happened that the problem in question was not known in model
theory before the advent of universal logical geometry.

The goal of this section is to introduce one more logical invariant describing
algebras more rigidly than elementary equivalence. Elementary equivalence of
algebras H1 and H2 assumes coincidence of all sentences satisfiable on H1 and
H2. The approach we are going to present here requires coincidence of all types
realizable on H1 and H2. We call such a situation isotypicity of algebras. Before
moving on to results we need to introduce some definitions.

Let an algebra H be given. The set of closed formulas, i.e. sentences satisfiable
on every point of any affine space over H, is called its elementary theory Th(H).
Elementary theory is an important logical invariant characterizing the given al-
gebra. A classical question going back to the philosophy of Tarski and Malcev is
to describe all algebras elementary equivalent to a given one. Characterizations
of elementarily equivalent algebraically closed fields, abelian groups [39], nilpotent
groups [14], boolean rings [5] and others are well known. In every case of such kind
the full characterization of elementarily equivalent algebras is a great success.
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Since 1948 till recent years the famous Tarski problem: whether it is possible
to distinguish between two non-abelian free groups by the means of elementary
theory remained open. It was solved negatively by Kharlampovich-Miasniakov [11]
and Sela [35] relatively recently. A similar result is true also for a wide class of
hyperbolic groups.

The notion of first order rigidity [1] became especially popular over the last
years. It characterizes the case strictly opposite to the one of free groups.

Definition 1. Two algebras H1 and H2 are called elementarily equivalent if their
elementary theories coincide.

Let us fix a class of algebras C and let H ∈ C. We are interested in all algebras
from C elementarily equivalent to H. By the Levenheim-Skolem theorem for a
given algebra H in every cardinality there exists an algebra elementarily equivalent
toH. Therefore if we intend to describe algebras, elementarily equivalent to a given
one, we have to choose the class C so that all algebras of this class be of the same
cardinality. For example, this is valid for the class of finite algebras and the class of
finitely generated algebras. These considerations hinted at the following definition
of rigidity.

Definition 2. A finitely generated algebra H is called first order rigid if any other
finitely generated algebra H1 elementarily equivalent to H is isomorphic to it.

The question is whether there exist some good examples of infinite groups pos-
sessing this property, i.e., groups opposite to a free one in some sense. It turned
out that such examples can be found first of all in the class of linear algebraic
groups.

Theorem 2.1. ([3], [34], [38], [1], [2], [10], etc). An arbitrary Chevalley group
G(Φ, Os), rk(Φ) > 1, over a Dedekind ring of arithmetic type is first order rigid.
Any irreducible arithmetic lattice of rank greater than 1 of characteristic zero is
first order rigid.

This theorem indicates the presence of a rich definable subgroup structure of
linear groups, which actually gives the desired result. In free groups only the
centralizers of points are definable subgroups which makes the situation opposite
to rigidity.

It is worth paying attention to the flavour of the notion of elementary equiva-
lence. We assume that formulas that are true in ALL points of the affine space
coincide. This means that an algebra (model) can be viewed as a single set of
points devoid of individuality. In turn this means that we compare algebras as
a whole without caring about individuality of the points. It is clear that such
characterisation can rarely be rigid.

Definition 3. Two algebras H1 and H2 are called LG−isotypic if for any point µ :
W (X)→ H1 there exists a point ν : W (X)→ H2 such that LKer(µ) = LKer(ν)
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and vice versa, for any point ν : W (X)→ H2 there exists a point µ : W (X)→ H1

such that LKer(ν) = LKer(µ).

We can reformulate isotypicity of algebras in more standard logical notions.

Definition 4. Let L be a first order language and H and G be L-algebras. If for
any n-tuple ā in Hn there exists an n-tuple b̄ in Gn such that tpH(ā) = tpG(b̄) and
vice versa, then H and G are called isotypic.

Here tpH(ā) denotes the type of a point a, see [12], [9], [43].
The meaning of Definition 4 is as follows. Two algebras are isotypic if the sets

of realizable types over H1 and H2 coincide. We can say that these algebras have
the same logic of types. Some references to the notion of isotypicity of algebras
can be found in [28], [27], [29], [31], [43], [30].

The main property is as follows, see [43].

Theorem 2.2. Algebras H1 and H2 are logically equivalent if and only if they are
isotypic.

This means that we arrived at the notion of isotypicity of algebras following the
logic introduced in Universal Algebraic Geometry. This notion is much stronger
than elementary equivalence of algebras since it takes into account coincidence of
individual logical properties of points.

The next principal conjecture was formulated in [30], see also [16]. In fact,
it states that every finitely generated group is rigid with respect to the logic of
types. It means that if in addition to coincidence of elementary theories of two
finitely generated groups we require coincidence of types of arbitrary points over
these groups, then this must exhaust all degrees of freedom leading to differences
between groups. The problem of isotypic rigidity after B.Plotkin is as follows:

Problem 1. Is it true that every two isotypic finitely generated groups are iso-
morphic?

Problem 1 has been solved positively for many groups. However the general
solution remains unclear.

Starting from the concepts of Universal Algebraic Geometry we call two al-
gebras logically similar if the categories of definable sets over these algebras are
isomorphic. We are interested in the question when logical similarity of algebras is
reduced to logical equivalence, and, hence, to isotypicity of algebras. It is known
that for the geometrical similarity case it is enough to investigate inner automor-
phisms of the category of finitely generated free algebras Θ0. Every multi-sorted
Halmos algebra can be viewed as the category of Halmos algebras Hal0Θ [29]. This
category plays a role for logical geometry similar to the one the category Θ0 plays
for Universal Algebraic Geometry.

Hypothesis 2.3. Let Θ0 be a category of all groups. Then any automorphism of
the Halmos category Hal0Θ is inner.
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To conclude we would like to underline that another important problem is the
study of the objects of Universal Logical Geometry with respect to various specific
varieties of algebras and determining the precise kind of syntactically-semantic
transitions for these categories. Besides standard varieties of groups, associative
and Lie algebras, there are a lot of other varieties for which the situation is abso-
lutely unclear. Let us, for example, point out the variety of semirings related to
tropical geometry, or the variety of quasigroups.

On the other hand, the varieties of semigroups and of inverse semigroups are
thoroughly investigated by G.Zhitomirski. It turns out that for these varieties
most of principal problems of Universal Algebraic Geometry and Universal Logical
Geometry have quite transparent solutions, see [32], [31], [33].

Let us take a closer look at Universal Geometry over quasigroups. This question
is especially interesting since quasigroups have their own well-known geometrical
applications. But how do the quasigroups look like from the point of view of
Universal Algebraic Geometry and Logical Geometry? This question is totally
open and looks challenging. The suggested scheme of investigations of quasigroups
from this perspective is as follows:

• Isotypic and isomorphic quasigroups. Foundations of Algebraic and Logical
Geometry of quasigroups.
• Geometrical equivalence of quasigroups.
• Automorphisms of the category of free quasigroups.
• Prove that all automorphisms of the category of free quasigroups are inner.
• Theorem. Categories of algebraic sets over two quasigroups are isomorphic

if and only if they are geometrically equivalent.
• Geometrical noetherianity for quasigroups.
• When two quasigroups generate one and the same quasi-variety?
• Isotypicity and logical similarity for quasigroups.
• Whether it is true that two finitely generated quasigroups are isotypic if

and only if they are isotopic.
• Whether it is true that two quasigroups are logically similar if and only if

they are isotypic.
• Elementary equivalence and logical rigidity for quasigroups.
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