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Chapter 1

Basics of Universal Algebra
and Category Theory

1.1 Universal Algebra

1.1.1 Sets

We shall start with some notation. As usual, a ∈ A means that a is
an element of a set A, and A ⊂ B indicates that A is a subset of B.
The empty set is denoted by ∅. Given two sets A and B, we use

notation f : A→ B and A
f−→ B for a map f of A to B. The image

b of the element a ∈ A under the map f is denoted by b = f(a).
Sometimes we use also ”right-hand” notation: b = af .

As usual, ∩ and ∪ denote the intersection and union of sets. For
the complement of a set A we use Ā.

The Cartesian product A = A1 × · · · × An consists of n-tuples
(a1, . . . , an), where ai ∈ Ai, i = 1, . . . , n. For any integer n ≥ 0 the
Cartesian power An of the set A is An = A × · · · × A where the
product is taken n times. For n = 0 the set A0 is assumed to be a
one-element set.

Every sequence (a1, . . . , an) can be treated as the function that
takes every i = 1, . . . , n to the element ai of Ai. Now assume that
I is any set, and let a set Aα be associated to every α ∈ I. The
Cartesian product A =

∏
αAα is the set of functions a defined on

I and selecting, for any α ∈ I, an element a(α) = aα in Aα. If all
sets Aα coincide with some fixed A, then AI =

∏
αA is the set of

all functions a : I → A.
A binary relation ρ between elements of sets A and B is a subset

of the Cartesian product A × B. The subset consists of the pairs
(a, b) such that a stands in the given relation ρ to b. We use the
notation aρb or (a, b) ∈ ρ. With every map f : A → B one can

7



8CHAPTER 1. BASICS OF UNIVERSAL ALGEBRAAND CATEGORY THEORY

associate a binary relation which consists of all pairs of the form
(a, f(a)). Therefore, a map can be viewed as a binary relation of a
special kind.

Consider binary relations between elements of the same set. We
select the following properties of such relations.

1. Reflexivity: aρa for every a ∈ A.
2. Symmetry: aρb implies bρa, for all a and b in A.
2′. Antisymmetry: aρb and bρa implies a = b.
3. Transitivity: aρb and bρc implies aρc.

Definition 1.1.1. A reflexive, symmetric and transitive relation is
called an equivalence on A. A reflexive, and transitive relation is a
preorder relation. A reflexive, antisymmetric and transitive relation
is an order relation. An order relation is total order if aρb or bρa
for all a and b in A.

Let A be a partially ordered set, i.e., a set with an order relation
≤ on it. If B is a subset of A and a ∈ A, then a is an upper bound of
B if every element of B is comparable with a and does not exceed
a. The upper bound that is less than any other upper bound is the
least upper bound of B. Lower bounds and the greatest lower bound
of a subset are defined in a similar way. The least upper bound and
the greatest lower bound may not exist. An element a of A is called
maximal if for every a′ ∈ A, a ≤ a′ implies a′ = a.

Lemma 1.1.2 (Zorn). Suppose that every totally ordered non-empty
subset of an ordered set A has an upper bound in A. Then the set
A has a maximal element.

Zorn’s Lemma is equivalent to the axiom of choice and plays a
principal role in many considerations.

Definition 1.1.3. A directed set is a non-empty set A together with
a preorder relation ≤, subject to condition: for any a and b in A
there exists c in A such that a ≤ c and b ≤ c.

Given an equivalence ρ on A, denote by [a], a ∈ A, the class of
all a′ ∈ A satisfying the condition aρa′. This class of equivalent
elements is called a coset with respect to the equivalence ρ with
the representative a. To emphasize the relation ρ, the notation [a]ρ
is used. Every element of the coset [a] may be chosen to be its
representative: [a] = [a′] if a′ ∈ [a]. All mutually distinct cosets
with respect to a given equivalence ρ make up a partition of A into
disjoint classes, and, moreover, partitions and equivalences are in
one-to-one correspondence to each other.
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Let A be a set, and let ρ be an equivalence on A. We denote by
A/ρ the set of all cosets of the form [a]ρ, a ∈ A. This set is called the
quotient set of A modulo ρ. We also obtain the associated canonical
surjection τ : A→ A/ρ determined by transition from a to [a]. This
surjection is called the natural map of A onto the quotient set A/ρ.

Denote by 2 the set consisting of two elements: 2 = {0, 1}. Given
a set M , we define the power set P(M) of M as the set of all subsets
of M . Let A be a subset of M . Assign to A a two-valued function
χA : M → 2 defined by χA(a) = 1 if a ∈ A and χA(a) = 0 otherwise.
This function is called the characteristic function of A. There is a
bijection between the set of characteristic functions Fun(M,2) and
P(M).

1.1.2 One-sorted algebras

Definitions and examples

Let H be a set. A map ω : Hn → H is called an n-ary algebraic
operation on H:

ω : H ×H × · · · ×H︸ ︷︷ ︸
n

→ H.

In particular, a nullary algebraic operation takes any element of H
into a distinguished element of H and can be identified with this
element. These distinguished elements of H are called constants.
The notation a1 . . . anω or ω(a1, . . . , an) is used for the result of
application of an n-ary operation ω to the argument (a1, . . . an).

Definition 1.1.4. A set Ω of symbols of operations, where each
symbol ω ∈ Ω is equipped with an integer n(ω) ≥ 0 is called a
signature of operations.

Definition 1.1.5. An algebra H of signature Ω is a triple (H,Ω, f)
where H is the underlying set, Ω is the set of symbols of operations,
and the function f realizes every symbol of operation ω as the oper-
ation f(ω) of arity n(ω) acting on H.

In fact, we usually omit the reference to the realization f and
write simply a1 · · · anω instead of a1 · · · anf(ω). Furthermore, if the
set Ω is already fixed, we speak merely about an algebra H. We
use also the term Ω-algebra in order to emphasize the role of the
signature Ω.

Every n-ary operation can be treated as an (n+ 1)-ary relation:
if ω is an n-ary operation and ω′ is the corresponding relation, then
(a1, . . . , an, an+1) ∈ ω′ whenever a1 · · · anω = an+1.
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For a fixed Ω, we have the class of Ω-algebras. In this large class
various subclasses may be distinguished by selecting sets of axioms.
For the commonly known classes of algebras we use for symbols of
operations the standard notation: + ,× , · ,⊗ ,∨, ..., etc. We shall
list briefly some classes of algebras.

Recall that a semigroup is an algebra S with one operation ·
subject to the associativity condition (x · y) · z = x · (y · z). Usually
the sign · is omitted in the notation. A semigroup S is said to be
a monoid if it has an identity element e such that xe = ex = x
for every x ∈ S. The element e is easily seen to be unique. It
is often denoted as 1. The signature of a monoid consists of one
binary operation and one nullary operation that are subject to three
axioms.

A group G is a monoid in which all elements are invertible. Thus,
it is an algebra with three operations: the binary multiplication, the
unary inverse element operation, and the nullary operation that dis-
tinguishes the identity element. These operations satisfy the axioms:

1. (x · y) · z = x · (y · z);

2. 1 · x = x · 1 = x;

3. x · x−1 = x−1 · x = 1.

From now on we will omit ′′·′′ in the notation. A group G is
called abelian or commutative if xy = yx for every x, y ∈ G. For
abelian groups the additive notation is common. In this notation
the binary operation is called addition and denoted by +. Then
the commutatitivity law looks as x + y = y + x, the inverse of a
is denoted by −a and is said to be the opposite of a, and the zero
element 0 stands for the identity in those groups.

A ring is a set R endowed with two binary operations called
addition (+) and multiplication (·) that are subject to the following
conditions:

1. R is an abelian group with respect to addition;

2. R is a semigroup with respect to multiplication;

3. addition and multiplication are related by the distributive laws:

x(y + z) = xy + xz, (x+ y)z = xz + yz.

A ring R is commutative if the multiplication is commutative. A
field is a commutative ring with the unit element 1 in which any
non-zero element is invertible with respect to multiplication.
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In order to define a vector space, we should specify a field of
scalars K. A vector space A over a field K is an abelian group
A with respect to addition and the corresponding 1-ary and 0-ary
operations, on which a multiplication of the elements of A by ele-
ments of K is defined: for any a ∈ A and α ∈ K, we have αa ∈ A.
Moreover, the following axioms should be satisfied:

1. α(x+ y) = αx+ αy;

2. 1 · x = x;

3. (α + β)x = αx+ βx;

4. (αβ)x = α(βx).

Here 1 denotes the unit element of K, x, y ∈ A, and α, β ∈ K. In
this definition, we regard any element α of K as a 1-ary operation
that assigns to an element a of the underlying set A the element αa.
We include all the elements of K in the signature of operations Ω.

If in the definition of a vector space we replace a field K of scalars
by a commutative ring R, we obtain the notion of a module over a
ring. We can regard any additive abelian group A as a module over
the ring of integers Z by letting na = a+ · · ·+ a and (−n)a = −na.

Let H be a R-module over a commutative ring R. Suppose also
that H is a multiplicative semigroup.

The module H is said to be an associative algebra over R if it
satisfies the following conditions:

1. H is a ring with respect to addition and multiplication;

2. λ(xy) = (λ · x) · y = x · (λy), λ ∈ R, x, y ∈ H.

The non-commutative polynomials f(x1, . . . , xn) with coefficients
in a given field K constitute an associative algebra. Another exam-
ple is provided by the algebra of square matrices of order n whose
entries are elements of a commutative ring R. We denote this al-
gebra by M(n,R). The group of invertible elements of M(n,R) is
denoted by GL(n,R) and called the general linear group.

A Lie algebra is a module L over a commutative ring R together
with a bilinear product [ , ] : L× L→ L subject to conditions:

1. [x, y] = −[y, x],

2. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for all x, y, z ∈ L.
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If A is an Ω-algebra, then a subset B of A is called a subalgebra
of A if B is closed with respect to all operations ω ∈ Ω. This
means that for any n-ary operation ω ∈ Ω and any b1, . . . , bn ∈ B,
the element b1 · · · bnω belongs to B. In particular, it should be
closed with respect to all nullary operations, that is B contains all
constants.

Let B be a subset of A. Denote by ⟨B⟩ the minimal subalgebra
containing B, that is the intersection of all subalgebras of A con-
taining B. We say that the subalgebra ⟨B⟩ is generated by the set
B.

Homomorphisms of algebras

Let A and B be Ω-algebras of the same signature, and let µ : A→ B
be a map. This map is said to be compatible with an n-ary operation
ω ∈ Ω if

(a1 · · · anω)µ = aµ1 · · · aµnω,
where (a1, . . . , an) is an arbitrary n-tuple in An.

Definition 1.1.6. A map µ : A→ B compatible with all operations
ω ∈ Ω is called a homomorphism from A to B.

If µ : A → B is a bijective homomorphism, then µ−1 : B → A
is a homomorphism, too. Moreover, then µ is an isomorphism and
µ−1 is the inverse isomorphism. Algebras A and B are isomorphic
if there is an isomorphism µ : A→ B.

A property of an algebra is called abstract if it respects isomor-
phic images. Surjective and injective homomorphisms are also called
epimorphism and monomorphism, respectively. The set of all endo-
morphisms is denoted by End(A). If A = B, then homomorphisms
A → A are called endomorphisms. Bijective endomorphisms are
called automorphisms of A. All endomorphisms of a given algebra
A constitute a monoid with respect to composition of maps. Anal-
ogously, all automorphisms of A form its group of automorphisms
denoted by Aut(A).

Let A be an Ω-algebra, and let ρ be an equivalence on A, i.e., a
reflexive, symmetric, and transitive binary relation. If ω is an n-ary
operation in Ω, then the relation ρ and the operation ω are said to
be compatible if, for any n-tuples (a1, . . . , an) and (a′1, . . . , a

′
n) the

condition aiρa
′
i, i = 1, . . . , n, implies

(a1 · · · anω)ρ(a′1 · · · a′nω).

Definition 1.1.7. An equivalence ρ is called a congruence of an
Ω-algebra A, if ρ is compatible with every operation from Ω.
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If ρ is a congruence then any n-ary operation ω ∈ Ω induces
an operation on the quotient set A/ρ by the rule [a1 · · · an]ω =
[a1 · · · anω], for every n-tuple of cosets from A/ρ. Here the element
[a1] · · · [an]ω does not depend on the choice of representatives of the
cosets because of compatibility of ρ and ω.

Thus, we have an Ω-algebra A/ρ which is called the quotient
algebra of A modulo ρ. The natural map τ : A → A/ρ becomes a
natural homomorphism. In fact, it is an epimorphism of algebras.

If µ : A → B is a homomorphism of algebras then the kernel
ρ = Kerµ is defined to be the binary relation on A determined by
the rule: a1ρa2 if and only if aµ1 = aµ2 , a1, a2 ∈ A. This means that
a1 and a2 are ρ-equivalent if their images under µ coincide. The
equivalence ρ = Kerµ is always a congruence. Thus, the quotient
algebra A/Kerµ is defined. The commutative diagram

A -µ B
HHHHjτ �

��3φ

A/Kerµ

states that τ is an epimorphism and the quotient algebra A/Kerµ
is naturally isomorphic to the image of A.

For some classes of algebras the kernel equivalence, i.e., the ele-
ments of A/Kerµ, can be specified by distinguishing a single equiv-
alence class. For example, if µ : G1 → G2 is a homomorphism of
groups, then Kerµ = µ−1(1G2) is the set of elements in G1 equiv-
alent to 1G1 . This set is always a normal subgroup. Recall that a
subgroup N of a group G is called normal if gNg−1 = N for every
g ∈ G.

A homomorphism of rings µ : R1 → R2 preserves addition, mul-
tiplication and the zero element of the ring. The set H = Kerµ =
µ−1(0R2) of elements in R1 equivalent to 0R1 determines the kernel
congruence. The set H is a two-sided ideal of the ring, that is

1. H is a subgroup of the additive group (R1,+).

2. For every r ∈ R1 and h ∈ H we have rh ∈ H,

3. For every r ∈ R1 and h ∈ H we have hr ∈ H.

If H is a two-sided ideal of a ring R then the relation ρ defined
by aρb if and only if a − b ∈ H is a congruence on R and each
congruence can be obtained in such a way by taking an appropriate
Kerµ.

Note that even in the case when the ring R1 is a monoid with
respect to multiplication, the set µ−1(1R2) does not determine the
whole kernel congruence since (R1, ·) is not a group.
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1.1.3 Boolean algebras and lattices

Boolean algebras and lattices play a special role in this book. We
will meet them once again in Section 3.2 devoted to algebraization
of the propositional logic.

!!! Paragraph, chto-to
napisat’ Definition of a Boolean algebra.

Definition 1.1.8. A Boolean algebra is a set A viewed together
with two binary operations +, · and one unary operation .̄ These
operations are subject to the following axioms.

1. a+ a = a; a · a = a.

2. a+ b = b+ a; a · b = b · a.

3. (a+ b) + c = a+ (b+ c); (a · b) · c = a · (b · c).

4. a · (b+ c) = a · b+ a · c; a+ b · c = (a+ b) · (a+ c).

5. (a) = a.

6. a+ b = a · b; a · b = a+ b.

7. (a+ a) · b = b; a · a+ b = b.

It follows from the axioms that the identities a · a = b · b and
a+a = b+b always hold. Therefore, one can single out the elements
0 = a · a and 1 = a+ a, and then

a+ 0 = a, a · 1 = a,

a+ 1 = 1, a · 0 = 0.

The zero and identity elements, regarded as nullary operations,
could be included into the signature of Boolean algebras. One can
check that in this signature the system of axioms defining a Boolean
algebra is equivalent to the following one.

1. a+ b = b+ a; a · b = b · a.

2. (a+ b) + c = a+ (b+ c); (a · b) · c = a · (b · c).

3. a(b+ c) = a · b+ a · c; a+ b · c = (a+ b) · (a+ c).

4. a · (a+ b) = a+ a · b = a.

5. a+ 0 = a, a · 1 = a,

a+ 1 = 1, a · 0 = 0.
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6. a · a = 0, a+ a = 1.

We will freely use the notation ∨ and ∧ instead of + and ·, and
also replace ¯ by ¬. This is especially the case when we want to
underline relations between Boolean algebras and propositional cal-
culi or two distinguish between the operations in a Boolean algebra
and in some other algebra. Another system of axioms equivalent to
above defined is given in Section 3.2.

Homomorphisms of Boolean algebras play a special role in further
considerations. A map µ of Boolean algebras is a homomorphism if
it preserves all operations of the signature. Thus,

µ(a+ b) = µ(a) + µ(b),

µ(ab) = µ(a)µ(b),

µ(a) = (µ(a)),

µ(1) = 1 and µ(0) = 0.

Let us give some examples of Boolean algebras.

Example 1.1.9. The simplest example of a non-trivial Boolean
algebra is the algebra 2. It is two-element set {0, 1} with the oper-
ations defined in terms of usual arithmetic operations as follows:

b1 ∨ b2 = max(b1, b2),

b1 ∧ b2 = b1 · b2,
¬b1 = 1− b1,

where b1, b2 ∈ {0, 1}.

Example 1.1.10. Let A be an arbitrary set and B a Boolean alge-
bra with operations ∨, ∧, ¬. Then the set Fun(A,B) = BA of all
functions from A to B is also a Boolean algebra with operations ∨,
∧, ¬ defined by the rules:

(f1 ∨ f2)(a) = f1(a) ∨ f2(a),

(f1 ∧ f2)(a) = f1(a) ∧ f2(a),

(¬f1)(a) = ¬(f1(a)),

where a ∈ A, f1, f2 ∈ BA.

Example 1.1.11. Let S be a set. Denote by P(S) the power set
of S, that is the set of all subsets of S. The set P(S) with the set-
theoretic operations union ∪, intersection ∩ and complementation
¬ forms a Boolean algebra, which is called the power set algebra
(Boolean). Note, P(S) ∼= Fun(S,2) = 2S.
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The well-known Stone’s theorem states that:

Theorem 1.1.12. Every Boolean algebra is isomorphic to a subal-
gebra of the Boolean power set algebra of some set. �

The set 2 is also a ring, via the addition and multiplication mod-
ulo 2. 2M is a ring as well, so here we have simultaneously a ring and
a Boolean algebra. There are certain links between ring operations
and Boolean operations.

Boolean rings. Now we consider definition and some properties of
Boolean rings.

Definition 1.1.13. An associative ring R with unity is called a
Boolean ring, if the identity x2 = x holds in R.

An element a of a ring R is called idempotent if a2 = a. Hence,
a Boolean ring consists of idempotent elements.

Moreover, in a Boolean ring R

(a+ b) = (a+ b)2 = a+ ab+ ba+ b,

which implies ab + ba = 0. Replacing a = b we get a = −a for any
a ∈ R. Now ab + ba can be rewritten as ab − ba = 0, and each
Boolean ring is commutative. Thus:

Proposition 1.1.14. Every Boolean ring is commutative and sat-
isfies the identity x = −x. �

There is a natural connection between Boolean algebras and
Boolean rings.

Proposition 1.1.15. Let R be a Boolean ring. We define the op-
erations ∨, ∧, ¯ on R by setting

a ∨ b = a+ b+ ab, a ∧ b = ab, a = a+ 1.

Relatively to these operations, R is a Boolean algebra denoted by
A = R∗.

Conversely, if A is a Boolean algebra with respect to operations
∨, ∧, ,̄ we define addition and multiplication on A by the rules

a+ b = (a ∧ b) ∨ (a ∧ b), ab = a ∧ b.

Then A becomes a Boolean ring denoted by R = A∗.
Moreover, R∗∗ = R and A∗∗ = A. The elements 0 and 1 are

the zero and unit elements both of the ring and the Boolean algebra.
�
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Lattices. In any Boolean algebra, an order relation is introduced
in a natural way: a ≤ b if ab = a or, equivalently, if a+ b = b. It is
easy to check that ≤ satisfies the order axioms.

Definition 1.1.16. A partially ordered set A is called a lattice if
every pair of elements a, b of A has the least upper bound supA(a, b)
and the greatest lower bound infA(a, b).

It is easy to see that a+b is the least upper bound of the elements
a and b of a Boolean algebra, and that ab is the greatest lower bound.
Therefore, every Boolean algebra is a lattice.

Now assume that A is a lattice. For arbitrary a, b ∈ A, we denote
by a + b and ab their least upper bound and greatest lower bound,
respectively. A simple checking shows that the following axioms
hold:

1. a+ a = a; aa = a.

2. a+ b = b+ a; ab = ba.

3. a+ (b+ c) = (a+ b) + c; a(bc) = (ab)c.

4. a(a+ b) = a; a+ ab = a.

These axioms occurred in the definition of a Boolean algebra.
They are called idempotent, commutative, associative and absorption
laws, respectively.

Therefore, to any lattice we have assigned an algebra with two
binary operations, addition and multiplication, which satisfy condi-
tions 1 – 4.

Proposition 1.1.17. Define an order relation on an algebra A sat-
isfying axioms 1 – 4 by the rule: a ≤ b if ab = a. Then A becomes a
lattice, and the algebra corresponding to it coincides with the original
algebra A. �

The proposition shows that a lattice can be defined as an algebra
of a specific kind.

Definition 1.1.18. A lattice is said to be distributive, if it satisfies
the identity a(b+ c) = ab+ ac.

Proposition 1.1.19. A lattice A is distributive if it satisfies one of
the equivalent conditions

1. a(b+ c) = ab+ ac,

2. a+ bc = (a+ b)(a+ c),
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3. a(b+ c) ≤ ab+ ac,

4. a+ b = a+ c and ab = ac imply b = c. �
A lattice is said to be bounded if it has elements 0 and 1 such

that 0 ≤ a ≤ 1 for every a ∈ A. If A is a bounded lattice and
a ∈ A, then b is a complement of a if a+ b = 1 and ab = 0. If A is a
bounded distributive lattice, then every element a ∈ A has at most
one complement. Indeed, let a + b1 = a + b2 and ab1 = ab2. Then
b1 = b1 + ab1 = b1 + ab2 = (b1 + a)(b1 + b2) = (b2 + a)(b2 + b1) =
b2 +ab1 = b2 +ab2 = b2. A bounded lattice A is called complemented
if every element of A has a complement. Hence in a complemented
distributive lattice each element a has a unique complement denoted
by a. This means that ¯ is an unary operation on a complemented
distributive lattice.

Definition 1.1.20. A lattice A is Boolean if it is distributive, has
0 and 1, and every element of A has a complement.

Proposition 1.1.21. Let A be a Boolean lattice. Then A is a
Boolean algebra with respect to the operations + , · , and ¯ de-
fined on it. Denote this algebra by B = A∗. Conversely, if B is
a Boolean algebra, then, by setting a ≤ b if ab = a, we obtain a
Boolean lattice A = B∗. Moreover, A∗∗ = A, and B∗∗ = B. �

The proposition means that, when dealing with Boolean algebras,
we may treat them as Boolean lattices, and vice versa.

Definition 1.1.22. A lattice is called modular if it satisfies the iden-
tity a(ab+ c) = ab+ ac.

This property is equivalent to the following one: if a ≤ c, then
(a + b)c = a + bc. Every distributive lattice is modular since the
modular identity is a particular case of the distributive law.

!!! Paragraph, chto-to
napisat’ Ideals and filters.

Definition 1.1.23. A subset U of a Boolean algebra A is called
an ideal of A if U is closed with respect to addition and ab ∈ U
whenever a ∈ U and b ∈ A.

In fact, a subset U of A closed with respect to addition is an ideal
if and only if a ∈ U implies b ∈ U for any b ≤ a. In particular, an
ideal always contains the zero element of the algebra. Every Boolean
algebra H has the trivial ideal consisting only of the zero element.

The minimal ideal containing a ∈ A is denoted by ⟨a⟩id. For an
arbitrary a ∈ A, the ideal ⟨a⟩id consists of all elements b, such that
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b ≤ a. Any ideal of such kind is called principal. An ideal U of a
Boolean algebra B is proper if U ̸= B. Clearly, an ideal is proper if
and only if it does not contain 1.

Proposition 1.1.24. A subset U of a Boolean algebra A is an ideal
if only if U is an ideal of the corresponding Boolean ring. Every
ideal U of A determines a congruence ρ of the Boolean algebra as
follows: aρb if and only if ab + ab ∈ U . Every congruence can be
obtained in such a way. �

If µ : A → B is a homomorphism of Boolean algebras then the
equivalence classes with respect to Kerµ are determined by the set
µ−1(0B). This is an ideal of A and each ideal of A can be represented
in such a way. However, there is another approach to characterize
these classes using the inverse image of 1B. It leads to the notion of
filter which is dual to the notion of ideal.

Definition 1.1.25. A subset F of a Boolean algebra A is a filter
of A if it is closed with respect to multiplication, and a + b ∈ U
whenever a ∈ U and b ∈ A.

A statement dual to one for ideals states that F is a filter of A
if and only if U is closed with respect to multiplication and a ∈ F
implies b ∈ F for any b > a. In particular, a filter always contains
the unit element of A. A filter is called trivial if it coincides with 1.

For any a ∈ A, the set F = ⟨a⟩fil consisting of all the elements
b > a is a filter, called the principal filter generated by a.A filter F
of a Boolean algebra B is proper if F ̸= B. Clearly, F is proper if
and only if it does not contain 0.

The duality between ideals and filters in Boolean algebras is given
via the operation .̄ If U is an ideal, then the set F = U consisting
of all u, such that u ∈ U , is a filter. Conversely, the ideal U = F

corresponds to the filter F , and U = U , F = F . Duality also implies

Proposition 1.1.26. Every filter F of A determines a congruence
ρ of the Boolean algebra as follows: aρb if and only if

(ā+ b)(b̄+ a) ∈ F.

The same congruence is determined by the ideal U = F̄ . Every
congruence can be obtained in such a way. �

We denote the quotient algebra A/ρ by A/U or A/F as well. We
will see that the notion of a filter is tightly related to derivability of
formulas in propositional calculus. This is a reason to write a → b
for a+ b and regard → as a derived binary operation on a Boolean
algebra.Then
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Proposition 1.1.27. A subset F of a Boolean algebra A is a filter
if and only if the following two conditions hold:

1. 1 ∈ F ,
2. if a ∈ F and a→ b ∈ F , then b ∈ F .

Proof. See Proposition 3.2.10.

Corollary 1.1.28. A subset U of a Boolean algebra A is an ideal if
and only if the following two conditions hold:

1. 0 ∈ U ,
2. if a ∈ U and b \ a = bā ∈ U , then b ∈ U .

A subset C of a Boolean algebra B has the finite intersection
property if for every finite set of elements {c1, . . . , cn} in C their
product c1 · · · cn is not 0.

Proposition 1.1.29. Any subset C with finite intersection property
lies in a minimal proper filter. This is the filter generated by C.

Indeed, one can add to C all finite products of elements of C and
extend the obtained set with all bigger elements. The obtained filter
is proper since it does not contain zero.

Now we postpone further consideration of Boolean algebras till
Section 3.2.2

1.1.4 Multi-sorted algebras

Our next aim is to define multi-sorted algebras. There are many
reasons to deal with algebras of such kind. For instance, we will need
a multi-sorted variant of Halmos algebras (see Part 2, Chapter ??
???) in order to work with finite dimensional affine spaces and!!! Ssylka

construct a geometry related to first-order calculus in an arbitrary
variety Θ.

Basic definitions

Let Γ be an arbitrary set, which is treated as a set of sorts. There
are no restrictions on Γ, this set can be finite or infinite. Consider
a multi-sorted set D = (Di, i ∈ Γ), where Γ is a set of sorts, and
Di is a set called a domain of the sort i. Now we shall make D a
multi-sorted algebra.

Every operation ω on D has a specific type τ = τ(ω), which is
an (n + 1)–tuple of the form (i1, . . . , in; j), ik, j ∈ Γ. This notion
generalizes the notion of arity of an operation defined on a one-sorted
set.
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Definition 1.1.30. A map

ω : Di1 × · · · ×Din → Dj

is called an operation on D of the type (i1, . . . , in; j).

Denote by Ω a set of symbols of operations.

Definition 1.1.31. A set Ω of symbols of operations, such that each
symbol ω ∈ Ω is equipped with an (n+1)-tuple τ(ω) = (i1, . . . , in; j),
where ik, j ∈ Γ, is called a signature of multi-sorted operations. A
tuple (j) corresponds to a symbol of nullary operation, j ∈ Γ.

Definition 1.1.32. A multi-sorted algebra D = (Di, i ∈ Γ) of the
signature Ω is a 4–tuple (D,Γ,Ω, f), where D is a multi-sorted set
with set of sorts Γ, Ω is the signature of multi-sorted operations,
and the function f realizes every symbol of operation ω of type τ =
(i1, . . . , in; j) as the operation

f(ω) : Di1 × · · · ×Din → Dj.

In the sequel we will not use the function f in the notation for
operations on D and simply write D = (Di, i ∈ Γ). Now we shall
define binary relations on a multi-sorted set D = (Di, i ∈ Γ). Each
binary relation ρ has a type τ , which is an n-tuple (i1, . . . , in), ik ∈ Γ.

A binary relation ρ of type τ on D = (Di, i ∈ Γ) is a collection
(ρi1 , . . . , ρin), where ρik is a binary relation on Dik . A relation ρ =
(ρi1 , . . . , ρin) is called an equivalence if each ρik is an equivalence.

Let now D = (Di, i ∈ Γ) be an Ω-algebra, ω an operation from Ω
of type τ(i1, . . . , in; j), and ρ an equivalence of type τ . Compatibility
of ρ and ω means that if (ai1 , . . . , ain) and (a′i1 , . . . , a

′
in) are elements

of Di1 × · · · ×Din , and aisρisais for all s = 1, . . . , n, then

(ai1 · · · ainω)ρj(a
′
i1
· · · a′inω).

An equivalence ρ is called a congruence if it is compatible with all
operations ω ∈ Ω.

Homomorphisms of multi-sorted algebras act componentwise and
are of the form µ = (µi, i ∈ Γ) : D → D′, where µi : Di → D′

i are
homomorphisms of algebras and, besides that, every µ respects each
operation ω of type τ = (i1, . . . , in; j):

(a1 · · · anω)µj = aµ11 · · · aµnn ω, as ∈ Dis , s = 1, . . . , n.

The kernel of a homomorphism µ : D = (Di, i ∈ Γ) → D′ =
(D′

i, i ∈ Γ) is of the form ρ = (ρi, i ∈ Γ) where each ρi is the kernel
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congruence of the homomorphism µi. If ρ is a congruence, then the
quotient algebra D/ρ is defined as follows:

D/ρ = (Di/ρi, i ∈ Γ).

Subalgebras and Cartesian products of multi-sorted algebras are
defined in a usual way. For example, if Dα = (Dα

i , i ∈ Γ), α ∈ I,
are Ω-algebras, then the Cartesian product is the algebra∏

α

Dα = (
∏
α

Dα
i , i ∈ Γ),

and if ω is an operation of type τ(ω) = (i1, . . . , in; j), then

(a1a2 · · · anω)(α) = a1(α)a2(α) · · · an(α)ω,

where a1 ∈
∏

αD
α
i1
, . . . , an ∈

∏
αD

α
in .

The following general fact, known as Remak’s theorem, remains
true for multi-sorted algebras.

Theorem 1.1.33. Let D = (Di, i ∈ Γ) be an Ω-algebra, and let
a collection of congruences ρα, α ∈ I, be given; we set ρ =

∩
α ρα.

Then the quotient algebra D/ρ can be embedded as a subalgebra into
the Cartesian product of all D/ρα. �

Examples

Let us consider some examples of multi-sorted algebras.
•A semigroup representation is a two-sorted algebra (V, S), where

V is a set, S is a semigroup acting on V by the operation ◦ : V ×S →
V subject to condition

u ◦ s1s2 = (u ◦ s1) ◦ s2,

where u ∈ V , s1, s2 ∈ S. Any semigroup representation (V, S)
defines a homomorphism ν : S → End(V ) and vice versa.
• A linear semigroup representation is a two-sorted algebra (V, S),

where V is a R-module, S is a semigroup acting on V by the oper-
ation ◦ : V × S → V subject to conditions

u1 ◦ s1s2 = (u1 ◦ s1) ◦ s2,

(α1u1 + α2u2) ◦ s = α1(u1 ◦ s) + α2(u2 ◦ s),
where α1, α2 ∈ R u1, u2 ∈ V , s1, s2 ∈ S. Any linear semigroup
representation (V, S) defines a homomorphism ν : S → End(V ) and
vice versa. In view of this observation one can define:
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• A linear group representation (V,G) is defined if a group ho-
momorphism ν : G → AutV = GL(V ) is given. Introducing the
operation ◦ : V ×G→ V by

a ◦ g = agν ,

we view the group representation as a two-sorted algebra.
• A pure automaton A = (A,B,C) is a three-sorted algebra with

two operations, ◦ : A × B → A and ∗ : A × B → C. The corre-
sponding set of sorts consists of three elements: Γ = {1, 2, 3}; 1
corresponds to the set of states A, 2 corresponds to the set of input
signals B, and 3 corresponds to the set of outputs C. The operations
◦ and ∗ are of types (1, 2; 1) and (1, 2; 3), respectively. No axioms
are assumed here. If either of the sets A,B,C is a semigroup or an
R-module, then a bunch of axioms appear.
• A semigroup automaton A = (A,B,C) is an automaton in

which B is a semigroup and the operations ◦ : A × B → A and
∗ : A×B → C are subject to conditions

1. a ◦ b1b2 = (a ◦ b1) ◦ b2,
2. a ∗ b1b2 = (a ◦ b1) ∗ b2.

where a ∈ A and b1, b2 ∈ B. Any semigroup representation can be
viewed as a particular case C = 0 of a semigroup automaton.
• A linear semigroup automaton A = (A,B,C) is a semigroup

automaton where A and C are vector spaces over a field or, more
generally, modules over a commutative ring R with unit, and the
operations a→ a ◦ b and a→ a ∗ b are linear maps for any b ∈ B.

Any linear semigroup representation can be viewed as a particular
case of a linear semigroup automaton.

According to the general definition, a pure automata homomor-
phism is a map µ = (α, β, γ) : (A,B,C) → (A′, B′, C ′) which is
compatible with the operations. The compatibility conditions are
of the form (a ◦ b)α = aα ◦ bβ and (a ∗ b)γ = aα ∗ bβ.

For semigroup automata, we also assume that the map β : B →
B′ is a semigroup homomorphism, while for linear automata we sup-
pose that α : A→ A′ and γ : C → C ′ are linear maps.

A congruence of an automaton (A,B,C) is a triple of equivalence
relations ρ = (ρ1, ρ2, ρ3) compatible with all operations.

1.1.5 Free algebras

One-sorted case

Let us start with the one-sorted case. Assume that a signature of
operations Ω and a set X are fixed. The set X will play a role
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of an alphabet while the operations ω ∈ Ω provide the rules for
constructing elements of the absolutely free algebra Ω(X) over X.
We call elements of Ω(X) words over the given set X. The rules are
as follows.

1. All elements of X and all symbols of nullary operations are
words in Ω(X).

2. If ω is an n-ary operation symbol from Ω, n > 0, and if
w1, . . . , wn are words, then the expression w1 · · ·wnω is a word
in Ω(X).

3. There are no other rules.

The set Ω(X) is defined in such a way that all operation symbols
from Ω are naturally realized in Ω(X). Indeed, if ω is an n-ary
operation symbol and w1, . . . , wn are words, then, by definition of
Ω(X), the expression w1 · · ·wnω is a word. So, define the realization
wΩ(X) of ω in Ω(X) by

w1 · · ·wnωΩ(X) = w1 · · ·wnω.

A nullary symbol selects the word corresponding to it.

Definition 1.1.34. The obtained Ω-algebra Ω(X) is called the ab-
solutely free Ω-algebra over X, or the algebra of words over X.

This algebra is sometimes called the term algebra (see, for exam-
ple, [DenWis]).

This algebra possesses the following important freeness property
in the class of all Ω-algebras.

Theorem 1.1.35. Every map µ : X → A, where A is an Ω-algebra,
has a unique extension up to a homomorphism µ∗ : Ω(X) → A of
Ω-algebras.

Proof. First, we shall verify that such an extension exists. Assign
to every symbol of a nullary operation in Ω(X) the corresponding
element of A, and then proceed in accordance with the recursive
definition of a word. If w ∈ X, then wµ

∗
= wµ. If ω is an n-

ary operation symbol, n > 0, and w1, . . . , wn are words for which
the elements wµ

∗

1 , . . . , w
µ∗
n in A are already defined, then we set

(w1 · · ·wnω)µ
∗

= wµ
∗

1 · · ·wµ
∗
n ω. This rule defines the map µ∗ for

every element of Ω(X). By definition, µ∗ is a homomorphism ex-
tending the map µ. Every homomorphism ν : Ω(X)→ A coincides
with µ∗ since ν = µ∗ on the set X.
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In the sequel we often denote the map µ and the homomorphism
µ∗ by the same letter µ.

Theorem 1.1.35 implies that every Ω-algebra A can be repre-
sented as a homomorphic image of an absolutely free algebra Ω(X).
Denote by ρ the kernel of the corresponding surjection. Then the
quotient algebra Ω(X)/ρ is isomorphic to A.

It is easy to see that ⟨X⟩ = Ω(X). Hence, X is the generating set
of Ω(X).

A class X of Ω-algebras is called abstract if it contains all algebras
isomorphic to a given algebra from X. Suppose that X is an abstract
class of Ω-algebras. The property described in Theorem 1.1.35 is a
characteristic property and can be taken for the definition of a free
in X algebra over a set X.

Definition 1.1.36. Let W (X) be an algebra in X with the set of
generators X. The algebra W (X) is called free in X if for any alge-
bra A in X and any map ν : X → A, there exists a homomorphism
µ : W (X)→ A such that the diagram

X -id W (X)
Z
ZZ~ν

�
�	µ

A
is commutative. Here id denotes the identity map.

Note that not every abstract class of algebras X possesses free
algebras. We hold fixed the alphabet X and the algebra Ω(X) over
it. Consider formal expressions (formulas) of the kind w1 ≡ w2,
where w1 and w2 are words of Ω(X).

Definition 1.1.37. An expression (formula) w1 ≡ w2, where w1, w2 ∈
Ω(X), is an identity of an Ω-algebra A if for every homomorphism
µ : Ω(X)→ A we have wµ1 = wµ2 in A.

This means that if w1 = w1(x1, . . . , xk) and w2 = w2(x1, . . . , xk),
then any substitution xi → ai, where ai ∈ A, results into an equality
of the corresponding elements of A.

Definition 1.1.38. A class of algebras satisfying a set of identities
is called a variety.

A formula w1 ≡ w2 is an identity of a class X of algebras if it is
an identity of every algebra from X.

In every variety Θ a set X determines a free algebra, which
is a quotient algebra of the absolutely free algebra (see Proposi-
tion 1.1.42). Given the variety Θ, a set of identities w1 ≡ w2 in the
free in Θ algebra W (X) determines subvarieties of Θ.
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The next aim is to give an invariant characteristic of varieties.
Let X be a class of Ω-algebras. Define

1. Q(X) is the class of algebras isomorphic to homomorphic im-
ages of algebras of X.

2. S(X) is the class of algebras isomorphic to subalgebras of alge-
bras from Θ.

3. C(X) is the class algebras isomorphic to Cartesian products of
algebras from X.

A class X is closed with respect Q, S, C if Q(X) ⊂ X, S(X) ⊂ X,
C(X) ⊂ X, respectively. The closure of a class X is the minimal
closed class of algebras containing X.

Birkhoff’s theorem states:

Theorem 1.1.39. A class X of Ω-algebras is a variety if and only
if it is closed with respect to the operators Q, S and C. The closure
of X is denoted V ar(X) and equals QSC(X). �

Hence, the minimal variety containing a given class of algebras
X is Θ = V ar(X) = QSC(X). This variety Θ is said to be generated
by X.

In a variety Θ one can consider free products of algebras.

Definition 1.1.40. Given two algebras A and B from Θ, the free
product A ∗ B is an algebra with homomorphisms iA : A → A ∗
B and iB : B → A ∗ B, such that for any algebra H ∈ Θ with
homomorphisms µ : A → H and ν : B → H there is a unique
homomorphism

µ ∗ ν : A ∗B → H

extending µ and ν.

Although the free products of algebras exist in any variety, spe-
cific constructions realizing free products depend on a particular
variety Θ. Free products of algebras can be generalized by the no-
tion of amalgamated products of algebras glued together along a
subalgebra.

This construction is most explicit for the case of the amalgamated
product of two groups. Let groups G0, G1, G2 and homomorphisms
φ1 : G0 → G1 and φ2 : G0 → G2 be given. Denote by N the normal
subgroup of the free product G1 ∗ G2 generated by the elements
φ1(h)φ2(h)−1, h ∈ G0.
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Definition 1.1.41. The quotient group

(G1 ∗G2)/N

is called the amalgamated product of the groups G1 and G2 over the
group G0.

The free product G1 ∗G2 is a particular case of this construction
when G0 is a trivial group. The definition of the amalgamated
product for algebras is similar to that for groups. One should replace
the normal subgroup N by a congruence generated by φ1(h)φ2(h)−1.

Multi-sorted case

The whole setting of free algebras considered above for the one-
sorted case can be transferred to the multi-sorted one.

We keep fixed the set Ω of operation symbols, and choose a multi-
sorted setX = (Xi, i ∈ Γ) which will play the role of the multi-sorted
alphabet. Define the set Ω(X) of Ω-words as follows.

1. All elements of Xi and all symbols of nullary operations of type
(i) are words of sort i, i ∈ Γ.

2. If ω is an operation symbol of type τ = (i1, . . . , in; j) from Ω,
and w1, . . . , wn are words of sorts i1, . . . , in respectively, then
w1 . . . wnω is a word of sort j.

3. Any word is constructed only by use of these rules.

Similarly to the one-sorted case we come up with the absolutely
free multi-sorted Ω-algebra Ω(X) = (Ω(Xi), i ∈ Γ) generated by
X = (Xi, i ∈ Γ). In particular, every map X = (Xi, i ∈ Γ) →
D = (Di, i ∈ Γ), where D is an Ω-algebra, is extended uniquely to
a homomorphism Ω(X)→ D.

An expression (or formula) w1 ≡ w2, where w1 and w2 are words
of Ω(X) = (Ω(Xi), i ∈ Γ) of the same sort, is called an identity of
an algebra A = (Ai, i ∈ Γ) if for any homomorphism

µ = (µi, i ∈ Γ): Ω(X) = (Ω(Xi), i ∈ Γ)→ A = (Ai, i ∈ Γ)

we have wµi1 = wµi2 , where i is the sort of w1 and w2.
Analogously to Definition 1.1.38, a class of multi-sorted alge-

bras satisfying a set of identities is called a variety and any X =
(Xi, i ∈ Γ) with non-empty domains determines a free algebra
W (X) = (W (Xi), i ∈ Γ) of the variety, which is a quotient algebra
of the absolutely free algebra Ω(X) = (Ω(Xi), i ∈ Γ) .
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Indeed, given a variety of algebras Θ, consider various homomor-
phisms µ : Ω(X)→ A for all algebras A from Θ. Let ρ = (ρi, i ∈ Γ)
be the intersection of the kernels of all these homomorphisms. Then

Proposition 1.1.42. W (X) = Ω(X)/ρ is the free algebra over X
in Θ. �

It follows immediately from definitions that a formula w1 ≡ w2,
where w1, w2 are words of sort i, is an identity of Θ if and only if
w1ρiw2. Here ρi is the i-th component of ρ. The relation ρ is called
a verbal congruence with respect to Θ.

Birkhoff’s theorem remains true in the multi-sorted case, that is
if X is a class of multi-sorted algebras, then V ar(X) = QSC(X).

Now we want to characterize congruences in the free algebra
W (X) that correspond to varieties.

Definition 1.1.43. Let ρ = (ρi, i ∈ Γ) be a congruence of an algebra
A = (Ai, i ∈ Γ), and µ = (µi, i ∈ Γ) an endomorphism of A. A
congruence ρ = (ρi, i ∈ Γ) is called a fully invariant congruence if
a1ρia2 implies aµi1 ρia

µi
2 for every i ∈ Γ, a1, a2 ∈ Ai.

Proposition 1.1.44. There is a one-to-one correspondence between
fully invariant congruences ρ = (ρi, i ∈ Γ) of the free algebra
W (X) = (W (Xi), i ∈ Γ) and subvarieties in Θ.

1.1.6 Classes of algebras

Varieties, i.e., classes of algebras defined by identities, present one
of the most interesting classes of algebras. We shall start with a list
of very important varieties:

1. Variety of groups Grp.

2. Variety of semigroups Smg.

3. Variety of associative algebras over a field K, Ass−K.

4. Variety of associative and commutative algebras over a field K,
Com−K.

5. Variety of Lie algebras over a field K, Lie−K.

6. Variety of lattices.

7. Variety of Boolean algebras.

8. Variety of representations of groups over a ring R, Rep−R.
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All varieties of the above list except the last one are varieties of
one-sorted algebras. The variety Rep−R is a variety of two-sorted
algebras.

Each of these varieties is a universe where the corresponding the-
ories live. In particular, universal algebraic geometry and logic, the
subjects of this book, live there. Recall that identities of a variety Θ
are simplest formulas of the form w1 ≡ w2, where w1, w2 are words
of a free algebra W (X) in Θ. Let us call such formulas atoms. We
may and shall consider algebraic structures defined by arbitrary sets
of formulas.

Formulas are produced from atoms by means of Boolean con-
nectives and quantifiers. For a precise definition of a formula with
respect to a signature of logical operations see Definition 3.1.6. By
now, we shall assume that all this is intuitively clear, noting that
given wi = wi(x1, . . . , xk), the expression

∀x1∃x3((w1 ≡ w3) ∨ (w1 ≡ w3))

is an example of a formula while

∀x1∃x3((w1 ≡ w3) ∨ w1)

is not. It will also be explained what does it mean precisely that a
formula u is valid on an Ω-algebra H. Meantime we can think that
a formula u = u(x1, . . . , xk) is valid on the point (h1, . . . , hk) ∈ Hk

if replacing the variables xi in u by the elements hi we obtain a true
statement in H. The formula u is valid on H if u holds for any point
from Hk.

An axiomatic, or axiomatizable class of Ω-algebras C is a class
defined by some collection of formulas S. This means that C consists
of all Ω-algebras satisfying all formulas from S. If otherwise is not
explicitly stated, we consider only first-order formulas, i.e., formulas
of the first-order predicate calculus. We emphasize that formulas of
S can be multi-sorted, and that axiomatizable classes have certain
signature of Ω-algebras.

An axiomatic class C is said to be universal, or universally ax-
iomatizable, if it can be defined by a set S of universal formulas, i.e.,
formulas which being rewritten in the so-called prenex normal form
(see [Mendelson]) do not contain existential quantifiers. The latter
means that a formula u is universal if it is equivalent to a formula
of the kind ∀x1∀x2 . . . ∀xs (quantifier-free part). The formulas of S
are called axioms of the class C.

Definition 1.1.45. A formula u = u(x1, . . . , xk) of the form

w1 ≡ v1 ∧ · · · ∧ wn ≡ vn → w ≡ v,
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where wi, vi, w, v belong to W (X), is called a quasi-identity.

A quasi-identity is satisfied in an Ω-algebra H if

wµ1 = vµ1 ∧ · · · ∧ wµn = vµn → wµ = vµ

is true in H for any homomorphism µ : W (X)→ H.

Definition 1.1.46. A class C of Ω-algebras is called a quasivariety
if it is defined by a set of quasi-identities.

Definition 1.1.47. A formula u = u(x1, . . . , xk) of the form

w1 ≡ v1 ∨ w2 ≡ v2 ∨ · · · ∨ wn ≡ vn,

where wi, vi belong to W (X), is called a pseudo-identity.

A pseudo-identity is satisfied in an Ω-algebra H if the statement

wµ1 = vµ1 ∨ · · · ∨ wµn = vµn

is true in H for any homomorphism µ : W (X)→ H.

Definition 1.1.48. A class C of Ω-algebras is called a pseudovariety
if it is defined by a set of pseudo-identities.

Remark 1.1.49. The term ”pseudovariety” is often used for classes
of algebras closed under homomorphic images, subalgebras, and fi-
nite Cartesian products. In this sense all solvable and all nilpotent
groups constitute a pseudovariety. In this book the term ”pseudova-
riety” is reserved for classes of algebras in the sense of Definition
1.1.48.

Remark 1.1.50. Quasivarieties (hence, varieties) and pseudovari-
eties are axiomatizable classes of algebras. They can be written in
the form

∀x1 . . . ∀xn(w1 ≡ v1 ∧ · · · ∧ wn ≡ vn → w ≡ v),

∀x1 . . . ∀xn(w1 ≡ v1 ∨ w2 ≡ v2 ∨ · · · ∨ wn ≡ vn),

respectively. Note that any identity w = w′, where w = w(x1, . . . , xn),
w′ = w′(x1, . . . , xn) can be represented as the quasi-identity:

∀x1 . . . ∀xn((x1 = x1) ∧ . . . ∧ (xn = xn)→ (w = w′)).

Thus, a variety of algebras is a quasivariety.

Quasivarieties and pseudovarieties admit invariant Birkhoff-type
characterizations that use an important construction of a reduced
product. Define, first, filters over sets (cf. filters for Boolean alge-
bras).
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Definition 1.1.51. Let I be a non-empty set. A filter over I is a
collection D of non-empty subsets of I subject to conditions:

1. The intersection of two subsets from D belongs to D.

2. If J ∈ D, then every subset J ′ of I, including J , belongs to D
as well.

3. The empty set ∅ does not belong to D.

A filter D is said to be an ultrafilter if it is not included in a
larger filter. This condition is equivalent to another one: for every
subset J of I, either J or its complement J̄ is an element of D (not
both!).

Now assume that a collection of Ω-algebras Aα = (Aαi , i ∈ Γ),
α ∈ I, is given. We are going to define the reduced product of
these algebras relatively to a filter D. We start with the Cartesian
product A =

∏
αAα. Then

A = (Ai, i ∈ Γ) = (
∏
α

Aαi , i ∈ Γ).

Define a relation ρ = (ρi, i ∈ Γ) on A: if a and a′ belong to Ai, then
aρia

′ means that

J = {α : a(α) = a′(α)} ∈ D.

This relation is a congruence on A.

Definition 1.1.52. The filtered product of the algebras Aα relatively
to the filter D is the quotient algebra A/ρ. If D is an ultrafilter, then
the corresponding filtered product is called an ultraproduct.

The reduced product of algebras Aα with respect to the filter
D is denoted by

∏
α∈D Aα. If all Aα coincide with A and D is an

ultrafilter, then
∏

α∈D A is called the ultrapower of A. Applications
of this construction are based on the following theorem.

Theorem 1.1.53. Every axiomatic class of Ω-algebras is closed with
respect to ultraproducts. �

The following three theorems give us the characterization of uni-
versal classes of algebras, quasivarieties and pseudovarieties.

Theorem 1.1.54. A class of Ω-algebras X is universal if and only
if the following conditions are fulfilled:

1. X is abstract,
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2. X is closed with respect to subalgebras,

3. X is closed with respect to ultraproducts. �

Theorem 1.1.55. A class of Ω-algebras X is a quasivariety if and
only if it satisfies the following conditions:

1. X is an abstract class containing the trivial algebra,

2. X is closed with respect to subalgebras,

3. X is closed with respect to filtered products. �

Theorem 1.1.56. A class of Ω-algebras X is a pseudovariety if and
only if

1. X is closed with respect to subalgebras,

2. X is closed with respect to homomorphic images,

3. X is closed with respect to ultraproducts. �

Let X be an arbitrary class of Ω-algebras. Birkhoff’s theorem
states that the variety generated by X is QSC(X). Similar char-
acterizations for universal classes of algebras, quasivarieties and
pseudovarieties look as follows. Denote by Uc(X), qV ar(X), and
PsV ar(X) the minimal universal class, minimal quasivariety, and
minimal pseudovariety of algebras containing X, respectively. Then
the Birkhoff-type theorem ([Mal2],[GrL], [Pl-Datab],[MR]) is as fol-
lows:

Theorem 1.1.57. Let Pu(X) be the class of algebras isomorphic to
ultraproducts of algebras of X. Then

1. Uc(X) = SPu(X),

2. qV ar(X) = SCPu(X),

3. PsV ar(X) = QSPu(X). �

We will need one more class of Ω-algebras.

Definition 1.1.58. A class X is called a prevariety if it is closed
under taking subgroups and Cartesian products.

This class is not necessarily an axiomatizable class of algebras.

Proposition 1.1.59. Given a class X of Ω-algebras, SC(X) is the
prevariety generated by X.
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1.2 Category Theory

1.2.1 Categories

Definition of a category. Examples

We shall start with basic definitions.

Definition 1.2.1. A category K consists of objects and morphisms.

1. Let ObK denote the class of all objects of category K, and let
MorK be the class of all its morphisms. A set of morphisms
Mor(A,B) is associated with any pair of objects A and B from

ObK. Denote elements of this set by f : A→ B, or A
f→ B, or

simply f . We suppose that the class MorK is a disjoint union
of the sets Mor(A,B). Some of these sets may be empty.

2. For any triple of objects A, B and C from ObK, we are given
a map

Mor(A,B)×Mor(B,C)→ Mor(A,C).

This enables us to speak about composite maps, i.e., about prod-
ucts of morphisms. Denote the product of morphisms f : A →
B and φ : B → C by fφ : A→ C.

Moreover, we assume that the product of morphisms has the
following properties:

a) f(φψ) = (fφ)ψ for any f : A→ B, φ : B → C, and ψ : C →
D, i.e., the product of morphisms is associative;

b) for any A ∈ ObK there exists an identity morphism εA : A→
A such that εAf = f and φεA = φ for any f : A → B and
φ : C → A.

Such a morphism εA is easily seen to be unique for any A.

The set End(A) = Mor(A,A) is a semigroup for any object A.
This semigroup is said to be the endomorphism semigroup of A.
The morphism εA is the identity element of End(A). All invertible
elements of End(A) form a group. This is the automorphism group
of the object A which will be denoted by Aut(A).

Example 1.2.2. Sets and their maps form the category Set. The
class of objects of Set is the class of all sets, and Mor(A,B) is
Fun(A,B) for any pair A and B. The products of morphisms are
defined to be products of maps, the identity map plays the role of
εA.

One can also consider the category of non-empty sets and the
category of finite sets.
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Example 1.2.3. The category of Ω-algebras with Ω-algebras as
objects and homomorphisms as morphisms.

With every fundamental structure and its homomorphisms one
can associate the corresponding category. We obtain therefore the
category of groups, the category of semigroups, the category of rings,
the category of modules over a given ring, the category of represen-
tations, etc.

Example 1.2.4. Let R be a commutative ring. We introduce the
category whose objects are all positive integers 1, 2, 3, . . ., and mor-
phisms n → m are n × m-matrices with entries in R. We define
the product of morphisms to be the product of matrices. We obtain
therefore a category where εn : n→ n is the identity matrix of order
n.

Example 1.2.5. Let A be a set, and suppose we are given with an
order relation on this set. Then A is said to be a partially ordered
set. We shall construct a category whose objects are the elements
of A. For any pair of objects a and b, there is a unique morphism
a→ b if a ≤ b, otherwise Mor(a, b) is empty. Since a ≤ a, we have
the identity morphism a→ a, and the product of a→ b and b→ c
is a→ c because of transitivity of an order relation. Therefore, any
partially ordered set yields a category.

Example 1.2.6. A discrete category is a category with trivial (iden-
tical) morphisms. This means that if the objects A and B are dis-
tinct, then Mor(A,B) = ∅. Every class of objects can be equipped
with the structure of a discrete category.

Example 1.2.7. The category Bin of binary relations. Its objects
are sets, morphisms are presented by binary relations.

It follows from the examples that class ObK may be not a set.
Also the class MorK is not necessarily a set. If ObK is a set, then
so is MorK, and the category K is said to be small.

A category L is said to be a subcategory of a category K if any
object of L belongs to K and any morphism of L is a morphism
of K. Besides, the product of morphisms in L coincides with their
product in K and identity morphisms of L are identity morphisms
in K. A category L is a full subcategory of the category K if, for any
A,B ∈ ObL, we have MorL(A,B) = MorK(A,B).

Morphisms. Dual categories

Definition 1.2.8. A morphism f : A → B in a category K is said
to be a monomorphism in K if for any two morphisms φ : C → A
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and ψ : C → A, the equality φf = ψf implies φ = ψ.
Epimorphisms are defined dually. A morphism f : A → B is an

epimorphism in K if for any pair φ : B → C and ψ : B → C, the
equality fφ = fψ implies φ = ψ.

In any variety of Ω-algebras Θ categorical monomorphisms co-
incide with injective homomorphism of Ω-algebras. However, sur-
jective homomorphisms of algebras from Θ are always categorical
epimorphisms, but not necessarily vice versa.

Definition 1.2.9. A morphism f : A → B is called an isomor-
phism if there exists a morphism f−1 : B → A such that ff−1 = εA,
f−1f = εB. An isomorphism of the form A → A is called an auto-
morphism of the object A.

Every isomorphism is epimorphic and monomorphic, while a mor-
phism which is both monomorphic and epimorphic may not be an
isomorphism.

Definition 1.2.10. Let K be a category. The dual category (oppo-
site category) Kop is defined as follows:

1. Objects of Kop coincide with objects of K.

2. Given objects A and B in Kop, we have

MorKop(A,B) = MorK(B,A).

The product of morphisms is taken in a reverse order. Namely,
if f : A→ B and φ : B → C are morphisms in K, denote them
regarded as morphisms in Kop by f op : B → A and φop : C → B,
and define their product by

φopf op = (fφ)op : C → A.

Each notion or construction in the category K has a mirror in
Kop and vice versa. Besides, K = (Kop)op.

Functors. Examples

Definition 1.2.11. Let K1 and K2 be categories. A covariant func-
tor F : K1 → K2 is a map that takes every object A ∈ ObK1 to F(A)
in ObK2 and every morphism f ∈ MorK1 to F(f) ∈ MorK2. The
functor F satisfies the conditions:

1. if f ∈ Mor(A,B), then F(f) ∈ Mor(F(A),F(B));

2. F(εA) = εF(A) for every A ∈ ObK1;
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3. F(fφ) = F(f)F(φ) for any pair of appropriate morphisms in
MorK1.

A functor F is called contravariant if the first and the third con-
ditions are replaced by the following two conditions

1’. if f ∈Mor(A,B), then F(f) ∈Mor(F(B),F(A));

3’. F(fφ) = F(φ)F(f),

respectively.
One can view covariant functors as homomorphisms of categories.

Correspondingly, contravariant functors are antihomomorphisms of
categories.

Example 1.2.12. The identity functor K to K is a covariant func-
tor.

Example 1.2.13. For an arbitrary category K, we have a canonical
contravariant functor from K to the dual category Kop: F(A) = A,
F(f) = f op.

Thus, a contravariant functor from K to K1 is a covariant functor
from K to Kop1 .

Example 1.2.14. Let K1 be the category of finite dimensional vec-
tor spaces over a field K. Its objects are vector spaces V , morphisms
are linear maps µ : V1 → V2.

Given a vector space V denote by V ∗ the vector space of all linear
maps f : V → K, where K is regarded as a one-dimensional vector
space. Every linear map µ : V1 → V2 gives rise to a linear map
µ∗ : V ∗

2 → V ∗
1 defined by the rule f → µ∗(f), where µ∗(f)(v) =

f(µ(v)) for every f ∈ V ∗
2 and every v ∈ V1.

Denote by K2 the category with objects V ∗ and morphisms µ∗.
Since (µν)∗ = ν∗µ∗ the transition ∗ determines the contravariant
functor from K1 to K2.

Example 1.2.15. Let K be a category of Ω-algebras. Given A ∈
ObK, denote by F(A) the underlying set (it can be multi-sorted) of
the algebra A. For every homomorphism f of K, we denote by F(f)
the map of sets that acts in the same way as f . The constructed
functor F from K to the category of sets is called a forgetful functor,
since it ”forgets” the algebraic operations.

Example 1.2.16. Consider an arbitrary category K and fix an ob-
ject A of K. We associate with A a covariant functor

FA : K → Set
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by letting FA(B) = Mor(A,B) for any object B of K. For every
morphism φ : B → B′ in K , we define a map of sets

FA(φ) : Mor(A,B)→Mor(A,B′)

according to the rule: f → fφ for any f ∈Mor(A,B).
Similarly, we define a contravariant functor

FA : K → Set.

By definition, FA(B) = Mor(B,A), and given a morphism φ : B′ →
B in K, the map

FA(φ) : Mor(B,A)→Mor(B′, A)

is defined according to the rule: f → φf for any f ∈Mor(B,A).

Thus, with every object A of an arbitrary category K, we have
associated the functors FA and FA that act from the category K to
the category of sets. These functors are called representing functors.

Natural transformations of functors

Let F1 and F2 be covariant functors that act from a category K
to another category K′. We introduce the notion of morphism (or
natural transformation) for such functors. In particular, we shall
obtain the notion of isomorphism for functors.

Definition 1.2.17. A natural transformation f of functors F1 and
F2 assigns to each object A of K a morphism fA : F1(A) → F2(A)
in the category K′ such that for every morphism µ : A → B in the
category K we have the commutative diagram

F1(A) -fA F2(A)

?
F1(µ)

?
F2(µ)

F1(B) -fB F2(B).

Definition 1.2.18. If the morphisms fA are isomorphisms for any
object A of K, then f : F1 → F2 is called an isomorphism between
the functors F1 and F2.

Two functors F1 and F2 are said to be isomorphic if there ex-
ists an isomorphism between them. For any functor isomorphism
f : F1 → F2 , there exists the inverse isomorphism f−1 : F2 → F1

given by the class of isomorphisms f−1
A : F2(A) → F1(A) that are

inverse to the isomorphisms fA : F1(A)→ F2(A) in the category K′.
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Given categories K1 and K2, one can define the category of func-
tors from K1 to K2 with natural transformations of functors as mor-
phisms.

Proceed now to an example of natural transformations that make
use of the representing functors. Suppose a category K is given. We
have associated the functor FA from K to Set with any object A of
K. Given a morphism µ : A → B in K, we shall define a natural
transformation f : FB → FA. We have to define a map

fC : FB(C) = Mor(B,C)→ FA(C) = Mor(A,C).

for any object C ∈ ObK. Define it by the rule: fC(φ) = µφ for any
φ : B → C. It is easy to verify that f is a natural transformation
and, therefore, we obtain a contravariant functor from the category
K to the category of functors acting from K to Set. The same
argument shows that the correspondence A → FA gives rise to a
covariant functor from K to the corresponding category of functors.

An isomorphism of objects A and B induces an isomorphism
between the functors FA and FB, and also between FA and FB.
The converse statement is also true.

The notion of functor isomorphism enables us to pose the follow-
ing class of problems related to representing functors: when a given
functor to the category of sets could be realized, up to a functor
isomorphism, as a representing functor associated with a suitable
object of the category. If such a representation exists, then the
corresponding object of the category is uniquely determined up to
isomorphism.

Definition 1.2.19. Categories K1 and K2 are called equivalent if
there exist covariant functors F : K1 → K2 and F ′ : K2 → K1 such
that FF ′ is isomorphic to the identity functor of the category K1,
and F ′F is isomorphic to the identity functor of the category K2.
Such F and F ′ are said to be inverse to each other up to isomor-
phism.

Definition 1.2.20. Categories K1 and K2 are called isomorphic if
there exist covariant functors F : K1 → K2 and F ′ : K2 → K1 such
that FF ′ is the identity functor of the category K1, and F ′F is the
identity functor of the category K2. Such F and F ′ are said to be
inverse to each other.

If K1 = K2 = K then we get the notions of autoequivalence and
automorphism of the category K, respectively.
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Definition 1.2.21. Categories K1 and K2 are dually equivalent if
K1 is equivalent to Kop2 . Categories K1 and K2 are dually isomorphic
if K1 is isomorphic to Kop2 .

Definition 1.2.22. An automorphism φ of the category K is called
inner if it is isomorphic to the identity automorphism 1K.

According to Definition 1.2.18 this means that if s : 1K → φ is
an isomorphism of functors, then for every object A of the category
K there is an isomorphism sA : A→ φ(A) such that the diagram

A -sA φ(A)

?
ν

?
φ(ν)

B -sB φ(B)

is commutative for any morphism ν : A→ B in K. So, φ is inner if
and only if it can be represented in the form:

φ(ν) = s−1
A νsB : φ(A)→ φ(B).

This formula motivates the term ”inner automorphism”.

1.2.2 Products and coproducts

We start this section with the notion of a universal object of a
category.

Definition 1.2.23. An object A of a category K is called an initial
object of K if for any object B ∈ ObK there exists a unique morphism
f : A→ B.

Dually, an object A is a terminal object of a category K if for
every B ∈ ObK there is a unique morphism f : B → A.

All initial objects as well as terminal objects are canonically iso-
morphic. Any object which is isomorphic to an initial object is
initial, and the same is true for terminal objects.

Every one-element set is a terminal object in the category of sets.
The trivial group is an initial and, at the same time, a terminal ob-
ject in the category of groups. There exist categories that have
neither initial nor terminal objects. Most of the constructions of
the universal algebra, like Cartesian, free, amalgamated and other
products, like universal cover and universal enveloping algebra, and
so on, can be realized in categorical terms as initial (terminal) ob-
jects in appropriate categories. This fact guarantees the uniqueness
(up to an isomorphism) of these objects.
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Let K be a category and A = {Aα, α ∈ I} a collection of objects
of K. Take a new category KA, whose objects are objects B of K
together with morphisms fα : B → Aα for all α ∈ I. Morphisms of
two objects (B1, f

1
α), α ∈ I and (B2, f

2
α), α ∈ I are represented by

morphisms µ : B1 → B2 which satisfy the commutative diagrams

B1
-µ B2

Q
QQsf1α

�
��= f2α

Aα

for all α ∈ I.

Definition 1.2.24. A terminal object of the category KA is called a
product of the collection of objects A = {Aα, α ∈ I} in the category
K. In other words, a product of the objects Aα, α ∈ I, is an object
C supplied with morphisms πα : C → Aα such that, for any object
B and any morphisms fα : B → Aα, there exists a unique morphism
f : B → C satisfying the conditions fα = fπα

The product C of Aα, α ∈ I is denoted by
∏

α∈I Aα. Coproducts
are defined dually, by reversing direction of arrows.

Let K be a category and A = {Aα, α ∈ I} a collection of objects
of K. Take a new category KA, whose objects are objects B of K
together with morphisms fα : Aα → B for all α ∈ I. Morphisms of
two objects (B1, f

1
α), α ∈ I and (B2, f

2
α), α ∈ I are represented by

morphisms µ : B1 → B2 which satisfy the commutative diagrams

B1
-µ B2

Q
QQk
f1α �

��>
f2α

Aα

for all α ∈ I.

Definition 1.2.25. An initial object of the category KA is called
a coproduct of the collection of objects A = {Aα, α ∈ I} in the
category K. In other words, a coproduct of the objects Aα, α ∈ I,
is an object C supplied with morphisms iα : Aα → C such that, for
any object B and any morphisms fα : Aα → B, there exists a unique
morphism f : C → B satisfying the conditions iαf = fα.

The coproduct C of Aα, α ∈ I is denoted by
⨿

α∈I Aα. Prod-
ucts are often called direct products, while coproducts are called free
products. In these cases morphisms πα are called projections, while
morphisms iα are called embeddings.

Example 1.2.26. 1. Let K be the category Set of sets. Products
and coproducts exist in Set and coincide with the Cartesian
products of sets and the disjoint unions of sets, respectively.
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2. Let K be the category of arbitrary algebras. The direct prod-
ucts coincide with the Cartesian products provided the cate-
gory K is a variety. This follows from the fact that a variety is
closed under Cartesian products.

3. Let K be the category (and the variety) of all groups. Then
coproducts coincide with free products of groups.

4. LetK be the category (and the variety) of abelian groups. Then
the coproduct of abelian groups Aα, α ∈ I coincide with their
discrete direct product. A discrete direct product of groups
Aα, α ∈ I is a subgroup of A =

∏
Aα consisting of elements

a such that a(α) is equal to the identity element for all but a
finite number of α ∈ I. Using the additive notation for abelian
groups, one can write that

⨿
α∈I Aα =

⊕∑
α∈I Aα, the direct

sum of abelian groups Aα. Hence, if the set I is finite, then
products and coproducts coincide in the category of abelian
groups.

5. Let K be the category of commutative algebras over a commu-
tative ring with unity R. Then the coproduct of a collection of
algebras coincides with their tensor product.

Inverse and direct limits

In the constructions of products and coproducts the indexing set I
was arbitrary. Assume now that I is a partially ordered set with
the order relation ≤. Recall that a partially ordered set I is called
directed if for any α, β ∈ I there exists γ ∈ I such that α ≤ γ and
β ≤ γ (see Definition 1.1.3) .

Once again, let K be a category, I a directed set and A =
{Aα, α ∈ I} a collection of objects of K.

Definition 1.2.27. A family of morphisms {fαβ } ∈ Mor(Aα, Aβ),
α, β ∈ I, α ≤ β is called directed if

1. fαα is the identity morphism in Aα for all α ∈ I.
2. fαβ f

β
γ = fαγ for all α ≤ β ≤ γ. !!! Umnozhenie morfizmov

sprava!!!

Take the same category KA as is Definition 1.2.25. Distinguish a
collection of objects A = {Aα, α ∈ I} over the directed set I and
assume that the family of morphisms {fαβ } is directed. An initial
object in this category is the direct limit of objects A = {Aα}. In
terms of the category K a direct limit of A = {Aα} is defined as
follows:
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Definition 1.2.28. Let K be a category, A = {Aα, α ∈ I} a family
of objects, {fαβ } a directed family of morphisms between objects of
A. An object C of K supplied with morphisms iα : Aα → C is called
the direct limit of {Aα} if
1. iα = fαβ iβ, for all α ≤ β.

2. Given any object B and morphisms fα : Aα → B, α ∈ I such that
fα = fαβ fβ for all α ≤ β, there exists a unique morphism f : C → B
such that iαf = fα.

The direct limit of {Aα, α ∈ I} is denoted by lim−→Aα. A moti-
vating example for direct limits is an increasing infinite sequence of
sets Aα, with the inclusions as morphisms. The direct limit is the
union

∪
Aα.

The direct limit of {Aα, α ∈ I} of algebras can be represented
as

lim−→Aα =
⊔
α

Aα/ρ,

where the congruence ρ on
⊔
αAα is defined by aαρaβ, aα ∈ Aα,

aβ ∈ Aβ, if there exists γ ∈ I such that fαγ (aα) = fαγ (aβ). So,
a direct limit of algebras is a quotient algebra of a coproduct of
algebras.

Reversing direction of arrows in the previous definitions leads to
the notion of an inverse limit.

Definition 1.2.29. A family of morphisms {fαβ } ∈ Mor(Aβ, Aα),
α, β ∈ I, α ≤ β in KA is called inversely directed or just inverse if

1. fαα is the identity morphism in Aα for all α ∈ I.
2. fβγ f

α
β = fαγ , for α ≤ β ≤ γ.!!! Umnozhenie morfizmov

sprava!!!
Take the same category KA as is Definition 1.2.24. Distinguish

a collection of objects A = {Aα, α ∈ I} over the directed set I
and assume that the family of morphisms {fαβ } is inversely directed.
A terminal object in this category is the inverse limit of objects
A = {Aα}. In terms of the category K an inverse limit of A = {Aα}
is defined as follows:

Definition 1.2.30. Let K be a category, A = {Aα, α ∈ I} a family
of objects, {fαβ } an inversely directed family of morphisms between
objects of A. An object C of K supplied with morphisms πα : C →
Aα is called the inverse limit of {Aα} if
1. πα = πβf

α
β , for all α ≤ β.

2. Given any object B and morphisms fα : B → Aα, α ∈ I such that
fα = fβf

α
β for all α ≤ β, there exists a unique morphism f : B → C

such that fα = fπα.
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The inverse limit of {Aα, α ∈ I} is denoted by lim←−Aα. Inverse
limits exist in many categories, in particular in the categories of
sets, groups, rings topological spaces and more general algebras. For
example, in the category of groups, the inverse limit of a family of
groups Gα, α ∈ I with homomorphisms fαβ : Gβ → Gα is a subgroup
of the Cartesian product

∏
αGα consisting of the sequences (gα),

α ∈ I such that:

lim←−Gα = {(gα) | fαβ (gβ) = gα for all α ≤ β}.

In particular, if we take the inverse limit of finite groups we come
up with the notion of a profinite group. The example of groups can
be generalized to a very general setting of algebras (see [DMR2] for
the exposition useful for the geometric aims).

1.2.3 Constants in algebras
!!! Perepisat’

The next step is devoted to algebras with the distinguished algebra
of constants.

Recall that we consider all nullary operations in an algebra G
as constants (see Subsection 1.1.2). In this subsection we give a
categorical insight on algebras with constants. !!! ???

Let Θ be an arbitrary variety of algebras, G be a fixed algebra
in Θ, |G| > 1. Consider a new variety, denoted by ΘG. First we
define the category ΘG. Objects in ΘG are of the form h : G→ H,
where H ∈ Θ, and h is a homomorphism of algebras, not necessarily
injective. These objects will be called G-algebras, i.e., a G-algebra
H is a pair (H, h). Morphisms in ΘG are presented by commutative
diagrams

G -h H
Z
ZZ~h′ ?

µ

H ′

where µ, h, h′ are homomorphisms in Θ.
An algebra H, treated as a G-algebra, is denoted by (H, h). We

view elements gh ∈ G as constants, i.e., nullary operations in H.
Adding them to the signature Ω, we come up with the extended
signature ΩG.

Identities of a G-algebra are just identities in the signature ΩG

(G-identities). They are presented by identities of Θ and by defining
relations of the algebra G. A variety of G-algebras is a class of
G-algebras determined by a set of G-identities. A quasivariety of
G-algebras consists of all G-algebras which satisfy a set of G-quasi-
identities , i.e., quasi-identities over ΩG. Other axiomatic classes of
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G-algebras and prevarieties of G-algebras are defined in a similar
way.

A free algebra W (X) in ΘG is of the form G ∗ W0(X), where
W0(X) is the free algebra in Θ over X, ∗ is the free product in Θ
and the embedding iG : G→ W (X) = G ∗W0(X) follows from the
definition of a free product.

A G-algebra (H, h) is called faithful if h : G→ H is an injection.
In particular, a free algebra (W (X), iG) and the G-algebra G with
the identical map G→ G are faithful.

Let (H, h) be a G-algebra, and µ : H → H ′ be a homomorphism
in Θ. Take h′ = µh, then H ′ becomes a G-algebra, and µ is a
homomorphism of G-algebras. Since one can start from an arbitrary
congruence T in H and from the natural congruence H/T, we say
that T is faithful if the G-algebra H/T is faithful. A congruence T
is faithful if and only if gh1 = gh2 is equivalent to g1 = g2.

Let a morphism

G -h H
Z
ZZ~h′ ?

µ

H ′

be given, and let (H ′, h′) be a faithful G-algebra. Then (H, h) is a
faithful G-algebra. If T = Kerµ, then T is a faithful congruence
and H/T is also faithful.

We can assume that homomorphisms of faithful G-algebras leave
elements from G unchanged.

Example 1.2.31. A variety Com−K is a variety of the type ΘG,
where Θ is a variety of associative and commutative rings with 1,
and G is a field K. In this example, elements of the field K are
constants in K-algebras. They are viewed as nullary operations,
and, simultaneously, using multiplication, we can look at them as
unary operations.

Example 1.2.32. G-group is another example of G-algebras. Here,
elements from G also can be viewed as unary operations. Using the
analogy with Com−K we can denote the free G-group by G[X] =
G ∗W0(X) and view its elements as non-commutative polynomials
with coefficients from the given group G.

Since ΘG is a variety of algebras, all constructions like Cartesian
and free products, subalgebras and homomorphisms are naturally
defined for ΘG. Note that the free product of two G-algebras H1

and H2 is exactly the amalgamated product H1 ∗GH2 in the variety
Θ.
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Consider special property on ΘG. Namely, we assume that the
G-algebra G generates the whole variety ΘG, i.e., in G there are
no non-trivial identities with coefficients from G. This property is
fulfilled in Com−K if the field K is infinite and in (Grp)F , where
F is a free group.

Every faithful G-algebra H contains G as a subalgebra. Thus,
the property above implies that every faithful G-algebra H generates
the whole variety ΘG, i.e., in ΘG there are no proper subvarieties
containing faithful algebras.

In the category ΘG along with morphisms, one can consider also
semimorphisms. They are of the form

G -h H

?
σ

?
µ

G -h′ H ′

where σ ∈ End(G). Then, one can consider semi-isomorphic G-
algebras.

Another possibility is to vary also the algebra of constants G.
This leads to a diagram of the form

G -h H

?
σ

?
µ

G′ -h′ H ′

with componentwise multiplication.
Let us make a remark on equations. Equations of the form w = w′

with w,w′ ∈ W (X) = G ∗W0(X) are equations with constants from
G. Consider a system of such equations T . If T is a congruence,
then T has a solution in a faithful G-algebra H if and only if T is
a faithful congruence on W (X). Thus, a system T has a solution
if T is contained in a faithful congruence in W (X). Note that, by
definition, all faithful congruences are proper.

In what follows if we speak about the variety of algebras Θ we
always keep in mind also the case ΘG, where G ∈ Θ is an algebra
of constants. All the constructions above can be transferred to the
multi-sorted case (see [Hig]).
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Chapter 2

Basics of Universal
Algebraic Geometry

!!! V KAKIH
TEOREMAH
PRIVESTI DOKAZA-
TEL”STVA???RESHIT”

Universal algebraic geometry spreads the ideas of classical algebraic
geometry to arbitrary varieties of algebras. So, one of its objectives
is to study solutions of equations over a given algebra H from a
given variety of algebras Θ. However, in what follows we focus
our attention on the other goal of the universal algebraic geometry,
namely, on studying geometric invariants of the algebras from Θ.

In this section we sketch the basics of universal geometry mostly
avoiding proofs and complicated considerations related to geometry
in the particular varieties. In fact, we give a list of general facts
and notions which illuminates analogies and distinctions between
classical geometry and universal one. Besides, the passage

classical algebraic geometry =⇒ universal algebraic geometry

will be extended in Part II to a further one

universal algebraic geometry =⇒ logical geometry.

Subsections 2.1.2 – 2.1.4 of Section 2.1 are devoted to basics of classi-
cal algebraic geometry. Subsections 2.2.1 – 2.2.5 of the same section
are completely parallel to them and treat the same material from the
positions of universal algebraic geometry. Subsections 2.2.6 – 2.2.8
deal with the notions which are peculiar for universal algebraic ge-
ometry. In the short subsection 2.2.10 there is a bibliography which
can help to navigate in the field of universal algebraic geometry.

We start with recalling the elementary (scheme-free) setting of
classical algebraic geometry.

47
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2.1 Classical Algebraic Geometry

The material of this section is standard. For the general references
the books [Shaf], [Harts], [Haris], [Hulek] could be taken.

2.1.1 Galois correspondence

Let K be a field and K[X] = K[x1, . . . , xn] the ring of polynomials
in the commuting variables x1, . . . , xn with coefficients in K.

Algebraic geometry was grown up from the desire to describe the
solutions of the systems of equations of the form

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0,

where all fi(x1, . . . , xn) are the polynomials from K[x1, . . . , xn].

Definition 2.1.1. The set of all n-tuples of the form (a1, . . . , an),
ai ∈ K is called the affine n-space over the field K.

The affine n-space is denoted by Kn which means that as a set
this is exactly the n-th Cartesian power of the field K. For the
elements of Kn the vector notation ā = (a1, . . . , an) is used.

The space Kn is the place were the solutions of polynomial equa-
tions f(x1, . . . , xn) = 0 live. A point ā = (a1, . . . , an) ∈ Kn is a so-
lution of the equation f(x1, . . . , xn) = 0 if f(a1, . . . , an) = 0. Given
the set of polynomials T in K[x1, . . . , xn] denote by V (T ) ⊂ Kn the
set of common zeros of the polynomials from T :

V (T ) = {ā = (a1, . . . , an) ∈ Kn | f(ā) = 0, for all f ∈ T}.

By definition, if T1 ⊆ T2, then V (T1) ⊇ V (T2).

Definition 2.1.2. A subset A in the affine space Kn is called al-
gebraic set if there exists a set T of polynomials from K[x1, . . . , xn]
such that A is the set of common zeros of the polynomials from T .

In other words every element ā of an algebraic set A ⊂ Kn is the
solution of a system of equations T ⊂ K[x1, . . . , xn], and we have:

A = V (T ).

We view V as the correspondence between subsets in K[x1, . . . , xn]
and subsets in the affine space Kn which assigns to a set of polyno-
mials T in K[x1, . . . , xn] the algebraic set V (T ) in Kn. Let ⟨T ⟩ be
the ideal generated by a set T . It is easy to see that V (T ) = V (⟨T ⟩).
Hence, one can assume that the set T is an ideal and V establishes
a correspondence between the ideals in K[x1, . . . , xn] and algebraic
sets in Kn.
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Theorem 2.1.3 (Hilbert basis theorem). If R is a commutative
Noetherian ring (see 2.2.74), then R[x1, . . . , xn] is also Noetherian.
In particular, K[x1, . . . , xn] where K is a field is Noetherian, i.e.,
every its ideal is finitely generated. �

This implies that in the correspondence

V : ideals in K[x1, . . . , xn]→ algebraic sets in Kn,

all ideals are finitely generated. The latter means that there is no
need to consider systems with infinite number of equations: every
algebraic set can be defined by finitely many polynomials.

Let A be an arbitrary set in the affine space Kn. Define the ideal
I(A) in K[x1, . . . , xn] as the set of all polynomials vanishing at every
point from A:

I(A) = {f ∈ K[x1, . . . , xn] | f(ā) = 0, for all ā ∈ A}.

By definition, if A1 ⊆ A2, then I(A1) ⊇ I(A2). We view I as the
correspondence between subsets in the affine space Kn and ideals in
K[x1, . . . , xn]:

I : sets in Kn → ideals in K[x1, . . . , xn].

In this correspondence the image I(∅) of the empty set is the whole
ring K[x1, . . . , xn]. Hence, the image of a point is always a maximal
ideal in K[x1, . . . , xn].

Consider the general notion of a Galois correspondence between
partially ordered sets.

Definition 2.1.4. Let (P,≤) and (Q,≤) be two partially ordered
sets. A pair of order-reversing functions φ : P → Q and ψ : Q→ P
constitutes the Galois correspondence between P and Q if for all
p ∈ P and q ∈ Q we have:

ψ(φ(p)) ≥ p, φ(ψ(q)) ≥ q.

Elements p̄ = ψ(φ(p)), and q̄ = φ(ψ(q)) are called the Galois clo-
sures of p and q, respectively. Elements p ∈ P and q ∈ Q are called
Galois closed if p̄ = p and q̄ = q.

The maps V and I give rise to the Galois correspondence between
the ideals in the polynomial ring and the subsets in the affine space:{

V (T ) = {ā = (a1, . . . , an) ∈ Kn | f(ā) = 0, for allf ∈ T},
I(A) = {f ∈ K[x1, . . . , xn] | f(ā) = 0, for all ā ∈ A}.
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In a Galois correspondence φ and ψ are arbitrary order-reversing
maps. So are V and I: they are not necessarily injections or
surjections. For example, the ideals T1 = ⟨x1, . . . , xn⟩ and T2 =
⟨xk1, . . . , xkn⟩ glue together under the action of V :

V (⟨x1, . . . , xn⟩) = V (⟨xk1, . . . , xkn⟩),

and V is not injective. The map V is not surjective since there
are lots of infinite non-algebraic sets in Kn. The map I is neither
surjective, nor injective as well. For example, if K = R and A1 =
2Z ⊂ R, and A2 = 3Z ⊂ R then I(A1) = I(A2) = 0 in R[x].

On the other hand, the maps φψ and ψφ are the closure operators
for arbitrary Galois correspondence. Moreover, φ and ψ give rise to
a bijection between closed objects. Applying this observation to the
maps V and I we come up with the question: what are the closed
sets in K[x1, . . . , xn] and Kn, and how to describe the structure
of the closures IV (T ) and V I(A), where T and A are subsets in
K[x1, . . . , xn] and Kn, respectively.

According to Definition 2.1.2 algebraic sets are exactly the Galois
closed subsets in Kn. The next aim is to find out what are the Galois
closed ideals in K[x1, . . . , xn].

Definition 2.1.5. The radical Rad(J) of an ideal J in a commuta-
tive ring R is defined as

Rad(J) = {r ∈ R | rs ∈ J, for some s ∈ N}.

It is easy to see that Rad(J) is an ideal, and J ⊆ Rad(J). An
ideal J is called radical if J = Rad(J). Hence, every maximal ideal
is radical.

Theorem 2.1.6 (Hilbert’s Nullstellensatz). LetK be an algebraically
closed field. Then:

1. Every maximal ideal J in K[x1, . . . , xn] is of the form

J = ⟨x1 − a1, . . . , xn − an⟩ = I(ā),

where ā = (a1, . . . , an) is a point in Kn.
2. V (J) ̸= ∅ for every proper ideal J in K[x1, . . . , xn].
3. The Galois closure of an ideal J in K[x1, . . . , xn] is Rad(J):

Rad(J) = IV (J). �

Thus, one can say that if a ground field K is big enough (e.g.
algebraically closed), then every (consistent) system of equations
has a solution, the Galois closed objects in K[x1, . . . , xn] are exactly
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the radical ideals, and there is a one-to-one correspondence between
maximal ideals in K[x1, . . . , xn] and points in the affine space Kn:

points in Kn
I

�
V

maximal ideals in K[x1, . . . , xn].

Since for an arbitrary Galois correspondence there is a bijection
between the closed subjects, we have the bijection:

algebraic sets in Kn
I

�
V

radical ideals in K[x1, . . . , xn],

over an algebraically closed field K. For the case of an arbitrary
field K the one-to-one correspondence is as follows:

algebraic sets inKn
I

�
V

ideals of the form IV (J) inK[x1, . . . , xn],

The Galois closure IV (J) for non-algebraically closed fields heavily
depends on the ground field K (see [BCR], [Du] for the real Null-
stellensatz).

Remark 2.1.7. The nilradical of a commutative ring is the set of
all nilpotent elements of the ring. It can also be characterized as the
intersection of all prime ideals of the ring. In these terms Hilbert’s
Nullstellensatz states that for an algebraically closed field K and
arbitrary ideal J , the nilradical of the ring K[x1, x2, . . . , xn]/J coin-
cides with IV (J)/J .

Remark 2.1.8. Theorem 2.1.7 contains the so-called weak Null-
stellensatz. If K is an algebraically closed field, then the equality
Rad(J) = IV (J) implies V (J) ̸= ∅ for every proper ideal J in
K[x1, . . . , xn]. Hence, if V (J) = ∅, then J = K[x1, x2, . . . , xn].

Now we formulate as a remark another vision of affine spaces.
This viewpoint will be a base for many generalizations.

Remark 2.1.9. Let us identify a point ā = (a1, . . . , an) ∈ Kn with
the map µ = µa : K[X] = K[x1, . . . , xn] → K, defined by µ(xi) =
ai. Since K[X] = K[x1, . . . , xn] is a free algebra in the variety
of associative commutative rings with unity, every map of algebras
defined on generators gives rise to the homomorphism of algebras.

Thus, the affine space Kn can be viewed as the set of all ho-
momorphisms Hom(K[X], K). If f = f(x1, . . . , xn) ∈ K[X] and
µ ∈ Hom(K[X], K), then fµ = f(xµ1 , . . . , x

µ
n) = f(ā). A point µ is

a root of the polynomial f if f ∈ Kerµ.
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In view of Remark 2.1.9 the Galois correspondence defined above
now looks as follows. Let T be a subset in the algebra K[X]. Con-
sider T as a system of equations of the form fi = 0, where fi ∈ T .
It corresponds the set of points A ⊂ Hom(K[X], K), defined by the
rule

A = V (T ) = {µ : K[X]→ K |T ⊂ Kerµ}.
This means that a point µ belongs to V (T ) if µ is a root of every
polynomial from T.

Let A be an arbitrary set of points µ : K[X]→ K. It corresponds
the ideal I(A) in K[X] defined by

I(A) =
∩
µ∈A

Ker(µ)

This is the set of all polynomials f, such that every point µ ∈ A is
a root of f.

2.1.2 Zariski topology

Recall that a topology (B,B) on a set B is defined, if there is a
distinguished collection B of subsets in B subject to conditions:

1. ∅ ∈ B, B ∈ B.

2. If C1, C2, C3, . . . , is a family of sets from B, then
∩
i

Ci ∈ B.

3. If C1, . . . , Cn is a finite family of sets from B, then
n∪
i=1

Ci ∈ B.

The elements from B are called closed sets, their complements to B
are open sets.

Lemma 2.1.10. The map V satisfies the properties:

1. V (0) = Kn, V (K[x1, . . . , xn]) = ∅.

2. If {Ti} is a family of ideals in K[x1, . . . , xn], then
∩
i

V (Ti) =

V (
∑
i

Ti).

3. If T1 and T2 are ideals in K[x1, . . . , xn], then V (T1) ∪ V (T2) =
V (T1 ∩ T2) = V (T1T2). �

In particular, Lemma 2.1.10 states that arbitrary intersections
and finite unions of algebraic sets are algebraic sets. Hence, algebraic
sets can be considered as closed sets of some topology. This topology
is called the Zariski topology on the affine space Kn.
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Let us collect some facts about the Zariski topology (the field K
is assumed to be infinite).

• Every finite set is closed in the Zariski topology over an alge-
braically closed field, in particular, every point is closed.

• Every two non-empty open subsets of Kn have a non-empty
intersection, hence the Zariski topology is not Hausdorff.

• The Zariski topology is weaker than the usual topology where
closed sets are the zeros of continuous functions.

• Any open subset of the affine space is the Zariski dense, i.e., its
closure in the Zariski topology coincides with the whole affine
space Kn.

• Let A be a subset of Kn. The Zariski closure Ā of A coincides
with the Galois closure V I(A) of the set A.

Definition 2.1.11. A topology on Kn is Noetherian, if every de-
scending chain of closed subsets A1 ⊇ A2 ⊇ A3 ⊇ · · · stabilizes, that
is, there exists s such that Ak = Ak+1 for all k ≥ s.

The Zariski topology on Kn is Noetherian since K[x1, . . . , xn] is
Noetherian (Theorem 2.1.3) and the map V is order-reversing.

Definition 2.1.12. An affine set A is called irreducible if it cannot
be represented as a union of two proper closed subsets. Otherwise A
is reducible.

Every algebraic set A can be uniquely (up to the order of compo-
nents) represented as the finite union of irreducible closed subsets.
If the affine set A is irreducible, then I(A) is a prime ideal. The
algebraic set V (f) corresponding to an irreducible polynomial f in
K[x1, . . . , xn] is irreducible.

2.1.3 The coordinate ring of an algebraic set

Let A be an algebraic set in Kn and I(A) the corresponding ideal
in K[x1, . . . , xn].

Definition 2.1.13. The ring K[A] = K[x1, . . . , xn]�I(A) is called
coordinate ring of the algebraic set A, or the ring of polynomial
functions on A.

Since K[x1, . . . , xn] is Noetherian, the ring K[A] is also Noethe-
rian. Hence, a coordinate ring is finitely generated. If the field K
is algebraically closed, then by Hilbert’s Nullstelensatz a coordinate
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ring has no nilpotent elements. Recall that an algebra is reduced
if it has no nilpotent elements. So, a coordinate ring is a finitely
generated reduced algebra over K.

Remark 2.1.14. This property is characteristic: every finitely gen-
erated reduced algebra over K is a coordinate ring of some algebraic
set.

Since the ideal I(A) of an irreducible algebraic set A is prime,
the coordinate ring K[A] is an integral domain. This means that
K[A] does not contain zero divisors.

Definition 2.1.15. A map φ : A→ K is called a polynomial (reg-
ular) function on A if there exists a polynomial g ∈ K[x1, . . . , xn]
such that φ(ā) = g(ā) for all ā ∈ A.

Two polynomials g1 and g2 in K[x1, . . . , xn] define the same poly-
nomial function on A if and only if g1(ā)− g2(ā) = 0, for all ā ∈ A,
i.e. g1 − g2 ∈ I(A). Thus, elements of K[A] can be identified with
polynomial functions on A.

Definition 2.1.16. Let A and B be algebraic sets in Kn and Km

respectively. A map φ : A → B is called a polynomial map if there
exist polynomials g1, . . . , gm in K[x1, . . . , xn] such that for all ā ∈ A

φ(ā) = (g1(ā), . . . , gm(ā)) = b̄ ∈ B.

All polynomial maps are continuous in Zariski topology. If A, B
and C are algebraic sets and φ : A→ B, ψ : B → C are polynomial
maps, then the composition ψ ◦ φ : A → C is also a polynomial
map. A polynomial map φ : A → B, is called an isomorphism of
algebraic sets if there exists a polynomial map ψ : B → A such that
the compositions φ ◦ ψ and ψ ◦ φ are identity maps on A and B,
respectively.

2.1.4 Categories of algebraic sets and coordinate rings

Our next aim is to define the categories of algebraic sets and coor-
dinate algebras.

Denote by A(K) the category of algebraic sets over a field K. The
objects of A(K) are algebraic sets over K. Morphisms of A(K) are
polynomial maps of algebraic sets. According to Remark 2.1.14, the
category C(K) of coordinate rings is the category of finitely gener-
ated reduced algebras over K, with homomorphisms as morphisms.

Theorem 2.1.17. The category of algebraic sets A(K) is dually
equivalent to the category of finitely generated reduced K-algebras
C(K). �
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By Definition 1.2.21 the categories A(K) and C(K) are dually
equivalent if there are contravariant functors F1 : A(K) → C(K)
and F2 : C(K) → A(K) such that F1F2 and F2F1 are isomorphic
to identity functors idA(K) and idC(K). The functor F1 on objects is
defined by F1(A) = K[A], where A is an algebraic set. Let φ : A1 →
A2 be a morphism in A(K), i.e., a polynomial map of algebraic
sets. We shall define F1(φ) : K[A2] → K[A1]. The morphism
F1(φ) : F1(A2)→ F1(A1) is determined by diagram

A1
-φ A2

Z
ZZ~F1(φ)

�
�	ψ

K

where ψ is a polynomial function on A2, i.e., an element of K[A2].
Given ψ ∈ K[A2], the morphism F1(φ) acts as F1(φ)(ψ) = ψ ◦ φ ∈
K[A1]. It can be checked that F1(φ) is indeed a morphism, that is
a homomorphism of K-algebras.

Lemma 2.1.18. Given a morphism ν : K[A2]→ K[A1], there exists
a unique φ : A1 → A2 such that ν = F1(φ). �

This lemma shows that there is a bijection between morphisms
in A(K) and in C(K).

Let D be a finitely generated reduced K-algebra with the gen-
erators d1, . . . , dn. Since K[x1, . . . , xn] is the free K-algebra, the
map µ(xi) = di, i = 1, . . . , n gives rise to the homomorphism
µ : K[x1, . . . , xn] → D of K-algebras. Let J = Ker(µ). Define
F2(D) = V (J). Using Lemma 2.1.18, it is easy to see that the
contravariant functors F1 and F2 define an equivalence of the cate-
gories.

Remark 2.1.19. The algebra D is an integral domain if and only
if the ideal J is prime. In this case V (J) is an irreducible affine set.
So, the category of irreducible affine sets and the category of finitely
generated integral domains over the field K are equivalent.

Theorem 2.1.17 provides back and forth passages from the level
of algebraic sets, which is geometrical by its nature, to the level of
coordinate rings, which is purely algebraic.

Moreover, since both the categories depend on K, they can be
considered as dual algebraic-geometric invariants attached to the
field K.
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2.2 Universal Algebraic Geometry

From now on let Θ denote an arbitrary variety of universal algebras,
i.e., a class of algebras defined by some set of identities. It can be,
for example, the variety of groups, semigroups, associative algebras,
Lie algebras or any other variety. Our first aim is to set up the
system of notions of the universal algebraic geometry and to obtain
the setting similar to the classical one, described in Section 2.1.

Each notion of a universal character can be specialized to a par-
ticular variety of algebras Θ. Fixing Θ and an algebra H in Θ we
come up with the algebraic geometry in the particular Θ over a given
H.

If we want to emphasize that this geometry is built with respect
to solutions of equations we call it equational geometry. This setting
will be later on spread out to logical geometry, where the equations
are replaced by arbitrary first-order formulas.

2.2.1 Equations and affine spaces

The classical algebraic geometry starts with consideration of system
of polynomial equations. These equations are expressions of the
form f(x1, . . . , xn) = 0, where f is a polynomial, that is an element
of the polynomial algebra K[X] = K[x1, . . . , xn]. Looking at the
algebra K[x1, . . . , xn] from the positions of universal algebra we note
that K[x1, . . . , xn] is the finitely generated free algebra in the variety
Com−K of commutative associative algebras with unit over the field
K. Hence, if we take instead of Com − K an arbitrary variety Θ,
we place equations in a finitely generated free in Θ algebra W (X),
i.e.,

K[X] = K[x1, . . . , xn] is replaced by W (X), |X| <∞.

The general form of equation in an arbitrary variety Θ is:

w(x1, . . . , xn) = w′(x1, . . . , xn), w, w′ ∈ W (X), |X| = n.

This means that in universal algebraic geometry

polynomial equations f(x1, . . . , xn) = 0

are replaced by

equations w(x1, . . . , xn) = w′(x1, . . . , xn).

Remark 2.2.1. By abuse of language we will speak about ”equations
from (or over) W (X)”, having in mind that they are elements of
W (X) ×W (X). Later on we will consider them as formulas of a
special kind.
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The next object we shall introduce is the affine space. This is
the place were the solutions of equations are situated. In classical
algebraic geometry the affine spaces are of the form Kn, where K
is a ground field and n is the number of generators in a polynomial
algebra. We can also consider affine spaces Ln where L is an ex-
tension of the ground field K. In any case both K and L can be
viewed as algebras in the variety Com −K. Replace Com −K by
an arbitrary variety Θ. This leads to the following definition.

Definition 2.2.2. Let H be an arbitrary algebra in the variety Θ.
Affine spaces over H have the form Hn, where n is the number of
generators in a free algebra W (X).

A point ā of an affine space Hn is an n-tuple ā = (a1, . . . , an),
ai ∈ H, i = 1, . . . , n.

Now we explore the bijection of sets Hom(W (X), H)→ Hn.
Let ā = (a1, . . . , an) be a point in Hn. It corresponds the function

µ : X → H defined by µ(xi) = ai, i = 1, . . . , n. Since W (X) is a
free algebra, each function µ(xi) = ai, i = 1, . . . , n, gives rise to
the homomorphism µ in Hom(W (X), H). Conversely, let µ be a
homomorphism in Hom(W (X), H). It corresponds the point ā =
(a1, . . . , an) in Hn defined by µ(xi) = ai.

This correspondence allows us to identify the set of homomor-
phisms Hom(W (X), H) with Hn and to consider it as an affine
space. The next definition is equivalent to Definition 2.2.2.

Definition 2.2.3. Let H be an arbitrary algebra in the variety Θ.
Affine spaces over H have the form Hom(W (X), H), where W (X)
is a free algebra in Θ.

Homomorphisms µ from Hom(W (X), H) are the points of the
affine space Hom(W (X), H).

Usually in this book we use Definition 2.2.3 as the definition of
an affine space.

So, in universal algebraic geometry in a variety Θ:

affine spaces Kn

are replaced by

affine spaces Hn ≃ Hom(W (X), H),

where H ∈ Θ, and W (X) is a free finitely generated algebra in Θ.
Let the point µ ∈ Hom(W (X), H) be induced by a map µ : X →

H and corresponds to ā = (a1, . . . , an) in Hn, where ai = µ(xi). This
correspondence gives rise to kernels of points µ ∈ Hom(W (X), H).
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Definition 2.2.4. Let µ ∈ Hom(W (X), H) be a point in the affine
space Hom(W (X), H). The kernel Ker(µ) of the point µ is the
kernel of the homomorphism µ : W (X)→ H.

Let w1 = w1(x1, . . . , xn) and w2 = w2(x1, . . . , xn) be the elements
in W (X).

Definition 2.2.5. A point ā = (a1, . . . , an) ∈ Hn is a solution of the
equation w1 = w2 in the algebra H if w1(a1, . . . , an) = w2(a1, . . . , an).
This is equivalent to: a point µ ∈ Hom(W (X), H) is a solution of
w1 = w2 if

wµ1 = w2
µ,

where wµi = wi(µ(x1), . . . , µ(xn)).

The equality wµ1 = wµ2 means that the pair (w1, w2) belongs to
Ker(µ). In other words, a point µ is a solution of the equation
w1 = w2 if (w1, w2) belongs to the kernel of the point µ. We will say
that w1 = w2 belongs to the kernel of a point if and only if the pair
(w1, w2) belongs to this kernel.

The kernel Ker(µ) is a congruence on the algebra W (X) and,
thus, the quotient algebra W (X)/Ker(µ) is defined. These kernels
play an important role in the sequel.

If Θ is the variety Grp of all groups, then W (X) = F (X) is
a finitely generated free group. Equations in F (X) have the form
w(x1, . . . , xn) = 1, where w ∈ F (X), |X| = n. For the affine space
Hn = Hom(W (X), H) there exists a plenty of choices. If H =
F (X), then we come up with equations over the free group, and
with the corresponding geometry. If H is a simple group then we
are looking for solutions of equations in a specific simple group.

If Θ is the variety Ass−K of associative algebras over a field K,
then W (X) is the free algebra of polynomials with non-commuting
variables. The affine space is Kn = Hom(W (X), K) or Ln =
Hom(W (X), L), where L is an extension of the field K. The ob-
tained geometry is a non-commutative algebraic geometry.

If Θ is the variety Lie − K of Lie algebras over a field K, then
W (X) is the free algebra of Lie polynomials. The equations have
the form w(x1, . . . , xn) = 0, where w ∈ W (X) is a Lie polynomial.
The choice of H depends on a particular problem and can vary from
simple algebras to free algebras.

Example 2.2.6. This case is of special importance. Let Θ be a
variety of algebras, G a fixed algebra in Θ. Consider the variety
ΘG of G-algebras (see Subsection 1.2.3). A free in ΘG algebra W =
W (X) is the free product G∗W0(X), where W0(X) is a free algebra
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in Θ. The elements from the distinguished algebra G play the role
of constants in an equation w = w′, w,w′ ∈ W (X). Usual equations
in the polynomial algebra K[x1, . . . , xn] are of these type, where the
elements of the field K play the role of constants. Another popular
example of such kind is the equations from GrpF (X), where F (X) is
a free group. Here Θ is the variety of groups Grp and the G = F (X)
is the group of constants.

Example 2.2.7. Let F = F (x, y) be the free group with two gen-
erators. Take the variety Θ = GrpF , and consider the equation

xybxa = b−1

in Θ. It has a solution x = b−1a, y = a−3. Another example of an
equation in Θ = GrpF is as follows

[x, y] = [a, b],

where [x, y] = xyx−1y−1. It has two series of solutions x = abn, y =
b and x = a, y = bam, n,m = 0, 1, 2, ...

In fact, with each variety of algebras Θ the following algebraic
geometries are associated:

• Algebraic geometry in Θ, that is coefficient-free algebraic geom-
etry. In this geometry equations have the form:

w(x1, . . . , xn) = w′(x1, . . . , xn).

Solutions of equations lie in the affine space Hom(W (X), H),
where H is an algebra in Θ.

• Algebraic geometry in ΘG with coefficients in the algebra G ∈
Θ. The solutions lie in the affine space Hom(W (X), H), where
H ∈ ΘG is a G-algebra. The elements of W (X) = G ∗W0(X),
where W0(X) is the free algebra in Θ can be viewed as words in
variables x1, . . . , xn with coefficients in G. Equations in W (X)
have the form:

w(x1, . . . , xn; g1, . . . , gk) = w′(x1, . . . , xn; g1, . . . , gk),

which means that every word w in W (X) involves the variables
x1, . . . , xn and the constants g1, . . . , gk from G.

• Diophantine algebraic geometry. This is a particular case of
the previous item, i.e., the geometry in ΘG with the solutions
of equations in the affine space Hom(W (X), G). !!! See Sela for details, v

chem raznitsa ?
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2.2.2 Galois correspondence in the universal case

Let T be a system of equations of the form w(x1, . . . , xn) = w′(x1, . . . , xn),
where w,w′ ∈ W (X). With the vocabulary of Section 2.2.1 one can
define the operators:

V : systems of equations → subsets of the affine space,

and

I : subsets of the affine space→ systems of equations,

exactly in the same way as it is done for the case of classical algebraic
geometry:{
V (T ) = {ā = (a1, . . . , an) ∈ Hn | w(ā) = w′(ā), for all w = w′ ∈ T},
I(A) = {w = w′, w, w′ ∈ W (X) | w(ā) = w′(ā), for all ā ∈ A ⊂ Hn}.

As we know , the set of polynomials T and the ideal ⟨T ⟩ have the
same set of common zeros in the affine space. Analogously, the set of
equations T and the congruence ⟨T ⟩ generated by T have the same
set of solutions. Thus, the correspondence above can be viewed as
a correspondence between congruences on W (X) and subsets in the
affine space.

Warning 2.2.8. There is no reason to think that some analogue of
the Hilbert’s basis theorem holds for arbitrary Θ. Hence, the set T of
equations in W (X) can be infinite. We will discuss the Noetherian
properties in Subsection 2.2.8.

Remark 2.2.9. For the sake of convenience we will use the stroke
notation instead of V and I operators. The direction the stroke
acts is clear from the context. For example, A = T ′

H is the set of
common solutions of the equations from T . The index specifies the
affine space we are dealing with.

In the new notation the Galois correspondence can be rewritten
as{
T ′
H = A = {ā = (a1, . . . , an) ∈ Hn | w(ā) = w′(ā), for all w = w′ ∈ T, }
A′
H = T = {w = w′, w, w′ ∈ W (X) | w(ā) = w′(ā), for all ā ∈ A ⊂ Hn}.

Rewrite this Galois correspondence once again using the bijection
between Hn and Hom(W (X), H) and considering points of the
affine space as homomorphisms µ : W (X)→ H (cf. Remark 2.1.9 in
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the classical case). Recall that a point µ is a solution of the equation
w = w′ if (w,w′) belongs to the kernel of the point µ. Then

T ′
H = A = {µ : W (X)→ H | T ⊂ Ker(µ)},

A′
H = T = {(w = w′) | (w,w′) ∈

∩
µ∈A

Ker(µ)}.

The set T ′
H consists of the points µ satisfying each equation from

T . The set A′
H consists of all equations w = w′ in W (X) which

satisfy every point from A. This is always a congruence being the
intersection of kernels of homomorphisms. The congruence A′

H is an
ideal for the varieties Com −K, Ass −K, Lie −K, and a normal
subgroup for the variety Grp.

Definition 2.2.10. A set A in the affine space Hom(W (X), H)
is called an algebraic set if there exists a system of equations T in
W (X) such that each point µ of A satisfies all equations from T ,
i.e., A = T ′

H .
A congruence T in W (X) is called H-closed if there exists A such

that T = A′
H .

Example 2.2.11. The affine space Hom(W (X), H) is an algebraic
set being the solution of the system T of equations w = w, w ∈
W (X).

A point µ : W (X)→ H, µ(xi) = hi, hi ∈ H is not necessarily an
algebraic set for arbitrary Θ. However this is the event for classical
algebraic geometry and for Diophantine geometry. In the latter
case the point µ is defined by the system T of equations xi = hi,
i = 1, . . . , n.

Let Θ = GrpG. Consider an equation [x, a] = 1, where x ∈
W (X), a ∈ G. Let H be a G-group. Then the centralizer CH(a) is
an algebraic set in H.

The Galois closures of arbitrary sets A and T are defined as
A′′
H = ((A)′H)′H and T ′′

H = ((T )′H)′H , respectively. Then A′′
H is always

an algebraic set, while T ′′
H is an H-closed congruence.

The one-to-one correspondence:

algebraic sets � H-closed congruences

takes place for every Θ.

Remark 2.2.12. Hilbert’s Nullstellensatz exactly tells us what is
the description of the H-closed congruences if Θ = Com − K. It
also hints the following definition:
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Definition 2.2.13. Let T be a system of equations. The H-closed
congruence T ′′

H is called the radical of T and denoted by RadH(T ).

Given a set T , the congruence RadH(T ) is the minimal H-closed
congruence containing T . A congruence T is called radical congru-
ence if T = RadH(T ). Thus, the term radical congruence is just
another name for H-closed congruences and referring to the classi-
cal case, we can rewrite the one-to-one correspondence as:

algebraic sets � radical congruences.

2.2.3 Zarisky topology in arbitrary variety Θ

The Galois correspondence between congruences in W (X) and alge-
braic sets in the affine space Hom(W (X), H) possesses the following
properties:

Lemma 2.2.14. Given a set I, the maps ′ satisfy

1.
∩
i∈I

(Ti)
′
H = (

∪
i∈I
Ti)

′
H .

2.
∪
i∈I

(Ti)
′
H ⊂ (

∩
i∈I
Ti)

′
H .

3.
∩
i∈I

(Ai)
′
H = (

∪
i∈I
Ai)

′
H .

4.
∪
i∈I

(Ai)
′
H ⊂ (

∩
i∈I
Ai)

′
H .

If all Aα and Tα are H-closed sets, then

5. (
∪
T ′
α)′′H = (

∩
Tα)′H .

6. (
∪
A′
α)′′H = (

∩
Aα)′H . �

Thus, the intersection of algebraic sets is an algebraic set, and
the intersection of closed congruences is again a closed congruence.

Warning 2.2.15. To the contrary with the classical case the finite
union of algebraic sets is not necessarily an algebraic set.

Example 2.2.16. Let Θ = Grp and H be a cyclic group. Take
equations x2 = 1 as T1 and x3 = 1 as T2. The corresponding alge-
braic sets (T1)

′
H , (T2)

′
H in H consist of elements of exponent 2 and 3,

respectively. Then ((T1)
′
H ∪ (T2)

′
H) ̸= (T1 ∩ T2)′H , because the latter

algebraic set consists of elements of exponent 6. Moreover, it is easy
to see that if H is an abelian group, then any algebraic set A ⊂ Hn

is always a subgroup of Hn. Hence, ((T1)
′
H ∪ (T2)

′
H) ̸= (T1∩T2)′H for

arbitrary T1 and T2, since the union of subgroups is not a subgroup
(assuming T1 ̸⊆ T2 and T2 ̸⊆ T1).
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Definition 2.2.17. The algebra H is said to be geometrically stable
if for every W (X) ∈ Θ and every two algebraic sets A and B in the
space Hom(W (X), H) the union A ∪B is also an algebraic set.

Remark 2.2.18. Geometrically stable algebras are also called equa-
tional domains ([DMR4]).

In particular,

((T1)
′
H ∪ (T2)

′
H) = (T1 ∩ T2)′H ,

for geometrically stable algebras. A general criteria for an alge-
bra H from a variety Θ or ΘG to be geometrically stable is given
in terms of Ω-groups (i.e., multioperator groups, see [Hig], [Ku1]).
It turns out, that most of the interesting cases: non-abelian free
groups, free commutative and associative algebras, free associative
algebras and free Lie algebras, simple groups, fields and skew fields
are geometrically stable (see [BPP]).

If an algebra H in the variety Θ is geometrically stable, then one
can introduce a Zariski topology in the affine space Hom(W (X), H)
in a usual way, declaring affine sets to be closed sets in this topology.
Indeed, arbitrary intersections and finite unions of algebraic sets are
algebraic sets in geometrically stable algebras.

We shall make some remarks about trivial cases. A congruence
T corresponding to equalities w = w is called zero congruence. T is
called a unity or a non-proper congruence, if (w,w′) ∈ T is fulfilled
for every w,w′ ∈ W (X). These congruences are denoted as T = 0,
T = 1, respectively.

Define a zero subalgebra of H as a subalgebra consisting of one
element which is distinguished by a unique nullary operation. For
example, zero element in an associative algebra is considered as a
zero subalgebra. Analogously, unit element is a zero subalgebra in
any group.

We have 0′
H = Hom(W (X), H) and, therefore, Hom(W (X), H)

is an algebraic set. As for 1′
H , this is either an empty set, or a zero

point in Hom(W (X), H), sending W (X) to the zero subalgebra in
H, if the latter exists.

Remark 2.2.19. If we consider equations in ΘG (see Example 2.2.6),
i.e., equations with constants from an algebra G, then always 1′

H =
∅. If we consider equations without constants, then 1′

H can be a
zero subalgebra. For example, if Θ = Grp, then any set T of
equations of the form w(x1, . . . , xn) = 1 has a common solution
µ ∈ Hom(W (X), H) such that xµi = 1, i = 1, . . . , n.



64 CHAPTER 2. BASICS OF UNIVERSAL ALGEBRAIC GEOMETRY

Zero congruence is not necessarily closed in W (X) because (0)′′H=(
Hom(W (X), H)

)′
H

= T , where T is the congruence of all identities
of H in the free algebra W (X). This is the minimal closed congru-
ence in W (X). If an algebra H generates the whole variety Θ, then
0′′
H = 0, and 0 is a closed congruence. We use the following agree-

ment regarding empty sets: if T = ∅, then T ′
H = Hom(W (X), H);

if A = ∅ then A′
H = 1.

The constructed Zariski topology on the affine spaceHom(W (X), H),
where H ∈ Θ is a geometrically stable algebra, maintains many
properties of the Zariski topology for the classical geometry. In
particular, it introduces the Zariski topology on algebraic subsets
in the affine space, the Zariski closure Ā of an arbitrary set A ⊂
Hom(W (X), H) coincides with its Galois closure A′′

H , etc. How-
ever,

Warning 2.2.20. To the contrary with the classical case the affine
space Hom(W (X), H) is not necessarily Noetherian for arbitrary
H ∈ Θ (cf. Warning 2.2.8).

The problem whether the Zariski topology over H ∈ Θ is Noethe-
rian, is one of the key problems of the whole theory. As soon as
geometry for the particular H ∈ Θ turns to be Noetherian, there is
a reasonable basis for the use of geometric methods (see Subsection
2.2.8 for details).

Now we define the Zariski topology for not necessarily stable
algebras. Given A and B the algebraic sets in Hom(W (X), H),
define

A∪B = (A ∪B)′′H .

If T1 and T2 are closed congruences in W (X), then we set

T1∪T2 = (T1 ∪ T2)′′H .

Definition 2.2.21. Let Θ be a variety of algebras and H an al-
gebra in Θ. Closed sets in the Zariski topology on the affine space
Hom(W (X), H) are represented by finite unions of algebraic sets
and their arbitrary intersections.

In topological terms this definition means that algebraic sets form
a pre-base of closed sets for Zariski topology. In other words, the
Zariski topology on Hom(W (X), H) is a topology with respect to
the generalized union operation ∪. If the algebra H is geometrically
stable, then

A∪B = A ∪B,
and we obtain the usual Zariski topology of algebraic sets.
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For a given H ∈ Θ and W = W (X), denote by AlvH(W ) the set
of all algebraic sets in Hom(W (X), H), and by ClH(W ) the set of
all H-closed congruences in W (X). The sets AlvH(W ) and ClH(W )

constitute lattices with respect to operations
∪

defined above.

Proposition 2.2.22. Lattices AlvH(W ) and ClH(W ) are dual. �

The duality is determined by the transition A → A′ and the
properties 5, 6 from Lemma 2.2.14. If H is a stable algebra, then
every lattice AlvH(W ) is distributive. In this case it is a sublattice
in the lattice BoolΘ(W,H) of all subsets in Hom(W (X), H). A dual
lattice ClH(W ) is also distributive. In general, the lattice AlvH(W )
is not necessarily distributive. Hence, AlvH(W ) is not a sublattice
in BoolΘ(W,H).

There is another approach to the Zariski topology onHom(W (X), H),
which hints further generalizations. Let us look at the formulas

w1 = v1 ∨ · · · ∨ wn ≡ vn, wi, vi ∈ W (X),

called pseudo-equalities. Considering them as pseudo-equations, we
say that a point µ ∈ Hom(W (X), H) is a solution of a pseudo-
equation if there exists 1 ≤ i ≤ n such that wµi = vµi . One can build
the Galois correspondence with respect to pseudo-equations, and to
define pseudo-algebraic sets as sets of common solutions of systems
of pseudo-equations.

Proposition 2.2.23. Closed sets in the Zariski topology on the
space Hom(W (X), H) coincide with pseudo-algebraic sets.

According to definitions, every algebraic set is a pseudo-algebraic.
Conversely, if an algebra H is stable, then every pseudo-algebraic set
is algebraic.

2.2.4 Coordinate algebras

Our next aim is to imitate Definition 2.1.13 of the coordinate ring
for the case of arbitrary variety Θ.

Definition 2.2.24. Let A be an algebraic set, T = A′
H the corre-

sponding H-closed congruence. AlgebraW/T is called the coordinate
algebra of the algebraic set A.

Coordinate algebras have many algebraic faces. First of all, sim-
ilarly to the classical case they can be treated as algebras of regular
functions on A.
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Definition 2.2.25. Let A be an algebraic set, H ∈ Θ. A function
α : A → H is said to be regular if there is w ∈ W (X) satisfying
α(µ) = wµ, for every point µ ∈ A.

The function α can also be defined via another element w0 ∈
W (X). Then wµ = wµ0 for every µ ∈ A. This means that (w,w0) ∈
A′
H . Hence, the coordinate algebra W/A′

H is isomorphic to the al-
gebra of regular functions on A.

The problem of characterization of H-closed congruences for a
specific variety Θ is, in fact, a Nullstellensatz-type problem for this
Θ and H ∈ Θ. It is a challenge, since each particular variety Θ
and H ∈ Θ has its own Nullstellensatz. However, let us point out
some algebraic properties of the closed congruences and coordinate
algebras which can be viewed through the prism of the general Null-
stellensatz.

First of all, let us make a comment on the structure of the ”gen-
eral solution” of equations from T . We look for solutions in the alge-
bra H ∈ Θ. Consider the natural homomorphism µ0 : W → W/T .
This homomorphism gives rise to the commutative diagram

W -µ0 W/T

?
′

?
′

Hom(W,H) �̃µ0 Hom(W/T,H)

where µ̃0 is defined by µ̃0(ν) = νµ0, for ν ∈ Hom(W/T,H). Denote

Hom(W/T,H)µ0 = {νµ0 : W → H | ν ∈ Hom(W/T,H)}.

Commutativity of the diagram implies

Proposition 2.2.26.

T ′
H = Hom(W/T,H)µ0,

for any T ∈ W . Moreover, µ̃0 : Hom(W/T,H)→ T ′
H is a bijection.

�
Thus, the set of solutions A of the system of equations T , where

T is a congruence, can be presented as:

T ′
H = A = Hom(W/T,H)µ0.

For arbitrary algebras H and G, denote

(H −Ker)(G) =
∩

ν:G→H

Kerν.

Let T be a congruence in W and take µ0 : W → W/T. Using
Proposition 2.2.26 we have
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Proposition 2.2.27.

T ′′
H = µ−1

0

(
(H −Ker)(W/T )

)
.

Proof. Let τ = (H −Ker)(G). Consider W
µ0→ G

µ1→ G/τ, where µ1

is the natural homomorphism, and set T̃ = Ker(µ0µ1). Then wT̃w′

means that wµ0Ker(µ1)w
′µ0 , i.e. wµ0τw′µ0 . So, T̃ = µ−1

0 (τ). We

shall verify that T̃ = T ′′
H .

Assume that wT̃w′. By definition of τ , we have (wµ0 , w′µ0) ∈
Ker(ν) and wµ0ν = w′µ0ν for every ν : G → H. By Proposition
2.2.26, µ0ν is an element of T ′

H = A, and (w,w′) ∈ Ker(µ0ν).

Therefore, (w,w′) ∈ T ′′
H , and thus T̃ ⊂ T ′′

H .
Now assume that wT ′′

Hw
′. Then wµ0ν = w′µ0ν for every ν : G →

H, and (wµ0 , w′µ0) ∈
∩
ν Ker(ν) = τ . This implies that wµ0µ1 =

w′µ0µ1 and wT̃w′. So, T ′′
H ⊂ T̃ . Thus, T̃ = T ′′

H for every G. Take
G = W/T .

Proposition 2.2.27 can be viewed as one of the forms of Hilbert’s
Nullstellensatz.

Example 2.2.28. Let us derive the classical Hilbert’s Nullstellen-
satz (Theorem 2.1.6) from Proposition 2.2.27. We use two general
facts (see [AM], [E]).

The first one says that if H is a finitely generated associative
and commutative algebra, then its Jacobson radical J(H) is, at the
same time, the nill-radical of H, i.e., it coincides with the set of all
nilpotent elements of H.

The other fact is as follows: if T is a proper ideal of the ring
R = K[x1, . . . , xn], and L is the algebraically closed extension of
the field K, then there is a homomorphism µ : R → L, such that
T ⊂ Kerµ. A property like this could serve as a general definition
of the algebraic closeness of arbitrary universal algebras.

We shall check that:

((L−Ker)(W/T )) = J(R/T ).

The radical J(R/T ) is the intersection of all maximal ideals. Sup-
pose that T0/T is a maximal ideal of R/T . Then T0 is a maximal
ideal of R, and there is a homomorphism µ : R → L with T0 ⊂
Kerµ. It follows from the maximality condition that T0 = Kerµ.
Since T ⊂ Kerµ, the homomorphism µ induces another homomor-
phism ν : R/T → L and here T0/T = Kerν. Therefore, every
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maximal ideal of R/T is realized as the kernel of some ν. This
means that the inclusion

((L−Ker)(W/T )) ⊂ J(R/T )

holds. Every element of J(R/T ) is nilpotent, and every nilpotent
element of R/T belongs to the kernel of any ν : R/T → L. Hence
the converse inclusion is true. The Hilbert’s theorem (see Theo-
rem 2.1.3) now follows from Proposition 2.2.27.

Since T ′′
H is the minimal H-closed congruence containing T , it

can be represented as the intersection of all H-closed congruence
containing T , i.e., T =

∩
Tα, where all Tα are H-closed. Every

W/Tα lies in H. Then, by Remak’s theorem

Proposition 2.2.29. A congruence T in W is H-closed if and only
if for some set I there is an injection

W/T → HI . �

From Proposition 2.2.29 follows that an algebra G ∈ Θ can be
presented as a coordinate algebra of an algebraic set A over given
algebra H ∈ Θ if and only if G is finitely generated algebra and
there is an injection G→ HI for some set I.

Recall, that the class of algebras X is called a prevariety if X
is closed under Cartesian products and subalgebras (see Subsec-
tion 1.1.6).

For an arbitrary class X the corresponding closure up to pre-
variety is SC(X) (Proposition 2.2.30). Here S and C are closure
operators on classes of algebras: C under Cartesian products and S
under subalgebras. Proposition 2.2.29 implies

Proposition 2.2.30. A congruence T in W is H-closed if and only
if W/T ∈ SC(H). �

Besides, if T is an arbitrary binary relation in W, then T ′′
H is an

intersection of all congruences Tα with T ⊂ Tα and W/Tα ∈ SC(H).

Definition 2.2.31. An algebra G is called residually H (or H sep-
arates G) if for every pair of elements g1 and g2 in G, g1 ̸= g2, there
exists a homomorphism φ : G→ H such that φ(g1) ̸= φ(g2).

An algebra is residually H if and only if there exists a set of
congruences ρα, such that

∩
ρα = 1 and for every α there is a

monomorphism G/ρα → H.
We collect the properties of coordinate algebras in
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Proposition 2.2.32. Let T be a congruence in W (X). Algebra
W/T ∈ Θ is a coordinate algebra of an algebraic set A in Hom(W (X), H)
if and only if one of the following conditions hold:

• W/T is embedded in HI , for some set I,

• W/T belongs to the prevariety generated by the algebra H,

• W/T is a residually H algebra. �

2.2.5 Categories of coordinate algebras and algebraic sets

Let Θ0 be the category of all free algebras W = W (X) in Θ, where
X is finite. Homomorphisms of algebras are morphisms in Θ0.

Let us introduce the category of affine spaces K0
Θ(H). Objects of

this category are affine spaces

Hom(W (X), H).

Morphisms

s̃ : Hom(W (X), H)→ Hom(W (Y ), H)

of K0
Θ(H) are induced by homomorphisms s : W (Y ) → W (X) ac-

cording to the rule s̃(ν) = νs for every ν : W (X)→ H.
The correspondence W (X) → Hom(W (X), H) and s → s̃ gives

rise to a contravariant functor

F : Θ0 → K0
Θ(H).

Proposition 2.2.33. The functor F : Θ0 → K0
Θ(H) determines the

duality of categories if and only if V ar(H) = Θ.

Proof. The condition of duality means that if s1 ̸= s2 for the given
morphisms s1, s2 : W (Y )→ W (X), then s̃1 ̸= s̃2.

Let assume that V ar(H) = Θ and the categories are not dual,
so there are morphisms s1 and s2 such that s1 ̸= s2 and s̃1 = s̃2.
Take some y ∈ Y such that s1(y) = w1, s2(y) = w2 and w1 ̸= w2.
We will show that in the algebra H there is the non-trivial identity
w1 ≡ w2. Take an arbitrary homomorphism ν : W (X) → H. The
equality s̃1 = s̃2 implies s̃1(ν) = s̃2(ν) or νs1 = νs2. We apply this
morphism to the variable y:

νs1(y) = νs2(y) or ν(w1) = ν(w2).

Since ν : W (X)→ H is an arbitrary homomorphism, then w1 ≡ w2

is an identity of the algebra H. But V ar(H) = Θ, which means
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that there are no non-trivial identities in V ar(H). So, we have a
contradiction and the condition V ar(H) = Θ implies duality of the
given categories.

Now we show that if V ar(H) ⊂ Θ then there is no duality. Let
w1 ≡ w2 be some non-trivial identity of the algebra H. Take Y =
{y0} and let s1(y0) = w1, s2(y0) = w2. For any ν : W (X) → H we
have

ν(w1) = ν(w2), νs1(y0) = νs2(y0), s̃1(ν)(y0) = s̃2(ν)(y0).

Since the set Y contains only one element y0, then s̃1(ν) = s̃2(ν).
Since ν is arbitrary homomorphism, then s̃1 = s̃2 and there is no
duality of the categories.

Definition 2.2.34. A map of affine spaces α : Hom(W (X), H)→
Hom(W (Y ), H) is called regular (polynomial) if it coincides with
some s̃ : Hom(W (X), H)→ Hom(W (Y ), H).

Proceed now to the category KΘ(H) of algebraic sets. Its ob-
jects have the form (X,A), where A is an algebraic set in the space
Hom(W (X), H).

Let us call s : W (Y ) → W (X) admissible with respect to alge-
braic sets A ⊂ Hom(W (X), H) and B ⊂ Hom(W (Y ), H) if ν ∈ A
implies s̃(ν) = νs ∈ B. Given admissible s : W (Y ) → W (X), a
morphism [s] : (X,A)→ (Y,B) is defined by

[s](A) = {µ | µ = s̃(ν) = νs, ν ∈ A}.

Definition 2.2.35. A map α : A → B of algebraic sets is called
regular if there exists [s] : A → B, such that α(ν) = s̃(ν), for all
ν ∈ A.

Morphisms of KΘ(H) are regular maps of algebraic sets. So,
morphisms of the category KΘ(H) of algebraic sets are defined via
regular maps of affine spaces.

The category KΘ(H) is the full subcategory of the category SetH ,
whose objects have the form (X,A), where A is an arbitrary subset
in the space Hom(W (X), H) while morphisms coincide with mor-
phisms of KΘ(H).

Let us define the category CΘ(H). Its objects are coordinate al-
gebras and have the form W/T , where W is an abject of the category
Θ0 and T is an H-closed congruence in W . Morphisms of CΘ(H)
are the homomorphisms of algebras in the variety Θ.

Our next aim is to relate the categories of algebraic sets KΘ(H)
and of coordinate algebras CΘ(H).



2.2. UNIVERSAL ALGEBRAIC GEOMETRY 71

Let T2 and T1 be congruences in W (Y ) and W (X), respectively.
A homomorphism s : W (Y )→ W (X) is admissible with respect to
congruences T2 and T1 if for w ≡ w′ ∈ T2 we have s(w) ≡ s(w′) ∈ T1.

Suppose that A = (T1)
′
H , B = (T2)

′
H and consider s : W (Y ) →

W (X).

Lemma 2.2.36. A homomorphism s : W (Y ) → W (X) is admis-
sible with respect to congruences if and only if s is admissible with
respect to algebraic sets.

Proof. Assume that νs ∈ B for every ν ∈ A and that w T ′′
2 w

′.
We need to check that s(w)T ′′

1 s(w
′). We have T ′′

1 = A′ and T ′′
2 =

B′. Moreover, A′ =
∩
ν∈AKer(ν). Check that, for all ν ∈ A,

(s(w), s(w′)) ∈ Ker(ν) or, in other words, νs(w) = νs(w′). By
definition, T ′′

2 = B′ =
∩
µ∈BKer(µ). Hence, wT ′′

2w
′ means that

µ(w) = µ(w′). In particular, this is true for µ = νs, and then
νs(w) = νs(w′).

Conversely, assume that w T ′′
2 w

′ implies s(w)T ′′
1 s(w

′). Given ν ∈
A, check that νs ∈ B i.e., νs(w) = νs(w′) whenever w T ′′

2 w
′. The

latter condition implies s(w)T ′′
1 s(w

′). So, if ν ∈ A, then νs(w) =
νs(w′), that is νs ∈ B.

Lemma 2.2.37. Every morphism [s] : A → B induces a homo-
morphism s : W (Y )/B′

H → W (X)/A′
H . Conversely, every homo-

morphism σ : W (Y )/B′
H → W (X)/A′

H gives rise to a morphism
[s] : A→ B.

Proof. Suppose we have a morphism [s] : A→ B, where A = T ′
1 and

B = T ′
2. The homomorphisms s :W (Y )→W (X) and σ0 :W (X) →

W (X)/T ′′
1 define sσ0 : W (Y ) → W (X)/T ′′

1 . By Lemma 2.2.36, the
congruence T ′′

2 lies in Ker(sσ0). Hence, the homomorphism σ =
s : W (Y )/T ′′

2 → W (X)/T ′′
1 is defined. It remains to observe that

T ′′
2 = B′ and T ′′

1 = A′.
Conversely, suppose a homomorphism σ : W (Y )/T ′′

2 → W (X)/T ′′
1

is given. We have a commutative diagram

W (Y ) -s W (X)

?
σ1

?
σ0

W (Y )/T ′′
2

-σ W (X)/T ′′
1 .

Assume that wT ′′
2w

′. This means that σ1(w) = σ1(w
′). Then

σσ1(w) = σσ1(w
′) and σ0s(w) = σ0s(w

′), whence s(w)T ′′
1 s(w

′). By
Lemma 2.2.36 we have a morphism s : A→ B.

Corollary 2.2.38. If s1 and s2 are admissible with respect to A and
B and [s1] = [s2] : A→ B, then s1 = s2.
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Proof. Follows from the construction of s in Lemma 2.2.37. See also
?? (Part II).

The correspondence [s]→ s̄ and (X,A)→W (X)/A′
H determines

the contravariant functor F from KΘ(H) to CΘ(H). The correspon-
dence s̄ → [s] and W/T → (X,T ′

H) gives rise to the contravariant
functor F ′ : CΘ(H)→ KΘ(H). Lemma 2.2.37 and Corollary 2.2.38
yield that any regular map α = [s] : A → B induces the homo-
morphism s̄ : W (Y )/B′

H →W (X)/A′
H in a unique way. Hence, the

pair of functors F and F ′ determines the duality of the categories
KΘ(H) and CΘ(H). We shall state this important fact as a theorem.

Theorem 2.2.39 ([Pl-7L],[DMR2]). The category of algebraic sets
KΘ(H) is dually isomorphic to the category of coordinate algebras
CΘ(H).

Proof. Let [s1], [s2] : A→ B be given. Suppose that [s1] = [s2]. We
have to check that F([s1]) = F([s2]). The latter means that s1 = s2,
which follows from Corollary 2.2.38.

Corollary 2.2.40. The category of algebraic sets KΘ(H) is dually
equivalent to the category of residually H algebras.

Proof. By Proposition 2.2.32 every residually H-algebra is isomor-
phic to a coordinate algebra.

Remark 2.2.41. Theorem 2.2.39 is completely parallel to Theo-
rem 2.1.17 from the classical geometry. The general regular maps
are converted for the variety Com−K to usual polynomial maps be-
tween algebraic sets. Theorem 2.1.17 is a particular case of Theorem
2.2.39.

Recall that a subcategory L of a category K is a skeleton of K
if the inclusion functor is an equivalence, and no two objects of L
are isomorphic. Two categories are equivalent if and only if their
skeletons are isomorphic.

The skeleton of the category KΘ(H) is denoted by K̃Θ(H). The

objects of K̃Θ(H) are called algebraic varieties over H.

2.2.6 Geometrically equivalent algebras

Suppose we have algebras H1 and H2 from the same variety Θ. We
want to compare their abilities with respect to solving systems of
equations. This point of view hints the following definition.
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Definition 2.2.42. Algebras H1 and H2 in Θ are called geometri-
cally equivalent if for every finite X and every system of equations
T in the free algebra W (X), the equality

T ′′
H1

= T ′′
H2

takes place.

This condition is equivalent to the following one: T ′′
H1

= T if and
only if T ′′

H2
= T , i.e., any congruence T in W (X) is H1-closed if and

only if it is H2-closed. Hence, the corresponding coordinate algebras
coincide, and

Proposition 2.2.43. If the algebras H1 and H2 in Θ are geomet-
rically equivalent, then the categories of algebraic sets KΘ(H1) and
KΘ(H2) are isomorphic. �

So, the geometrical equivalence of algebras H1 and H2 is a suf-
ficient condition which provides isomorphism of the categories of
algebraic sets KΘ(H1) and KΘ(H2). Necessary and sufficient condi-
tions for isomorphism of KΘ(H1) and KΘ(H2) will be considered in
Section 2.2.7.

For the classical case Θ = Com −K geometrical equivalence of
algebras looks as follows. Two extensions L1 and L2 of the field K
are geometrically equivalent if for every finite X and every ideal T
in the polynomial algebra K[X] the equality

T ′′
L1

= T ′′
L2

takes place.
If L1 and L2 are arbitrary algebraically closed extensions of K,

then they are geometrically equivalent. Note that finite extensions
L1 and L2 of K are geometrically equivalent if and only if they are
isomorphic.

Theorem 2.2.44. If the field K is algebraically closed, then all its
extensions are geometrically equivalent. If every two extensions of
K are geometrically equivalent, then K is algebraically closed.

Proof. If K is an algebraically closed field, then Hilbert’s Nullstel-
lensatz implies

T ′′
L1

= Rad(T ) = {t ∈ K[x1, . . . , xn] | ts ∈ T, s ∈ N} = T ′′
L2
,

for every ideal T in K[X]. Hence, every two extensions of the alge-
braically closed field are geometrically equivalent.

Conversely, suppose that every two extensions of K are geomet-
rically equivalent. Let L be the algebraic closure of K. Then K
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and L are geometrically equivalent. Hence T ′′
K = T”′′

L = Rad(T ). In
view of Remark 2.1.8, T ′′

K = Rad(T ) implies that if V (J) = ∅ for
an ideal J ∈ K[x1, . . . , xn], then J = K[x1, x2, . . . , xn]. Hence, the
field K is algebraically closed since over a non-algebraically closed
field K there exists a non-constant polynomial without roots in K.

In the general case geometrical equivalence of algebras heavily
depends on the ground field K.

A field K is called formally real if −1 is not a sum of squares in
K. The class of such fields coincides with the class of fields that
admit an ordering. A formally real field which has no formally real
algebraic extensions is called a real closed field. From Nullstellensatz
for real closed fields follows that two real extensions of a real closed
field are geometrically equivalent. However,

Theorem 2.2.45 ([Berzins-GeomEquiv]). Two real closed exten-
sions L1 and L2 of a field K are geometrically equivalent if and only
if they induce equal orders on K. �

Example 2.2.46. Let K = Q(α), α2 = 2. There exist two different
embeddings of K into the field of real numbers R:

Q(α)→ R, α =
√

2,

Q(α)→ R, α = −
√

2,

Let us check that these extensions L1 and L2 are not geometrically
equivalent. Indeed, take the ideal T = ⟨x2−α⟩ in K[x]. In the first
extension the polynomial x2 − α has two roots, and so T ′′

L1
= I. In

the second extension it has no roots, and so T ′′
L2

= ⟨1⟩. This yields
that these extensions are not geometrically equivalent and hence,
the condition from Theorem 2.2.45 is necessary.

The problem of geometric equivalence for arbitrary fields is diffi-
cult (see [Berzins-GeomEquiv] for discussions).

Geometric equivalence relation behaves well with respect to Carte-
sian products of algebras. Assume that there is a nullary operation
0 among the ground operations of the variety Θ which singles out
of every G ∈ Θ a one-element subalgebra.

Proposition 2.2.47. Suppose that algebras Hα and H ′
α, α ∈ I are

geometrically equivalent. Then the Cartesian products H1 =
∏

αHα

and H2 =
∏

αH
′
α are also geometrically equivalent. Conversely, if∏

αHα and
∏

αH
′
α are geometrically equivalent, then Hα and H ′

α,
α ∈ I are geometrically equivalent too.
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Proof. We shall prove that T ′′
H1

= T ′′
H2

. Check, first, that

(
∏
α

Hα −Ker)(G) =
∩
α

(Hα −Ker)(G),

where (H − Ker)(G) =
∩
ν:G→H Ker(ν). Let τ1, τ2 stand for the

left and right hand congruences, respectively. Assume that g1τ2g2
for g1, g2 ∈ G. Thus, gν1 = gν2 for all α ∈ I and ν: G → Hα. Let
us take µ : G →

∏
αHα and verify that gµ1 = gµ2 . This equality

means that gµ1 (α) = gµ2 (α) for every α ∈ I. We use the projections
πα :

∏
αHα → Hα and denote µπα = να. Then gµ1 (α) = gνα1 = gνα2 =

gµ2 (α), i.e. gµ1 = gµ2 and, further, g1τ1g2.
Conversely, let g1τ1g2. Given α ∈ I and ν : G → Hα, define µ

by the rule: gµ(α) = gν , and gµ(β) is the zero if β ̸= α. Then
µ : G →

∏
αHα and gµ1 = gµ2 . But then gµ1 (α) = gν1 = gµ2 (α) = gν2 .

Therefore, g1τ2g2.
Hence,

(
∏
α

Hα −Ker)(G) =
∩
α

(Hα −Ker)(G) =

=
∩
α

(H ′
α −Ker(G)) = (

∏
α

H ′
α −Ker)(G).

If G = W/T , then T ′′
H1

= T ′′
H2

by Proposition 2.2.27.

Corollary 2.2.48. For every algebra H ∈ Θ and every set I, the
algebras H and HI are geometrically equivalent. �

Our next goal is to introduce a logical criterion for geometrically
equivalent algebras. Recall, (see Subsection 1.1.6), that a quasi-
identity in Θ has the form

w1 ≡ w′
1 ∧ · · · ∧ wn ≡ w′

n → w0 ≡ w′
0,

where wi, w
′
i, w, w

′ belong to W (X) with finite X.
We consider also more general quasi-identities of the form

(
∧

(w,w′)∈T

w ≡ w′)→ w0 ≡ w′
0,

or, for short,
T → w0 ≡ w′

0,

where the set T is not necessarily finite.

Definition 2.2.49. A quasi-identity is called infinitary if the set T
is infinite, and finitary in the opposite case.
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Recall that, a quasivariety (see Subsection 1.1.6), is a class of
algebras defined by finitary quasi-identities. A class qV ar(H) is the
minimal quasivariety containing the algebra H. All algebras from
qV ar(H) have the same quasi-identities as H.

Observe that

Proposition 2.2.50. w0 ≡ w′
0 ∈ T ′′

H if and only if the quasi-identity
T → w0 ≡ w′

0 holds in the algebra H.

Proof. By definition, w0 ≡ w′
0 ∈ T ′′

H if and only if (¬T ∨ (w0 ≡ w′
0))

holds true for every µ : W (X)→ H.

This remark provides one more point of view on H-closed con-
gruences and, thus, on general Hilbert Nullstellensatz. It implies

Proposition 2.2.51. Algebras H1 and H2 in Θ are geometrically
equivalent, if and only if each quasi-identity T → w0 ≡ w′

0 (finitary
or infinitary), which holds in H1 is a quasi-identity of the algebra
H2, and vice versa. �

Hence,

Proposition 2.2.52. If the algebras H1 and H2 are geometrically
equivalent, then they generate the same quasivariety

qV ar(H1) = qV ar(H2).

In particular, varieties generated by geometrically equivalent algebras
H1 and H2 coincide

V ar(H1) = V ar(H2). �

Corollary 2.2.53. If two groups H1 and H2 are geometrically equiv-
alent and one of them is torsion-free, then the second one is also
torsion-free. �

Warning 2.2.54. For an arbitrary variety Θ the set of equations
can be not reduced to a finite set, and the converse statement to
Proposition 2.2.51 is expected to be false. Indeed,

Theorem 2.2.55 ([MR]). There exists the variety of algebras Θ,
algebra H1 ∈ Θ and an ultrapower H2 of H1, such that the algebras
H1 and H2 are not geometrically equivalent. �

Algebras H1 and H2 are called elemetarily equivalent if they sat-
isfy the same first-order sentences (see Section 3.1.1). By theorem of
 Loś’s ( [Marker], [Lo]), an algebra and its ultrapower have the same
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elementary theory and, hence, the same quasi-identities. Thus, The-
orem 2.2.55 yields an example of non-geometrically equivalent alge-
bras which generate the same quasivariety (cf., Theorem 2.2.108).
Moreover, counter-examples to converse of Proposition 2.2.51 exist
among finitely generated groups:

Theorem 2.2.56 ([MR]). There exists a group H1 and a finitely
generated group H2, such that qV arH1 = qV arH2, but H1 and H2

are not geometrically equivalent. �
Compare now the notions of elementary equivalence and geomet-

ric equivalence of algebras. Elementarily equivalent algebras H1 and
H2 satisfy the same sentences. On the other hand, if H1 and H2 are
geometrically equivalent, then they have the same (infinitary in gen-
eral) quasi-identities. Since infinitary quasi-identities are not a part
of first-order formulas, these two notions should be distinct. This is
the case, indeed.

In one direction, Theorem 2.2.55 provides an example of elemen-
tary equivalent algebras which are not geometrically equivalent.

In the other one, an example of non-elementary equivalent geo-
metrically equivalent algebras can be found in the classical variety
Θ = Com − K. Let K be an algebraically closed field and L be
its non-algebraically closed extension. Then L and K are geometri-
cally equivalent (see Theorem 2.2.44), while they are not elementary
equivalent.

Let f(x) = α0 + α1x · · ·+ αnx
n be a polynomial with the coeffi-

cients in L and without roots in L. Take a polynomial over K

φ(x, y0, . . . , yn) = y0 + y1x+ · · ·+ ynx
n

and consider a formula

∀y0 . . . yn∃x(φ(x, y0, . . . , yn) = 0).

This formula holds in K and does not hold in L.
Warning 2.2.54 is not relevant if the algebras H1 and H2 are

geometrically Noetherian (see Definition 2.2.78). This is the case,
when every infinite set of equations T can be replaced by a finite set
T0. Proposition 2.2.51 immediately implies the following.

Proposition 2.2.57. Geometrically Noetherian algebras H1 and H2

are geometrically equivalent if and only if

qV ar(H1) = qV ar(H2). �

Since coincidence of elementary theories of algebras implies coin-
cidence of their quasi-identities, we have
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Corollary 2.2.58. If two geometrically Noetherian algebras H1 and
H2 are elementary equivalent, then they are geometrically equivalent.
�

In particular

Corollary 2.2.59. Two extensions L1 and L2 of a field K are ge-
ometrically equivalent if and only if they satisfy the same quasi-
identities. If extensions L1 and L2 of a field K are elementary
equivalent, then they are geometrically equivalent. �

Geometric equivalence of algebras is tightly connected with pre-
varities of algebras.

For every class of algebras X define a local operator L as follows:
H ∈ LX if every finitely generated subalgebra H0 of H belongs to
X.

Definition 2.2.60. A prevariety of algebras X is called locally closed
if it is closed under the local operator L.

If H is an algebra then the class LSC(H) is the locally closed
prevariety generated by H. Here, S and C are the standard clo-
sure operators on classes of algebras, used in the characterization of
prevarieties (see Section 1.1.6).

Proposition 2.2.61 ([PPT]). Two algebras H1 and H2 are geo-
metrically equivalent if and only if the corresponding locally closed
prevarities coincide:

LSC(H1) = LSC(H2). �

We shall add that according to Proposition 2.2.30 finitely gen-
erated algebras in the prevariety SC(H) are coordinate algebras of
algebraic sets over H.

For any class X the locally closed prevariety LSC(X) is contained
in the quasivariety, generated by X [PPT],[MR].

The class LSC(X) is not a quasivariety and, moreover, not an
axiomatized class (see [MR],[Mal1]). In this sense, the relation of
geometric equivalence of algebras is not an axiomatizable relation.
This relation is axiomatizable in terms of infinitary quasi-identities.

Classification of algebras with respect to geometric equivalence is
a difficult but challenging problem. For example, geometric equiva-
lence of the abelian groups looks as follows:

Theorem 2.2.62. Two abelian groups H1 and H2 are geometrically
equivalent if and only if the following two conditions hold
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1. V arH1 = V arH2.

2. For every prime p and the corresponding Sylow subgroups (H1)p
and (H2)p,

V ar(H1)p = V ar(H2)p.

Since for abelian groups H1 and H2 the coincidence of exponents
is equivalent to V arH1 = V arH2, this theorem can be reformulated
in terms of exponents.

Proof. Let, first, H1 and H2 be finitely generated abelian groups.
Any finitely generated abelian group A is isomorphic to Zn ⊕ A0,
where A0 = A

p
k1
1
⊕· · ·⊕Apknn , and A

p
ki
i

is a primary Sylow subgroup.

Necessity of the first condition in Theorem 2.2.62 follows from
Proposition 2.2.51. Let us check that the exponents of the Sylow
subgroups (H1)p and (H2)p coincide. Since (H1)p and (H2)p are ge-
ometrically equivalent, they have the same quasi-identities. Denote
by n1, n2,· · · , nk the exponents of the Sylow subgroups. Then the
quasi-identity

xn1
1 = 1 ∧ · · · ∧ xnk

k = 1→ yn1n2···nk = 1,

holds in H1. Since H1 and H2 are geometrically equivalent, this
quasi-identity holds also in H2, which implies necessity of the second
condition.

Conversely, one has to prove that under conditions 1-2 the groups
H1 and H2 are geometrically equivalent. Use again the presentation
of a finitely generated abelian group A as Zn ⊕ A

p
k1
1
⊕ · · · ⊕ Apknn ,

where A
p
ki
i

is a primary Sylow subgroup. The torsion-free parts of

H1 and H2 have the form Zm and Zs. Thus, they are geometrically
equivalent by Proposition 2.2.48.

Let us check that condition 2 implies geometric equivalence of
torsion parts. Suppose that the exponent of a finite abelian group
A1 equals to the exponent of a finite abelian group A2 and equals pn.
Both groups are directs sums of cyclic ones. Embed cyclic groups
of A1 into a group A′

1 of order pn, n > 0. In the same manner take
a group A′

2 isomorphic to A′
1, containing all cyclic subgroups of A2.

Then, since pn is the exponent of both A1 and A2, we have

(A1 −Ker)(G) = (A′
1 −Ker)(G);

and
(A2 −Ker)(G) = (A′

2 −Ker)(G);

for the arbitrary G. Hence,

(A1 −Ker)(G) = (A2 −Ker)(G),
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and A1 and A2 are geometrically equivalent.
Applying this observation to Sylow subgroups of the same expo-

nent (A1)p and (A2)p we get their geometrical equivalence. Hence, if
the exponents of the Sylow subgroups coincide, then by Proposition
2.2.47 the torsion parts of two finitely generated abelian groups are
geometrically equivalent. Then H1 and H2 are geometrically equiv-
alent as a direct sums of the geometrically equivalent groups.

The proof for arbitrary abelian groups is similar. In order to avoid
technical details we refer to the paper [Vino], where the following
general result is proved.

Theorem 2.2.63. Let p1, p2, p3, . . . be an enumeration of the set of
all primes. With a quasivariety of abelian groups X associate an
infinite sequence (α0, α1, α2, . . .), defined as follows: α0 = 1 if X
contains the infinite cyclic group, and α0 = 0 otherwise; for n > 0,
αn = m if X contains the cyclic group of order pmn , but not the cyclic

group of order p
(m+1)
n , and αn = 1 if X contains the cyclic group of

order pmn for all m. Two quasivarieties are equal if and only if their
associated sequences are identical. �

Let us compare conditions providing geometric equivalence of
abelian groups with the ones making abelian groups elementary
equivalent. The classical theorem of W.Szmielew [Sz], see also [Ek],
[EkF], [Hod], classifies abelian groups up to elementary equivalence.
Namely, distinguish the following kinds of abelian groups:

• Z(pk) denotes the cyclic group of order pk,

• Z(p∞) denotes the locally cyclic (i.e., every finite set of ele-
ments generates a cyclic group) p-group. This group can be
represented as the direct limit of the groups Z/pnZ.

• Z(p) denotes the localisation of the integers Z at the prime p,
i.e., the additive group of all rational numbers with denomina-
tor not divisible by p.

• Q denotes the additive group of all rational numbers.

Then,

Theorem 2.2.64 ([Sz]). Any abelian group A is elementarily equiv-
alent to a group of the form

⊕p[⊕nZ(pn)(αp,n) ⊕ Z(βp)

(p) ⊕ Z(p∞)(γp)]⊕Q(δ),

where αp,n, βp, γp, δ are finite or countable. �
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Groups defined in Theorem 2.2.64 are called the Szmielew groups.
So, the elementary equivalence of abelian groups can be recognized
by comparison with an appropriate Szmielew group. This observa-
tion gives rise to the Szmielew invariants: Exp(p, n, A), U(p, n, A),
D(p, n, A), Tf(p, n,A), where Exp originates from ”exponent”, U
from ”Ulm”, D from ”divisible”, and Tf from ”torsion free” (see
[Ek], [Hod] for the precise definitions). Each of them is responsible
for the elementary equivalence of the abelian group in question with
the appropriate Szmielew’s group.

Geometric equivalence of abelian groups is recognized using a
part of Szmielew invariants and is a much weaker condition than
elementary equivalence. This distinction between geometric and el-
ementary equivalence modeled on abelian groups allows us to visu-
alize what is the part of quasi-identities inside the whole elementary
theory of an abelian group.

For the varieties of nilpotent and solvable groups the situation
with elementary equivalence and geometric equivalence is much more
complicated. The elementary classification of nilpotent groups is
surveyed in [MS1][MS2]. In full generality this problem for finitely
generated nilpotent groups is open. Despite that, there exists an
advanced theory on this subject, which is especially developed for
free finitely generated groups (see [MS2], [Be], [MR1]-[MR3], [Og],
[Mys1], [Mys2], etc.). Geometric equivalence of nilpotent groups is
studied in [Ts2], [Ts2], [BG]. Elementary equivalence of free solvable
groups is considered in [RSS], see also [Ch1],[Ch].

2.2.7 Geometric equivalence and correct isomorphism

Definition 2.2.65. Let KΘ(H1) and KΘ(H2) be categories of alge-
braic sets. An isomorphism φ of these categories is called correct if
it induces an isomorphism of the lattices of algebraic sets AlvH1(W )
and AlvH2(W ).

We view the existence of this strong version of isomorphism of
categories of algebraic sets as the sameness of equational geometries
over the algebras H1 and H2.

For every algebraH ∈ Θ, consider a (contravariant) functor ClH :
Θ0 → Set. If W = W (X) is an object of Θ0, then ClH(W ) is the set
of all H-closed congruences T in W. If, further, s : W (Y )→W (X) is
a morphism of Θ0, then the mapping of sets ClH(s) : ClH(W (X))→
ClH(W (Y )) is defined by the rule: if T is an H-closed congruence in
W (X), then ClH(s)(T ) = s−1T. It is always an H-closed congruence
in W (Y ). Here, w(s−1T )w′ if wsTw′s.
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Let φ be an automorphism of Θ0. Consider the commutative
diagram

Θ0 -φ Θ0

Q
QQsClH1

�
��+ ClH2

PoSet
Commutativity of this diagram means that there exists an iso-

morphism of functors ClH1 and ClH2 · φ. Denote this isomorphism
by α(φ).

Definition 2.2.66. Let H1 and H2 be algebras in Θ. Algebras H1

and H2 are called geometrically similar if

1. There exists an automorphism φ : Θ0 → Θ0, such that:

2. The functors ClH1 and ClH2φ are isomorphic through the iso-
morphism α(φ) depending on φ.

Given variety Θ and the category Θ0, consider a function β which
assigns to every congruence T in W2 a binary relation β = βW1,W2(T )
in Hom(W1,W2) defined as follows: s1βs2 holds for s1, s2 : W1 →
W2 if and only if ws1Tws2 for every w ∈ W1.

The isomorphism condition yields that given an automorphism
φ there exists a function

α(φ) : ClH1 → ClH2 · φ,

with the following properties:

1. To every W = W (X) ∈ Ob Θ0 it corresponds the bijection

α(φ)W : ClH1(W )→ ClH2(φ(W ))

2. The function α(φ) is compatible (in the sense of natural trans-
formation of functors) with the automorphism φ.

The last condition means that

φ(βW1,W2(T )) = βφ(W1),φ(W2)(α(φ)W2(T )).

Here W1,W2 are objects in Θ0
1, T is an H1-closed congruence in W2,

and for every relation ρ in Hom(W1,W2) the relation φ(ρ) is defined
by the rule: s′1φ(ρ)s′2 holds for s′1, s

′
2 : φ(W1) → φ(W2) if there are

s1, s2 : W1 → W2 such that φ(s1) = s′1, φ(s2) = s′2 and s1ρs2.
We say that the automorphism φ determines similarity of alge-

bras. Properties of this φ determine properties of similarity.
For the identical φ geometrical equivalence and geometrical sim-

ilarity coincides, since in this case α(φ) yields the equality ClH1 =
ClH2 .
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Theorem 2.2.67 ([Pl-VarAlg-AlgVar-Categ]). Categories KΘ(H1)
and KΘ(H2) are correctly isomorphic if and only if the algebras H1

and H2 are geometrically similar.

Proof. Part II, ???

Thus, geometric similarity of algebras provides coincidence of the
geometries over these algebras.

However, we know that there exists an example of isomorphic cat-
egories of algebraic sets KΘ(H1) and KΘ(H2) with non-geometrically
equivalent algebras H1 and H2 (see Example 2.2.46).

The following theorem reveals the role of an inner automorphism
with respect to geometrical equivalence and geometrical similarity
of algebras:

Theorem 2.2.68 ([Pl-St],[Pl-VarAlg-AlgVar-Categ]). Algebras H1

and H2 are geometrically equivalent if and only if:

1. They are geometrically similar.

2. The automorphism φ of the category Θ0 is inner.

Proof. Part II, ???
!!! Proof Perenesti v
Logichesk.Chast’

Corollary 2.2.69. If every automorphism of the category Θ0 is in-
ner, then geometrically similar algebras are geometrically equivalent
and vice versa.

Our next aim is to find out how Theorems 2.2.67 and 2.2.68 look
for specific varieties.

1. Variety Θ = Grp. Every automorphism φ of Θ0 is inner
(see [Pl-VarAlg]). Let V ar(H1) = V ar(H2) = Grp. The categories
KΘ(H1) and KΘ(H2) are correctly isomorphic if and only if the
algebras H1 and H2 are geometrically equivalent .

Let algebra H belong to Θ = Com−P , or Ass−P or Lie−P and
σ ∈ Aut(P ). Define a new algebra Hσ. In Hσ the multiplication on
a scalar ◦ is defined through the multiplication in H by the rule:

λ ◦ a = λσ · a, λ ∈ P, a ∈ H.

2. Variety Θ = Com− P . Let Θ = Com− P with P infinite.

Theorem 2.2.70 ([BPP],[Pl-St],[Pl-IJAC]). Let H1 and H2 be al-
gebras from Θ = Com−P . The categories KΘ(H1) and KΘ(H2) are
correctly isomorphic if and only if for some σ ∈ Aut(P ) the algebras
Hσ

1 and H2 are geometrically equivalent.
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3. Variety Θ = Ass−P . Let Θ = Ass−P , and H ∈ Θ. Denote
byH∗ the algebra with the multiplication ∗ defined as follows: a∗b =
b · a. The algebra H∗ is called opposite to H.

Theorem 2.2.71 ([Pl-St],[KBL], [Pl-IJAC],[Ber2]). Let H1 and H2

be algebras from Θ = Ass − P such that V ar(H1) = V ar(H2) =
Θ. The categories KΘ(H1) and KΘ(H2) are correctly isomorphic
if and only if for some σ ∈ Aut(P ) the algebras H∗

1 and H2 are
geometrically equivalent, where (Hσ

1 )∗ is opposite to either H1 or to
H∗

1 .

4. Variety Θ = Lee− P . Let Θ = Lee− P with P infinite.

Theorem 2.2.72 ([MPP],[Pl1], [Pl-St]). Let H1 and H2 be algebras
from Θ = Lee − P such that V ar(H1) = V ar(H2) = Θ. The
categories KΘ(H1) and KΘ(H2) are correctly isomorphic if and only
if for some σ ∈ Aut(P ) the algebras (Hσ

1 ) and H2 are geometrically
equivalent.

5. Variety Θ = Mod−K. Let Θ = Mod−K, where K is a ring,
not necessarily commutative, but with IBN property. This means
that if KX and KY are free K-modules with the finite X and Y ,
then they are isomorphic if and only their cardinalities coincide, i.e.,
|X| = |Y |. In particular, K can be a group algebra PG of the group
G or the universal enveloping algebra U(L) of the Lie algebra L over
the field P .

For a given K-module H take its annihilator U in K. Consider
an ideal V such that there is an isomorphism τ : K/U → K/V .
If V coincides with U , then τ is an automorphism of K/U . The
K-module H we can consider as a K/U -module and, using τ , as
a K/V -module. This K/V -module can be lifted to a K-module.
Denote it by Hτ . The ideal V is the annihilator of Hτ .

Theorem 2.2.73 ([Pl-AG-Mod], [Pl-IJAC]). The categories KΘ(H1)
and KΘ(H2) are correctly isomorphic if and only if for some τ the
modules Hτ

1 and H2 are geometrically equivalent.

The similar results are valid for the varieties of semigroups, in-
verse semigroups, for GrpF variety, where F is a finitely generated
free group, playing the role of constants, and for some other vari-
eties.

2.2.8 Noetherian properties

Notherianity plays a crucial role in many problems related to uni-
versal algebraic geometry. To the contrary with the case of classi-
cal algebraic geometry, where Hillbert’s basis theorem provides the
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Noetherianity ”for free”, there is no reason to think that in arbi-
trary variety Θ and H in Θ the topological space Hom(W (X), H)
is Noetherian. So, as soon as Hom(W (X), H) possesses a kind of
the Noetherianity conditions, there are solid grounds to look for a
rich geometric theory.

Definition 2.2.74. A commutative ring R is Noetherian if it sat-
isfies the ascending chain condition on ideals, i.e., given a chain of
ideals:

J1 ⊆ J2 ⊆ · · · ⊆ Jk ⊆ Jk+1 ⊆ · · ·

there exists a positive integer n such that: Jn = Jn+1 = . . ..
Equivalently, a ring R is Noetherian if all its ideals admit a finite

basis.

If a ring R is not commutative, then replacing ideals in Definition
2.2.74 by left- (right-) side ideals we come up with the notions of left
(right) Noetherian rings. Usually, a non-commutative ring is called
Noetherian, if it satisfies ascending chain condition with respect to
left- and right-side ideals.

Definition 2.2.75. An algebra H ∈ Θ is Noetherian if it satisfies
the ascending chain condition on congruences.

Hilbert basis theorem (see Theorem 2.1.3) states that if R is
a Noetherian ring then the polynomial ring R[x1, . . . , xn] is also
Noetherian. In particular, K[x1, . . . , xn], where K is a field, is
Noetherian. Hence, every its ideal is finitely generated.

Definition 2.1.11 of Noetherian topological spaces admits a useful
reformulation.

Definition 2.2.76. A topological space X is Noetherian if every as-
cending chain of open subsets of X has a maximal element. Equiva-
lently, the space X is Noetherian if every descending chain of closed
subsets have a minimal element.

It is well-known that,

Proposition 2.2.77. Let X be a Noetherian topological space. Ev-
ery non-empty closed subset Y of X can be represented as a finite
union Y = Y1∪Y2∪ · · · ∪Ys, where each Yi is irreducible. If Yi ̸⊂ Yj
for i ̸= j then this decomposition is unique up to a permutation of
components. Each Yi is called an irreducible component of Y. A
Noetherian topological space X has only a finite number of distinct
irreducible components X1, X2, . . . , Xn. �
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If a finitely generated free algebra W (X) ∈ Θ is Noetherian with
respect toH-closed congruences, then the affine spaceHom(W (X), H)
equipped with Zariski topology is Noetherian.

Definition 2.2.78. An algebra H ∈ Θ is called geometrically Noethe-
rian if for every finite set X and every system of equations T in
W (X), there exists a finite subsystem T0 ⊂ T, such that

T
′′

H = (T0)
′′

H .

In this case we say that T and T0 are equivalent systems of equa-
tions. So, if the algebra is geometrically Noetherian, then any sys-
tem of equations is equivalent to a finite subsystem.

Remark 2.2.79. In many papers devoted to universal algebraic
geometry geometrically Noetherian algebras are called equationally
Noetherian algebras. These terms are synonyms.

Proposition 2.2.80. An algebra H ∈ Θ is geometrically Noetherian
if and only if for every free algebra W (X) ∈ Θ the ascending chain
condition for H-closed congruences holds. �
Proof. Let H ∈ Θ be geometrically Noetherian. Suppose that Uα,
α ∈ I is an ascending chain of H-closed congruences. Take U =∪
α∈I Uα.

Proposition 2.2.81. An algebra H ∈ Θ is geometrically Noethe-
rian if and only if for every free algebra W (X) ∈ Θ the lattices
ClH(W ) of H-closed congruences and AlvH(W ) of algebraic sets
satisfy ascending and descending chain conditions, respectively.

Proof. Because of duality, it is enough to prove the fact for the lattice
of algebraic sets AlvH(W ). Let H ∈ Θ be geometrically Noetherian.
Suppose that

. . . ⊂ Ai ⊂ . . . ⊂ A2 ⊂ A1

is a descending chain of algebraic sets Ai = T ′
i in Hom(W (X), H).

It corresponds the ascending chain of H-closed congruences

T ′′
1 ⊂ T ′′

2 ⊂ . . . ⊂ T ′′
i ⊂ . . . ,

where T ′′
i = A′

i. Take T =
∪
i T

′′
i . There exists a finite T0 ⊂ T such

that T ′′ = T ′′
0 . Since T0 ⊂ T , then T ′

0 ⊇ Ak = T ′
k, for some k. We

have
Ak ⊇ A =

∩
i

Ai = T ′ = T ′
0 ⊇ Ak.

Thus, A = Ak and an ascending chain of algebraic sets satisfies the
ascending chain condition.



2.2. UNIVERSAL ALGEBRAIC GEOMETRY 87

Conversely, let algebraic sets in Hom(W (X, )H) satisfy descend-
ing chain condition. Then H-closed congruences satisfy ascending
chain conditions. Denote the set of all H-closed congruences by M .
Then any subset of M has a maximal element.

Denote by M0 the subset of all H-closed congruences T such that
T ̸= T ′′

0 for every finite T0. Suppose M0 is not empty. Let T be a
maximal element in M0. Take any finite S outside M0. Denote

T1 = T
∪
S. Then T ′′

1 = T
′′∪

S ′′. Since T = T
′′ ̸= T ′′

0 for any finite
T0 and S is finite, then T ′′

1 = T
∪
S ′′ belongs to M0. Contradiction

with maximality of T . Hence M0 is empty.

Proposition 2.2.81 implies,

Proposition 2.2.82. The Zariski topology in Hom(W (X), H) is
Noetherian if and only if H is geometrically Noetherian. �

In view of Proposition 2.2.77, the latter means that the following
theorem holds.

Theorem 2.2.83. Let H be a geometrically Noetherian algebra.
Then any algebraic set A in Hom(W (X), H) is a finite union of
irreducible algebraic sets A1, . . . , An, i.e., A = A1 ∪ . . . ∪ An. If
Ai ̸⊂ Aj for i ̸= j, then this decomposition is unique up to a permu-
tation of components. �

Thus, for geometrically Noetherian algebras most of the problems
can be reduced to the case of coordinate algebras corresponding to
irreducible components.

Definition 2.2.84. An algebra G is called fully residually H (or H
discriminates G) if for every finite set of elements G0 in G, there
exists a homomorphism φ : G → H such that the restriction φ to
G0 is injective.

See [DMR1]-[DMR4], for fully residual properties of algebras.

Proposition 2.2.85 ([DMR1], [DMR2]). Let T be a congruence in
W (X). Algebra W (X)/T ∈ Θ is a coordinate algebra of an irre-
ducible algebraic set A in Hom(W (X), H) if and only if W (X)/T
is a fully residually H algebra. �

The class of geometrically Noetherian algebras is rather wide.

Definition 2.2.86. We call a variety Θ geometrically Noetherian
if every finitely generated free algebra W (X) in Θ is geometrically
Noetherian.
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If Θ is a Noetherian variety then every algebra H ∈ Θ is geomet-
rically Noetherian.

Example 2.2.87.

1) A classical variety Com−K is geometrically Noetherian (The-
orem 2.1.6).

2) The variety Nc of all nilpotent groups of the nilpotency class c
is geometrically Noetherian ( Example 2.2.89).

3) Every variety consisting of locally finite groups is geometrically
Noetherian.

4) A variety of the form NcΘ, where Θ is a locally finite variety,
is geometrically Noetherian.

5) Finitely-dimensional associative and Lie algebras are geomet-
rically Noetherian.

!!!
Perepisat’???Ostavit’??? Warning 2.2.88. One should be careful with the choice of the va-

riety Θ in the definition of geometrically Noetherian algebras. If we
want to know wether a system of equations T with the coefficients
from the given algebra G ∈ Θ is equivalent to a finite subsystem
T0 ⊂ T , then we should consider the variety ΘG of G-algebras in-
stead of the variety Θ. If we consider coefficient-free equations, then
we work inside the variety Θ. For example:

Example 2.2.89. Let Θ = Nc be the variety all nilpotent groups
of the nilpotency class c. Then every group G in Θ is geometrically
Noetherian (cf. Example 2.2.87). Indeed, the free finitely generated
nilpotent group W (X) satisfies the ascending chain condition for
subgroups (see [Ku2]). In particular, it satisfies this condition for G-
closed normal subgroups. Then, by Proposition 2.2.80 the groupG is
geometrically Noetherian in Nc, regardless G is finitely or infinitely
generated.

Now choose an infinitely generated nilpotent group G ∈ Θ, and
consider the variety ΘG ofG-groups. Any freeG-group in ΘG has the
form of free product W (X) = G ∗W0(X), where W0(X) is the free
finitely generated group from Θ. Then there is no reason for W (X)
to be Noetherian with respect to G-closed normal subgroups. Corre-
spondingly, there is no reason for G to be geometrically Noetherian
in the variety ΘG. This observation is confirmed by the example
in [GuR], where an infinitely generated nilpotent group G of class
2 which is not geometrically Noetherian in the variety ΘG, is con-
structed.
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Note that if G-algebra H is geometrically Noetherian in the va-
riety ΘG, i.e., in the variety of G-algebras, then H is geometrically
Noetherian in Θ. For Θ = Grp the following converse statement
holds:

Proposition 2.2.90 ([MR]). Let H be a G-group from ΘG. If G is
finitely generated and H is geometrically Noetherian in Θ then H is
geometrically Noetherian in ΘG. �

Another main source for obtaining geometrically Noetherian al-
gebras is linearity. The following theorem plays an exceptional role.
Let Θ = Grp be the variety of groups, G an arbitrary group.

Theorem 2.2.91 ([Gu],[Br]). Let G be a linear group over a com-
mutative Noetherian ring with unity. Then G is geometrically Noethe-
rian (in the variety GrpG, and, thus, in Grp). �
Corollary 2.2.92. Free groups, polycyclic groups [Au], finitely gen-
erated metabelian groups [Re1], finitely generated nilpotent groups,
free nilpotent or free metabelian groups [W], are geometrically Noethe-
rian. �

However, there are lots of non-linear geometrically Noetherian
groups.

Example 2.2.93. The following groupsG are geometrically Noethe-
rian in GrpG:

• abelian groups [BMR],

• free solvable groups [GuR],

• rigid groups [Ro2],

• torsion free hyperbolic groups [Se7].

The class of geometrically Noetherian G-algebras is closed under
taking subalgebras, finite direct products, direct powers, utrapowers
(see [BMR],[DMR2], [Pl-7L] for details).

Moreover, the class of geometrically NoetherianG-groups is closed
under free products:

Theorem 2.2.94 ([Se9]). Let A, B be geometrically Noetherian
groups. Then the free product G = A∗B is geometrically Noetherian
in GrpG. �

This theorem provides additional possibilities for constructing
geometrically Noetherian groups.

There are several ways to construct non-geometrically Noetherian
algebras. In particular:
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Example 2.2.95 ([BMRo]). The wreath product G of any non-
abelian group and any infinite group is not a geometrically Noethe-
rian group in GrpG.

Example 2.2.96 ([BMR]). Let BSm,n be a Baumslag-Solitar group:

BSm,n =< a, t | t−1amt = an >, (m,n > 0).

The group BSm,n is geometrically Noetherian if and only if m =
1, or n = 1, or m = n.

For the details of these and other examples see [BMR], [BMRo],
[MR], [GS], [LP], etc.

The general account of properties of geometrically Noetherian al-
gebras is formulated in [DMR2] in terms of the so-called Unification
Theorems.

It turns out that the notion of geometrical Noetherianity is re-
dundant for many purposes. Our next aim is to weaken it preserving
most of geometrical applications.

First of all reformulate Definition 2.2.78. It is equivalent to the
following one.

Definition 2.2.97. An algebra H ∈ Θ is geometrically Noetherian
if for every free algebraW (X) and every set of equations T inW (X)
there exists a finite subset T0 in T, such that every (w0, w

′
0) ∈ T ′′

H

belongs to (T0)
′′
H .

In terms of quasi-identities this means that an algebra H ∈ Θ
is geometrically Noetherian if and only if for every W (X) and T in
W (X) there exists a finite subset T0 ⊂ T such that the quasi-identity( ∧

(w,w′)∈T

(w ≡ w′)
)
→ w0 ≡ w′

0

holds in H if and only if the quasi-identity( ∧
(w,w′)∈T0

(w ≡ w′)
)
→ w0 ≡ w′

0

holds in H. Here T0 is independent from (w0, w
′
0).

In case when T0 depends on (w0, w
′
0) we call H weakly geometri-

cally Noetherian. Thus,

Definition 2.2.98. An algebra H ∈ Θ is called weakly geometrically
Noetherian if for every free algebra W (X), every set of equations T
inW (X) and for every pair (w0, w

′
0) ∈ T ′′

H there exists a finite subset
T0 in T, depending, generally, on (w0, w

′
0), such that (w0, w

′
0) ∈

(T0)
′′
H .
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Remark 2.2.99. In many papers devoted to universal algebraic ge-
ometry (see [MR], [DMR3], and others) weakly geometrically Noethe-
rian algebras are called (q)w-compact algebras. These terms are syn-
onyms.

The class of weakly geometrically Noetherian algebras possesses
many important properties. The next proposition follows from Def-
inition 2.2.98:

Proposition 2.2.100. The algebra H ∈ Θ is weakly geometrically
Noetherian if every infinitary quasi-identity in H is reduced in H to
a finite quasi-identity. �

Moreover,

Proposition 2.2.101. The algebra H is weakly geometrically Noethe-
rian if and only if the union of any directed system of H-closed con-
gruences is also an H-closed congruence for every W (X). �

Proof. Let the algebra H be logically Noetherian and T a union of
some directed system of H-closed congruences Tα, α ∈ I. T is a
congruence. We need to check that it is H-closed.

Take T ′′
H and let it contain the pair (w,w′). Find a finite subset T0

in T with (w,w′) ∈ T ′′
0H . We have Tα with T0 ⊂ Tα. Then (w,w′) ∈

T ′′
0H ⊂ T ′′

αH = Tα ⊂ T. Thus, (w,w′) ∈ T, T = T ′′
H .

To prove the opposite, assume the condition of directed systems
of H-closed congruences.

Take an infinite set T in W. Consider in T all possible finite
subsets Tα. All T ′′

αH constitute a directed system of H-closed con-
gruences. Let T1 be the union of all congruences of this system. T ⊂
T1 ⊂ T ′′

H . Since T1 is H-closed, then T1 = T ′′
H . If (w,w′) ∈ T ′′

H = T1,
then (w,w′) ∈ T ′′

αH for some α. This means that the algebra H is
logically Noetherian.

Here the set of congruences is directed with respect to the embed-
ding relation. It is clear that geometrical Noetherianity of algebras
implies their logical Noetherianity. Show that the opposite is not
true for the case of groups. Consider a free group F = F (X), where
X is finite and consider all invariant subgroups U in F . Denote by
H the discrete direct product (Example 1.2.26) of all F (X)/U. We
have injections F (X)/U → H. Therefore, all invariant subgroups
in F (X) are H-closed. From this it follows that the group H is
not geometrically Noetherian. However, it is logically Noetherian
by Proposition 2.2.101.
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Theorem 2.2.102 ([MR]). The equality LSC(H) = qV ar(H) holds
if and only if the algebra H is weakly geometrically Noetherian.
�
Remark 2.2.103. In fact, Theorem 2.2.102 solves the following
Malcev-type problem: for which groups H the class of finitely gen-
erated groups from the prevariety pV ar(H) coincides with the class
of finitely generated groups from the quasivariety qV ar(H). Mal-
cev showed [Mal1] that for a given class of groups X the prevari-
ety pV ar(X) is an axiomatizable class if and only if pV ar(X) =
qV ar(X). So, he asked what are the classes X such that pV ar(X) =
qV ar(X) (see [Gor], [MR] for the solution and details). It remains
to note Theorem B1 of [MR] which states that the class of finitely
generated groups from the prevariety pV ar(H) coincides with the
class of finitely generated groups from the quasivariety qV ar(H) if
and only if H is weakly geometrically Noetherian, that is if LSC(H) =
qV ar(H).

According to definitions, inside the class of weakly geometrically
Noetherian algebras the geometric equivalence of algebras means the
coincidence of their quasi-identities:

Theorem 2.2.104. Weakly geometrically Noetherian algebras H1

and H2 are geometrically equivalent, if and only if they have the
same quasi-identities, that is

qV ar(H1) = qV ar(H2). �

Moreover,

Theorem 2.2.105 ([MR]). Let H be a weakly geometrically Noethe-
rian algebra. Then any two algebras from qV ar(H) are geometri-
cally equivalent. If any two algebras from qV ar(H) are geometrically
equivalent then H is weakly geometrically Noetherian. �

The class of weakly geometrically Noetherian algebras is rather
wide and includes, in particular, all geometrically Noetherian alge-
bras. Hence, linear groups and all G-groups from the example 2.2.93
are weakly geometrically Noetherian. In fact,

Theorem 2.2.106 ([MR],[DMR3]). If H is a weakly geometrically
Noetherian algebra then every algebra in qV ar(H) is weakly geomet-G-equationally Noethe-

rian ??? rically Noetherian. �
At the same time, there are groups and algebras which are not

weakly geometrically Noetherian [MR], [GS], [LP], [BG], [BMRo].
For instance:
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Example 2.2.107 ([MR]). A nilpotent group G of class 2 given by
the presentation (in the variety of class ≤ 2 nilpotent groups)

G = ⟨ai, bi, i ∈ N | [ai, aj] = 1, [bi, bj] = 1, [ai, bj] = 1, i ̸= j⟩,

is not weakly geometrically Noetherian. Indeed, the infinitary quasi-
identity

∀x∀y(
∧
i∈N

([x, ai] = 1
∧
j∈N

[x, bj] = 1)→ [x, y] = 1)

holds in G, but for any finite subsets I and J of N the following
quasi-identity

∀x∀y(
∧
i∈I

([x, ai] = 1
∧
j∈J

[x, bj] = 1)→ [x, y] = 1)

does not hold in G. To see this take an element x = am, such that
m /∈ I ∪ J . All x of such kind commute with ai, i ∈ I and bj,
j ∈ J , but not central in G. The constructed group G is infinitely
generated.

There are also examples of finitely generated not weakly geomet-
rically Noetherian groups ([MR],[BMRo]). Moreover,

Theorem 2.2.108. Let the finitely generated group H1 ∈ Θ be not
weakly geometrically Noetherian. Then there exists a group H2 such
that

qV ar(H1) = qV ar(H2),

but H1 and H2 are not geometrically equivalent. �

Let the algebra H1 ∈ Θ be not weakly geometrically Noetherian.

At this point we stop a sketchy exposition of the basics of univer-
sal algebraic geometry. Our aim is to provide the reader with the
facts, which reveal the passages from classical algebraic geometry to
the universal one and hint the ways to extending universal algebraic
geometry to logical geometry.

2.2.9 A table: classical and universal geometry

This self-explaining table visualizes relations between the parallel
notions in classical and universal geometry.
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Classical AG Universal AG
Variety

Com−K Θ
Free algebra

K[X], |X| = n W (X), |X| = n
Elements of the free algebra

f(x1, . . . , xn) ∈ K[X] w(x1, . . . , xn) ∈ W (X)
Equations

f(x1, . . . , xn) ≡ 0 w ≡ w′

Ground field Algebra in Θ

K H
Affine space

Kn ∼= Hom(K[X], K) Hn ∼= Hom(W (X), H)
Points

µ = (a1, . . . , an) µ = (a1, . . . , an)

µ ∈ Hom(K[X], K) µ ∈ Hom(W (X), H)
Solutions

f(a1, . . . , an) = 0 w(a1, . . . , an) = w′(a1, . . . , an)

or
µ(f) = 0 µ(w) = µ(w′)

µ is a solution of f µ is a solution of wi ≡ wj

⇔ f ∈ Ker(µ) ⇔ (wi, wj) ∈ Ker(µ)
Galois correspondence

ideal T congruence T
⇕ ⇕

algebraic set A algebraic set A
Galois closed objects

radical ideal I(A) closed congruence A′
H

algebraic set V (A) algebraic set T ′
H

Topology

Zariski topology Zariski topology for
geometrically stable algebras

Coordinate algebras

coordinate ring coordinate algebra

K[X]/I(A) W (X)/A′
H

Category of algebraic sets

A(K) KΘ(H)

Morphisms

polynomial (regular) maps
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One can extend this table substantially, considering geometrically
noetherian algebras and noetherian affine spaces.

2.2.10 Short bibliographical guide

The material included in Section 2 is a short introduction to univer-
sal algebraic geometry. Its choice is stipulated by the forthcoming
needs of logical geometry. So, a lot of important staff remains un-
touched. In particular, we did not consider the notions of Krull
dimension, domains, limit groups, algebraically closed algebras and
many others. The themes dealing with irreducible components, sep-
aration and discrimination are only outlined. The deep questions
related to geometries over specific algebras require a special atten-
tion and left also beyond the scopes of this section.

In order to make life of the interested reader easier we conclude
with citations, which can help to navigate in the area of univer-
sal algebraic geometry until a special book on this subject will be
published.

General principles and problems of universal algebraic geometry
are illuminated and surveyed in [BMR], [BPP], [Dan1], [DMR1],
[DMR2], [DMR3], [DMR4],[DMR5], [KMR], [Ko], [MPP1], [MR],
[NP], [Pi1], [Pi2], [Pl-AG], [Pl-St], [Pl-7L], [Pl-IJAC], [Pl-VarAlg],
[Pl-VarAlg-AlgVar-Categ], [Pl1], [Pl2], [Pl5], [Pl6], [Pl7], [PZ1]–
[PZ3], [Sc]. All main notions of Section 2.2 can be found in one
of these papers.

There is a huge list of works devoted to solving equations over
free groups and, therefore, to algebraic geometry over a free group.
This area was pioneered by the works [Ap], [Ly],[CE], [Stol],[Br],[Gu]
followed by the seminal papers [Ma], [Razb1], [Razb2]. The mod-
ern geometry of free and hyperbolic groups grounds on algebraic-
geometric-logic ideas proposed by V.Remeslennikov and E.Rips. The
achieved results are exposed in [BGM], [CK3], [CR], [CG], [GriKu],
[Gro1], [Gro2], [Gui], [KhM-1]- [KhM-6], [Pa], [PS], [RS], [Se1]–
[Se6],[Se7], [Se8], [Se9], etc. This list is fairly incomplete.

Algebraic geometry over arbitrary G-groups is thoroughly de-
picted in the series of papers [BMR0] [BMR], [MR], [KMR]. Various
concrete results are contained also in [BMRo], [Berzins-GeomEquiv],
[BG], [GS], [MResS], [MS], [Pl3], [Pl-7L], [PPT], [Tsl],[Ts2], etc.

The algebraic geometry over free metabelian groups gives rise to
a very consistent theory [Ch], [Re2], [Re3], [RemRo1], [RemRo2],
[RemS1], [RemS2], [RemTi], [Ro1]. Geometry over solvable groups
is treated in [GuR], [MR], [Ro1].
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Universal algebraic geometry specified to varieties of non-commu-
tative and non-associative algebras yield non-commutative and non-
associative geometries which can be of utmost importance from the
viewpoint of applications. To the contrary with the case of free
groups, solutions of equations over free non-commutative algebras
are much less understood. For the results see [CS], [Dan1], [Dan2],
[DKR1]– [DKR3], [DR], [KLP],[LP], [MPP], [RemS3], [RoSh].

The algebraic geometry over partially commutative groups is
studied in [CK1] – [CK3], [GuT], see also [MS], [Sh1]-[Sh3] for other
algebraic structures.

We should emphasize once again that this bibliography does not
pretend to be complete.



Chapter 3

Basics of Algebraic Logic
and Model Theory

Algebraic logic goes throughout the book as a basic tool which makes
all necessary considerations with logic and model theory as alge-
braic as possible. In this chapter we focus our attention on two
logically-algebraic structures: Boolean algebras and polyadic alge-
bras. Boolean algebras were introduced already in Section 1.1.3.
Now we view Boolean algebras as an algebraic counter-part of the
propositional calculus. In more appropriate terms Boolean algebras
serve as an algebraization of the propositional calculus. Polyadic
algebras are less known objects than Boolean algebras. These alge-
bras naturally arise under the process of algebraization of first-order
calculus.

For the aims of logical geometry we will need a multi-sorted vari-
ant of polyadic algebras specialized in a given variety of algebras.
We call these algebras Halmos algebras. They will be defined in
Chapter ??. !!! Chapter 4

There are many detailed sources related to different parts of al-
gebraic logic and model theory. We refer to the books [BarnesMack],
[CKeis], [Halm], [HalGiv], [Hamilton], [HilbAcker], [Hod], [Pl-Datab],
[Marker], [Mendelson], [Vereshchagin] for the proofs and comple-
mentary information.

3.1 Logical calculus. Syntax and semantics

3.1.1 Syntax of a logical calculus

We shall start with a formal syntactic description of a logical calcu-
lus.

97
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Definition 3.1.1. A logical calculus is a tuple C = (L,F,A,D) con-
sisting of

• a language L;

• a set F of finite words, constructed using the language L, called
formulas;

• a set A of particular formulas, called axioms;

• a finite set D of ”derivation rules” which enable us to derive
new formulas from axioms and other formulas.

Each language assumes some stock of variables, which serve as an
alphabet, and a number of rules which allow one to construct words
from a given alphabet. Formalizing all this, under a language L we
mean the following.

Definition 3.1.2. A language L is given by specifying the following
data.

1. A set of variables X = {x1, x2, . . . , xn, . . . }. This set can be
finite or infinite. The generic situation is an infinite X.

2. A set F of function symbols f given together with their arities
nf ≥ 0.

3. A set R of relation symbols r given together with their arities
nr ≥ 1. Relation symbols r ∈ R are also called predicate sym-
bols.

4. A set C of constant symbols. These symbols are treated as func-
tion symbols of zero arity.

5. The symbols of logical connectives ¬, ∨.

6. The symbol of existential quantifier ∃.

7. The punctuation symbols ”(”, ”)”, ”,”.

The sets F , R, C together with purely logical symbols ¬, ∨ and
∃ produce the signature of a logical calculus. The logical part of a
signature is often suppressed in notation.

For some languages the sets F , R, C may be empty. One can
consider a language without quantifiers. This is the case for the
propositional calculus, where the language consists of only variables
x1, x2, . . . , the connectives ¬, ∨ and the punctuation symbols.

Remark 3.1.3. There is a lot of flexibility hidden in Definition 3.1.2.
For example:
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1. We include in the language the connectives ¬ and ∨. The con-
nectives ∧, →, ↔ can be produced using ¬, ∨. Namely,

(u1 ∧ u2) is an abbreviation for (¬(¬u1 ∨ ¬u2)),
(u1 → u2) is an abbreviation for (¬u1 ∨ u2),
(u1 ↔ u2) is an abbreviation for ((u1 → u2) ∧ (u2 → u1)).

2. One can consider a language with the other connectives, for
example, with ¬ and →. Then ∧, ∨, ↔ can be defined using ¬
and →.

3. There is only the existential quantifier in the language. The
universal quantifier ∀ can be defined in terms of the existential
quantifier ∃ and the connective ¬. Namely,

(∀xiu) is an abbreviation for (¬(∃xi(¬u))).

Now we need to define the set of formulas F of a logical calculus C.

Definition 3.1.4. Terms in a language L are defined inductively:

1. variables are terms;

2. constant symbols of L are terms;

3. if t1, . . . , tnf
are terms and f is a function symbol of arity nf ,

then f(t1, . . . , tnf
) is a term;

4. there are no other terms.

Definition 3.1.5. An atomic formula is a formula of the form
r(t1, . . . , tnr), where r is a relation symbol of arity nr and t1, . . . , tnr

are terms.

Definition 3.1.6. Formulas in a language L are defined inductively:

1. atomic formulas are formulas;

2. if u1 and u2 are formulas, then ¬u1, (u1 ∨ u2) are formulas;

3. if u is a formula, then ∃xiu is a formula, where xi is a variable;

4. there are no other formulas.

We assume unique readability of formulas using/not using punc-
tuation symbols. We also assume familiarity with the concept of a
free variable, that is one not bound by quantifiers. Bound variables
are exactly variables which are not free in a formula. A sentence is a
formula without free variables, that is each occurrence of a variable
lies in the scope of some quantifier.
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Our goal is only first-order logic which means that no predicate
or function symbols can serve as variables, i.e., quantifiers over pred-
icates are not permitted. Besides, all formulas are finite and only
finitely many quantifiers appear in each formula.

We do not pretend to consider the whole world of the first-order
logical calculi. Our aim is to have a clear picture of algebraization
of a propositional calculus and predicate calculus. We confine our-
selves with the Hilbert-style deductive systems which means that
there is a bunch of schemes of axioms and few deductive laws. All-
together they allow one to build syntactical consequences from some
premises.

Definition 3.1.7. A formula u is derivable from a set of formulas
T if and only if there exists a finite sequence of formulas

u0, u1, . . . , un = u,

whose last term un is u, such that u0 either belongs to T or is an
axiom, and every formula ui, 1 ≤ i ≤ n, is either an axiom, or an
element of T , or the result of applying a derivation rule to some of
preceding formulas in the sequence.

If u is derivable from T , we will write T ⊢ u. If u is derivable
from axioms we will write ⊢ u. In the latter case we say that u is a
theorem of the logical calculus.

Definition 3.1.8. A set of formulas T is syntactically consistent if
for any formula u, if T ⊢ u, then ¬u is not derivable from T .

A set of sentences T is called a theory. The sentences of T play
a role of axioms of the theory. Thus, T ⊢ u means that u is a
theorem of the theory T . Theories are often assumed to be closed
under consequences from axioms. A logical calculus is syntactically
consistent if there is no formula u such that both u and ¬u are
theorems.

Let us mention some well-known theories.

Example 3.1.9.

1. The theory of semigroups. Let L = {X, ·,=,¬,∧,→,∀} be
a language, whereX is a set of variables, ”·” is a binary function
symbol and ”=” is a binary relation symbol of equality. Axioms
of the theory of semigroups look as follows:

1.1 ∀x1 x1 = x1, (reflexivity of ”=”);

1.2 ∀x1∀x2 (x1 = x2 → x2 = x1), (symmetry of ”=”);



3.1. LOGICAL CALCULUS. SYNTAX AND SEMANTICS 101

1.3 ∀x1∀x2∀x3
(
(x1 = x2 ∧ x2 = x3) → x1 = x3

)
, (transitivity

of ”=”);

1.4 ∀x1∀x2∀x3 x2 = x3 → (x1 · x2 = x1 · x3 ∧ x2 · x1 = x3 · x1),
(substitutivity of ”=”);

1.5 ∀x1∀x2∀x3 x1 · (x2 · x3) = (x1 · x2) · x3.

2. The theory of inverse semigroups. Let now L = {X, ·,−1 ,=
,¬,∧,→,∀} be the same language as before, where ”−1” is an
additional unary function symbol. The theory of inverse semi-
groups consists of axioms 1.1–1.5 above and the following sen-
tences (see, for example, [Klun], [PZ3]):

2.1 ∀x1∀x2 (x1 · x2)−1 = x−1
2 · x−1

1 ,

2.2 ∀x1 (x−1
1 )−1 = x1,

2.3 ∀x1 x1 · x−1
1 · x1 = x1,

2.4 ∀x1∀x2 x−1
1 · x1 · x−1

2 · x2 = x−1
2 · x2 · x−1

1 · x1.

3. The theory of groups. Let L = {X, ·,−1 , 1,=,¬,∧,→, ∀}.
The theory of groups consists of sentences 1.1–1.5 above and
the sentences:

3.1 ∀x1 (x1 · 1 = x1 ∧ 1 · x1 = x1),

3.2 ∀x1 (x1 · x−1
1 = 1 ∧ x−1

1 · x1 = 1).

3.1.2 Semantics of a logical calculus

Suppose we are given with some logical calculus. This means that
we have some infinite set of finite words consisting of symbols of
different kind. These are purely formal expressions which we intend
to endow with some meaning. With this end one has to choose a set
where all these words will be interpreted as expressions constructed
on the base of elements of this set with the help of rules written in our
logical calculus. So, we need to formalize a notion of interpretation
of a logical calculus.

Definition 3.1.10. An interpretation M = (A,φ) is a pair consist-
ing of a non-empty set A, called the domain of the interpretation
(variables xi ∈ X are thought of as ranging over A), and a realiza-
tion φ which assigns:

• to each function symbol f (of arity nf) an nf -ary operation fM

on A (i.e., a function fM : Anf → A);

• to each relation symbol r (of arity nr) an nr-ary relation rM on
A (i.e., a subset of Anr);
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• to each constant symbol c some fixed element cM of A.

As a rule we omit superscript M and write simply f instead of
fM, etc.

An interpretation M = (A,φ) gives rise to the notion of a model
of the logical calculus. Grounding more on algebra than on model
theory we consider a model as a triple M = (A,R, φ) where A is an
algebra in some variety Θ, R is a set of symbols of relations and φ
is a realization which makes symbols r ∈ R into relations in Anr .
In this triple realization function symbols from F are hidden in the
signature of operations related to the variety Θ. We use the same
notation for an interpretation and for the associated model.

Now we shall define what means for a formula u(x1, . . . , xn) to
be valid on a tuple a = (a1, . . . , an) ∈ An under the interpreta-
tion M. In other words one has to define the value of the formula
u(x1, . . . , xn) at the point a = (a1, . . . , an).

First, we interpret a term t built using variables from x1, . . . , xn
as a function t : An → A such that:

1. if t is a variable xi, then t(a) = ai;

2. if t is a constant symbol c, then t(a) = c;

3. if t is the term f(t1, . . . , tnf
), where f is a function symbol and

t1, . . . , tnf
are terms, then t(a) = f(t1(a), . . . , tnf

(a)).

To define the value of a formula u(x1, . . . , xn) on a tuple (a1, . . . , an)
we should specify a function

u : An → 2, (3.1)

where 2 is a two-element set {0, 1}. The element 1 is treated as
”truth”, while 0 means ”false”. Define this function inductively and
start from atomic formulas.

Let r(t1, . . . , tnr) be an atomic formula. We say that r(a) = 1
if and only if the tuple (t1(a), . . . , tnr(a)) belongs to the relation
rM ⊂ A, and say that r(a) = 0 otherwise.

Let now u(x1, . . . , xn) and v(x1, . . . , xn) be arbitrary formulas,
then

1. ¬u(a1, . . . , an) = 1 if u(a1, . . . , an) = 0.

2. (u∨v)(a1, . . . , an) = 1 if u(a1, . . . , an) = 1 or v(a1, . . . , an) = 1.

3. ∃xiu(a1, . . . , an) = 1 if there is a tuple (b1, . . . , bn) ∈ An such
that aj = bj for all j ̸= i, 1 ≤ j ≤ n, and u(b1, . . . , bn) = 1.
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If u(a1, . . . , an) = 1 we say that the formula u(x1, . . . , xn) is satis-
fied on the tuple (a1, . . . , an). If for every tuple (a1, . . . , an) ∈ An we
have u(a1, . . . , an) = 1, then the formula u(x1, . . . , xn) is true under
the interpretation M, or, what is the same, the formula u(x1, . . . , xn)
is satisfied on the model corresponding to M. The corresponding no-
tation is M |= u.

Pick up now a set of formulas T . An interpretation M = (A,φ)
gives rise to a model for T if every formula u ∈ T is true under M.
Suppose we are given with a language L and a set of sentences T in
L, i.e., a theory T is given.

Definition 3.1.11. A formula u is a semantical consequence of T ,
that is T |= u, if M |= u for every model M of T .

One would like to have a coincidence of syntactical and seman-
tical derivability for the class of first-order calculi. The following
(Gödel’s) theorems state:

Theorem 3.1.12. Let T be a theory, u be a formula in a language.
Then

T ⊢ u if and only if T |= u. �

Theorem 3.1.13. A theory T has a model if and only if T is
consistent. �

The next theorem is well-known as the compactness theorem.

Theorem 3.1.14. If every finite subset of T is satisfiable then the
set T is also satisfiable. �

This means that if every finite subset of T has a model, then T
has a model.

Suppose now we have a model M = (A,R, φ). The set of all
sentences T valid on M is called the theory (the elementary theory)
of M. Usually one speaks just on the elementary theory of an algebra
A.

3.1.3 Algebraization of a logical calculus

There are several ways to define an algebraization of a logical calcu-
lus, see, for example, discussions in [BP], [ANS], [FJP]. One of the
key points of these studies is to find out which logical calculi can be
algebraizable and in which sense.

Our goal is more utilitarian with the main destination to con-
struct algebraizations of first-order calculi which will be most ap-
propriate for the aims of logical geometry.
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Intuitively, a process of algebraization of logical calculus means
that we want to replace the study of a logical calculus by the study
of a special algebra associated with this calculus. Moreover, syntac-
tical and semantical properties of the calculus can be reformulated
in terms of purely algebraic properties of the corresponding alge-
bra. This idea was formalized by Tarski, who proved that Boolean
algebras serve as the algebraization of propositional calculus [Ta],
[Ta1]. Tarski’s method works also for first-order calculi (see [Halm],
[HMT], [Pl-Datab], etc.) and we will use it in what follows.

Let a logical calculus C = (L,F,A,D) be given. Define a relation
τ on the set of formulas F by uτv if and only if

⊢ (u→ v) ∧ (v → u),

where u, v ∈ F. In other words, two formulas u and v are claimed
equivalent if each of them is derivable from the other. It is easy to
see that τ is an equivalence relation on F.

Analogously, if T is a theory then define a relation τT by uτTv if
and only if

T ⊢ (u→ v) ∧ (v → u).

Denote by L the absolutely free algebra constructed over atomic
formulas of L in the signature of operations ¬, ∨, ∃x, where x is a
variable. Then,

Proposition 3.1.15. τ is a congruence of the algebra L. �
For the proof see Subsection 3.3.8.

Definition 3.1.16. The quotient algebra L/τ is called the Lindenbaum-
Tarski algebra of the logical calculus C.

The described procedure is called the Lindebaum-Tarski alge-
braization process, the congruence τ is the Lindenbaum-Tarski con-
gruence. Identities and structure of the Lindenbaum-Tarski alge-
bra depend heavily on axioms and derivation rules of the logical
calculus and can be quite complicated. However, in any case the
Lindenbaum-Tarski algebra L/τ is a model of the initial logical cal-
culus.

Example 3.1.17. The Lindenbaum-Tarski algebra of a proposi-
tional calculus is a free Boolean algebra (see Subsection 3.2.3).

Note that the Lindebaum-Tarski algebraization process in the
form of Definition 3.1.16 has some disadvantages since the resulting
algebra can have an unclear structure and identities. One of the
ways to bypass this difficulty is to extend the signature ¬, ∨, ∃x
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by additional operations. This is the case of algebraizations of first-
order calculi and the reason for appearing in parallel polyadic, cylin-
dric and other algebras that provide different algebraizations of a
first-order calculus (see Subsection 3.3 for details).

From the geometric point of view the most important case of the
algebraization process is Lindenbaum-Tarski algebras specialized in
some variety of algebras Θ. Suppose that the language of a theory
T contains the equality predicate ≡ and, for simplicity, this is the
only relational symbol. Fix a set of variables X = {x1, . . . , xn}.
Formulas of the form w ≡ w′, where w and w′ are terms, define
a variety of algebras Θ. Denote by W (X) the free algebra in the
variety Θ. Then w and w′ belong to W (X). Let MX be the set of all
formulas w ≡ w′, w,w′ ∈ W (X), and LX the absolutely free algebra
over the generators from MX in the signature ¬, ∨, ∃x, x ∈ X.
The Lindenbaum-Tarski algebra specialized in Θ is the algebra

LX/τT .

3.2 Propositional calculus and Boolean algebras

Propositional calculus plays an exceptional role among logical cal-
culi. We will show that Boolean algebras are exactly the algebraic
structures associated with the propositional calculus.

3.2.1 Propositional calculus. Syntax and semantics

A propositional calculus is a tuple C = (L,F,A,D), where

L: The language L consists of an infinite set of variables X =
{x1, x2, . . . }, the logical connectives ¬ and ∨, and the punctu-
ation symbols.

F: The set of formulas is constructed according to Definition 3.1.6
except for the item 3.

Since the language of a propositional calculus does not include
quantifiers, all its formulas are sentences called propositions.

A: The set of axioms consists of the following ones:

1. x1 ∨ x1 → x1;

2. x1 → x1 ∨ x2;
3. x1 ∨ x2 → x2 ∨ x1;
4. (x1 → x2)→ ((x3 ∨ x1)→ (x3 → x2)),
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where x1, x2, x3 are propositional variables.

There are many ways to choose the sets of axioms and deriva-
tion rules for a propositional calculus. The obtained propositional
calculus should satisfy the conditions of consistency and complete-
ness. A theory T is complete if for every sentence u either u or its
negation ¬u belongs to T . The chosen set of axioms A goes back to
[HilbAcker] (see also [HalGiv]). One can describe the propositional
calculus using other logical connectives, axioms and derivation rules
(for details and examples see [BarnesMack], [HilbAcker], [Hamilton],
[Mendelson], etc.)

D: The set of derivation rules for this choice of axioms consists of
two rules: substitution rule and modus ponens.

• The substitution rule allows to replace all occurrences of a
given variable x in a sentence u by an arbitrary sentence v.
We use the following notation: if u1 and u2 are sentences
and x is a variable, then the sentence u1[x/u2] is the sen-
tence obtained from u1 by replacing each occurrence of x
in u1 by u2. For example,

(x1 → x1 ∨ x2)[x1/u] = u→ u ∨ x2.

• The modus ponens rule states that the sentences u1 and
(u1 → u2) imply u2. In this rule u1 plays the role of a
premise and u2 is a conclusion.

The substitution is not necessary if we consider axiom schemata
instead of axioms, which means that axioms may be built on the
base of arbitrary formulas. For example, if we replace in the axioms
above propositional variables x1, x2, x3 by arbitrary sentences u1,u2,
and u3, then we obtain a schemata of axioms for the propositional
calculus.

It is also useful to view a substitution as a function s : X → F,
which can be extended in a unique way up to s : F → F. This s
preserves logical connectives and parentheses. The substitution rule
says that the set of sentences F is closed under substitutions.

The syntax of the propositional calculus possesses the necessary
property.

Theorem 3.2.1. The propositional calculus is syntactically consis-
tent. �

According to the definition of the function 3.1, each sentence of
the propositional calculus has the value 0 or 1. If the truth value of
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a formula u is true, then the truth value of its negation is false and
vice versa. The truth value of a disjunction u∨ v is true if and only
if the truth value of at least one of u and v is true; otherwise, the
truth value of u ∨ v is false. These rules determine the truth value
of any sentence.

The procedure described above, yielding an interpretation of a
propositional calculus in 2 = {0, 1}, can be defined more alge-
braically through the evaluation map. Denote by Lp(X) the set
of all sentences of a propositional calculus.

Definition 3.2.2. A value map

fLp(X) : Lp(X)→ {0, 1}

associates with each sentence one of the two numbers 0 (false) and
1 (true) in such a way that

fLp(X)(u1 ∨ u2) = max(fLp(X)(u1), fLp(X)(u2)),

and
fLp(¬u1) = 1− fLp(X)(u1),

where u1, u2 are arbitrary elements of Lp(X).

Each value map can be defined using the map from the set of
propositional variables X to the set {0, 1}. We will see that every
map of such kind can be extended in a unique way up to the value
homomorphism of Boolean algebras.

A sentence is called a tautology if its truth value is identically 1
regardless of an interpretation of variables from X. All axioms of a
propositional calculus are tautologies. The modus ponens rule can
be written as a tautology

(u1 ∧ (u1 → u2))→ u2,

where u1, u2 are sentences.
Theorems 3.1.12–3.1.14 have their counter-parts for the particu-

lar case of a propositional calculus. For instance,

Theorem 3.2.3. A formula u of a propositional calculus is a theo-
rem if and only if u is a tautology. �

Theorem 3.2.4. The set of sentences T is consistent if and only if
T is satisfiable. �

Theorem 3.2.5. If every finite subset of T is satisfiable then the
set T is also satisfiable. �
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3.2.2 Boolean algebras

Boolean algebras were already introduced in Subsection 1.1.3. In
order to make exposition self-contained we repeat here some material
from this section. Let us start with yet another system of axioms for
a Boolean algebra. Here the notation ∨, ∧ and ¬ is used instead of
+, ·,¯, respectively. Once again recall that we freely switch between
the notation ∨, ∧, ¬ and the compact notation +, ·, .̄

The following definition is equivalent to Definition 1.1.8.

Definition 3.2.6. A Boolean algebra is a set B considered together
with two binary operations ∨, ∧ and one unary operation ¬. These
operations satisfy the following rules:

1. b1 ∨ b2 = b2 ∨ b1, b1 ∧ b2 = b2 ∧ b1 (commutative laws);

2. (b1 ∨ b2) ∨ b3 = b1 ∨ (b2 ∨ b3), (b1 ∧ b2) ∧ b3 = b1 ∧ (b2 ∧ b3)
(associative laws);

3. b1 ∨ (b1 ∧ b2) = b1, b1 ∧ (b1 ∨ b2) = b1 (absorption laws);

4. b1 ∧ (b2 ∨ b3) = (b1 ∧ b2)∨ (b1 ∧ b3), b1 ∨ (b2 ∧ b3) = (b1 ∨ b2)∧
(b1 ∨ b3) (distributive laws);

5. (b1 ∨ (¬b1)) ∧ b2 = b2, (b1 ∧ (¬b1)) ∨ b2 = b2,

where b1, b2, b3 are elements of B.

We can single out elements 0 = b1∧ (¬b1) and 1 = b1∨ (¬b1). So,

b1 ∨ 0 = b1, b1 ∧ 1 = b1,

b1 ∨ 1 = 1, b1 ∧ 0 = 0.

The operation ∨ can be expressed in terms of the operations ∧ and
¬, and the operation ∧ can be expressed in terms of ∨ and ¬. Thus,
the system of axioms above can be written in the signature of just
two operations: ∨ and ¬ or ∧ and ¬.

Define a → b to be the formula ¬a ∨ b, a, b ∈ B. Then ” → ”
can be viewed as a new operation on the Boolean algebra derived
from the old ones. Since a ∨ b = ¬a → b and a ∧ b = ¬(a → ¬b),
any Boolean algebra can be considered also in the signature (¬,→)
with the corresponding system of axioms.

Recall that every Boolean algebra is a lattice. The order relation
≤ is defined on a Boolean algebra as follows: b1 ≤ b2 if b1 ∧ b2 = b1
(or, equivalently, if b1 ∨ b2 = b2).

A subset I of a Boolean algebra B is an ideal if for every a1, a2 ∈ I
and b ∈ B we have a1∨a2 ∈ I and a1∧b ∈ I. One can check that I is
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an ideal of B if and only if I is closed with respect to the operation
∨ and a1 ∈ I implies that a2 ∈ I for any a2 ≤ a1.

The concept of a filter of a Boolean algebra is dual to the concept
of an ideal. Namely, a subset F of a Boolean algebra B is a filter
of B if it is closed with respect to the operation ∧ and a ∨ b ∈ F
whenever a ∈ F and b ∈ B. Note that F is a filter of B if and only
if F is closed with respect to the operation ∧ and a1 ∈ F implies
that a2 ∈ F for any a2 > a1.

As a rule, speaking about ideals and filters we mean proper ones.
A proper ideal does not contain the unit, and a proper filter does
not contain the zero. If I is an ideal, then the set F = ¬I consisting
of all ¬a, a ∈ I, is a filter. Similarly, a filter F corresponds to the
ideal I = ¬F . An ideal of a Boolean algebra is called maximal if it is
not included in a greater ideal distinct from B. Along with maximal
ideals, we consider maximal filters, these are known as ultrafilters.
We have the following

Proposition 3.2.7. A proper Boolean ideal U of a Boolean algebra
H is maximal if and only if either a ∈ U or ā ∈ U for every a ∈ H.
A proper Boolean filter F of a Boolean algebra H is maximal if and
only if either a ∈ F or ā ∈ F for every a ∈ H.

Proof. Let U be a maximal ideal and suppose that both a and ā
are outside U . Then take U1 to be the ideal generated by U and
a. Since U is maximal, U1 = H. Then ā ∈ U1. Moreover, since
U1 = H there exist u ∈ U and h ∈ H such that u + ah = 1. Hence
ā = āu+ āah = āu. Thus, ā ≤ u, and ā ∈ U . Contradiction.

Suppose that for an ideal U either a or ā lies in U for any a ∈ H.
Suppose U lies in a bigger proper ideal U1. Take a ∈ U1 \ U . Then
ā ∈ U . Thus, ā ∈ U1. Hence, both a and ā lie in U1, which means
that U1 = H. Contradiction.

The proof for filters follows by duality.

Recall that an algebra is simple if it has no proper non-zero ideals,
and semisimple if the intersection of all its maximal ideals is zero-
element set. An ideal I of a Boolean algebra B is maximal if and
only if B/I is a simple algebra.

Structure of Boolean algebras is described by the following theo-
rems.

Theorem 3.2.8. Every simple Boolean algebra is isomorphic to the
two-element algebra 2. �

Theorem 3.2.9. Every Boolean algebra is semisimple. �
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The latter theorem is, in fact, equivalent to Theorem 1.1.12 stat-
ing that every Boolean algebra is isomorphic to a subalgebra of a
power Boolean algebra.

Now we repeat with the proof the important Proposition 1.1.27.

Proposition 3.2.10. A subset F of a Boolean algebra B is a filter
if and only if the following conditions hold:

1. if a1 ∈ F and a1 → a2 ∈ F , then a2 ∈ F ,

2. 1 ∈ F .

Proof. Let F be a filter. Then, obviously, 1 ∈ F . Now let a ∈ F and
a→ b ∈ F . We have ab = a(ā+ b) ∈ F , and then b = ab+ b ∈ F .

Conversely, assume that F fulfills the two conditions. To check
that F is a filter, we first show that a + b ∈ F if a ∈ F and b ∈ A.
Since

a→ (a+ b) = ā+ a+ b = 1 + b = 1 ∈ F,
it follows that a+ b ∈ F whenever a ∈ F .

Furthermore, assume that a1, a2 ∈ F . Then

a2 = (a1 + ā1)a2 = a1a2 + ā1a2 =

a1a2 + a1 + ā2 = a1 + ā2 → a1a2 ∈ F.
Since a1 ∈ F , also a1 + ā2 ∈ F . Hence, a1a2 ∈ F .

The next proposition describes the ideal and the filter generated
by a subset T of a Boolean algebra B.

Proposition 3.2.11. The ideal generated by T consists of the ele-
ments of the form

(a1 + · · ·+ an)b, ai ∈ T, b ∈ B.

The filter generated by T consists of the elements of the form

(a1 · · · an) + b, ai ∈ T, b ∈ B.

Proof. It is sufficient to note that the indicated collections of ele-
ments make up an ideal and a filter, respectively.

Now we are able to relate filters with the concept of derivability
in Boolean algebras.

Definition 3.2.12. An element a ∈ B is derivable from T if there
is a sequence of elements (named a derivation),

a0, a1, . . . , an = a,
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where a0 ∈ T or a0 = 1 and, for any ai, 0 < i ≤ n, either ai ∈ T
or ai = 1, or there are elements ak and as with k, s < i such that
as = ak → ai.

Proposition 3.2.13. The filter generated by T coincides with the
set of all elements derivable from T .

Proof. The proposition follows immediately from Proposition 3.2.11.

In particular, according to Proposition 3.2.13 an element b be-
longs to the filter generated by the elements a and (a→ b). In this
sense, the element b is a consequence of a and (a→ b).

Since Boolean algebras are defined by identities, one can speak
about the variety of all Boolean algebras.

Proposition 3.2.14. The variety of Boolean algebras is generated
by the algebra 2 and it does not contain proper non-zero subvarieties.

Proof. Let X be the variety of all Boolean algebras, then V ar(2) ⊂
X. Now, let B be an algebra from X, then B ∼= 2S for some set S
(see Theorem 1.1.12). So, by construction, the algebra B satisfies all
identities of the algebra 2. Hence, X ⊂ V ar(2). Thus, X = V ar(2).
Assume now that X contains a proper subvariety X1 and let B ∼= 2S

be an algebra from X1. The algebra B contains the two-element
subalgebra isomorphic to 2. So, 2 is in X1. But the algebra 2
generates the whole variety X. Hence, X = X1 and X does not
contain proper non-zero subvarieties.

Every variety possesses free algebras. Construct now a free al-
gebra in the variety of Boolean algebras. Let J be a set and P(J)
be the power set of J . Since P(J) ∼= Fun(J,2) = 2J , we will
consider elements of P(J) as functions–strings g : J → 2. Let

Fun(2J ,2) = 22J
be the Boolean algebra of all functions from 2J

to 2.
Let X be the set of all functions xα from Fun(2J ,2) such that

xα(g) = g(α), where α ∈ J , g ∈ Fun(J,2). Each xα can be viewed
as a variable, accepting the value g(α), for every g ∈ Fun(J,2).

Theorem 3.2.15. The subalgebra F(X) of Fun(2J ,2) generated
by X is the free Boolean algebra over X. �

The proof is based on a characterization of elements from F(X)
as finite support functions on Fun(2J ,2) and on Theorem 1.1.12
(for more details see, for example, [Si], [Pl-Datab]). In particular,

F(X) = 22J
if and only if J is finite. It consists of 22n Boolean

functions, where n = |J |.
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In the propositional calculus the concept of a value map fLp plays
an important role. Now we define similar notion for Boolean alge-
bras.

Definition 3.2.16. A value homomorphism of a Boolean algebra B
is a homomorphism from B to the Boolean algebra 2.

Definition 3.2.17. An element of a Boolean algebra B is called a
tautology if it is true (mapped to 1) under every value homomor-
phism. An element is called a contradiction if it is false (mapped to
0) under every value homomorphism.

Take the free Boolean algebra F(X) with the free generating
set X. The set X plays the role of propositional variables. Every
map X → 2 can be extended in a unique way up to the value
homomorphism of the Boolean algebras

V alprop : F(X)→ 2.

Later on we will specify the homomorphism of such kind for the
logic of predicates and for the multi-sorted logic which is one of the
main objects of this book.

3.2.3 Algebraization of the propositional calculus

Now we will show that Boolean algebras appear as a result of alge-
braization of the propositional calculus. With this end, we apply the
Lindenbaum-Tarski algebraization process to the case of a proposi-
tional calculus.

For the sake of convenience consider the propositional calculus
with respect to the signature (¬,∨). Choose the scheme of axioms
from Section 3.2, and plug in ¬x1 ∨ x2 for x1 → x2 in it.

Let Lp(X) be the set of all formulas of the propositional calculus
viewed as the absolutely free algebra over X with respect to the
operations (¬,∨).

Relying on Lp(X), one can obtain the free Boolean algebra F(X).
To do that, rewrite a system of identities defining a Boolean al-
gebra in the signature (¬,∨). Let ρ be the verbal congruence in
Lp(X) corresponding to the chosen set of identities. Then the al-
gebra Lp(X)/ρ is the free algebra F(X) in the variety of Boolean
algebras (see Proposition 1.1.42).

Denote by τ the Lindenbaum-Tarski equivalence on the set of
formulas Lp(X). Given u, v ∈ Lp(X), define uτv if and only if

⊢ (u→ v) ∧ (v → u).
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Proposition 3.2.18. τ is a congruence on Lp(X).

Proof. Follows from the axioms of a propositional calculus (Subsec-
tion 3.2.1). Indeed, one has to check that

1. (u1τv1) ∧ (u2τv2) ⊢ (u1 ∨ u2)τ(v1 ∨ v2),

2. uτv ⊢ (¬u)τ(¬v).

1. (u1 → v1) ∧ (v2 → u2) ⊢ (u1 → v1). Hence ⊢ u1 → (v1 ∨ v2).
Symmetrically, ⊢ u2 → (v2 ∨ v1). Thus, ⊢ (u1 ∨ u2) → (v1 ∨ v2).
Starting from ⊢ (v1 → u1) we obtain in a similar way ⊢ (v1 ∨ v2)→
(u1 ∨ u2), that is (u1τv1) ∧ (u2τv2) ⊢ (u1 ∨ u2)τ(v1 ∨ v2),.

2. uτv means that ⊢ (¬u ∨ v) ∧ (¬v ∨ u), while (¬u)τ(¬v) is
⊢ (¬v ∨ u) ∧ (¬u ∨ v), which is the same according to commutative
law.

Sentences u and v are called tautologically equivalent if and only if
they have the same truth values under any interpretation. Straight-
forward check yields that uτv if and only if u and v are tautologically
equivalent.

Proposition 3.2.19. The Lindenbaum-Tarski algebra Lp(X)/τ is
a free Boolean algebra.

Proof. Check, first, that ρ ⊆ τ . It is enough to show that Lp(X)/τ
is a Boolean algebra. Thus, we have to verify that the identities of
a Boolean algebra are fulfilled in Lp(X)/τ . Denote the class of a
formula u by [u]τ . The elements of Lp(X)/τ are equivalence classes
with the operations

[u]τ ∨ [v]τ = [u ∨ v]τ , ¬[u]τ = [¬u]τ.

These operations satisfy Boolean identities (1 – 5) from Definition
3.2.6. For example, we have

[u]τ ∨ [v]τ = [u ∨ v]τ , [v]τ ∨ [u]τ = [v ∨ u]τ .

Since u ∨ v and v ∨ u have the same truth values, u ∨ v and v ∨ u
are tautologically equivalent. This means that (u ∨ v)τ(v ∨ u) and

[u]τ ∨ [v]τ = [v]τ ∨ [u]τ .

The identity (1) is fulfilled in Lp(X)/τ .
The same routine check can be done for other identities. One can

use the list of tautological equivalences in [Hi].
Since ρ is the smallest congruence such that the corresponding

quotient algebra is Boolean, we have ρ ⊆ τ .
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Check the opposite, τ ⊆ ρ. Let u and v be elements in Lp(X)
and uτv. Take the natural homomorphism µ : Lp(X) → Lp(X)/ρ.
Since uτv, (u→ v) ∨ (v → u) is a tautology and

((u→ v) ∧ (v → u))µ = 1,

in Lp(X)/ρ. Then

(uµ → vµ) ∧ (vµ → uµ) = 1.

However, this equality is possible in a Boolean algebra if and only
if

!!! Chto-to pro-
pushcheno!!! Recall that if T is a set of formulas in Lp(X) then the Lindenbaum-

Tarski equivalence τT is defined as: uτTv if and only if

T ⊢ (u→ v) ∧ (v → u).

The next theorem shows that every theory T can be modeled as a
Boolean algebra defined by generators and defining relations.

Theorem 3.2.20. Every Boolean algebra is the Lindenbaum–Tarski
algebra of a collection of formulas T .

Proof. Suppose B is a Boolean algebra. Then it is isomorphic to F/I
where F = F(X) is the free Boolean algebra and I is an ideal in F .
We pass to the filter F = ¬I and denote by T the full inverse image
of F in Lp(X) with respect to the epimorphism µ : Lp(X) → F . It
is easy to see that the algebra Lp(X)/τT is isomorphic to F/I.

3.3 Predicate calculus and polyadic algebras

In this section we recall what the predicate calculus is and define
polyadic algebras which serve as an algebraization of the predicate
calculus.

3.3.1 Predicate calculus. Syntax and semantics

The predicate calculus can be viewed as a purely logical first-order
theory, which is not associated with a specific algebraic system. In
particular, this means that the set of function symbols is empty. On
the other hand, one can say that the predicate calculus constitutes
the logical core of any first-order theory.

Before going over the definition of the predicate calculus we shall
make some preparations and recall some well-known definitions,
which are related to any first-order theory.
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A consecutive part of a formula in a first-order language which
is itself a formula is called a subformula. The scope of quantifiers ∀
and ∃ is defined as a subformula which starts from these quantifiers.
An occurrence of the variable x in the formula u is free, if x does
not belong to the scope of the quantifiers ∀x and ∃x. All other
occurrences x in u are called bound.

A variable x is called a parameter of a formula u if there exists
a free occurrence of x in u. As for propositional calculus, denote by
u[x/t] the result of replacing all occurrences of x in u by t. Let two
variables x and y be given. A substitution of y instead of x in a
formula u is called proper if after replacing all free occurrences of x
in u by occurrences of y, the variable y will not become bound for u.
If t is a term, then the substitution of t instead of x is called proper
if it is proper for every variable occurring in t. More precisely, if
u = u(x1, . . . , xi, . . . , xn) is an atomic formula, then a substitution
of t for xi results in u[xi/t)] = u(x1, . . . , t, . . . , xn).

The predicate calculus is a tuple C = (L,F,A,D), where

L: The language L consists of an infinite set of variables X =
{x1, x2, x3, . . . }, the set of relation (predicate) symbols R =
{rn1

1 , r
n2
2 , r

n3
3 . . . }, the logical connectives ¬ and ∨, the symbol

of existential quantifier ∃ and punctuation symbols.

F: The set of formulas is constructed according to Definition 3.1.6.

A: The set of axioms consists of the following ones:

1. x1 ∨ x1 → x1,

2. x1 → x1 ∨ x2,
3. x1 ∨ x2 → x2 ∨ x1,
4. (x1 → x2)→ ((x3 ∨ x1)→ (x3 → x2)),

5. ∀xu(x)→ u[x/t], where u[x/t] is proper,

6. u[x/t]→ ∃xu(x), where u[x/t] is proper,

7. ∀x(u→ v)→ (u→ ∀xv), where x is not a parameter of u,

8. ∀x(v → u)→ (∃v → u), where x is not a parameter of u.

Here x1, x2, x3 are variables, t is a term, u and v are formulas,
∀xu is an abbreviation for ¬(∃x(¬u)).

Axioms (1)-(4) are related to a propositional part of the predi-
cate calculus. For the sake of uniformity they are the same as in
Section 3.2.1, and chosen according to [HilbAcker]. They can be
replaced by any other set of axioms for the propositional calculus.
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Axioms (5)− (8) provide, in fact, a scheme of axioms. As for the
propositional calculus, there are many ways to choose a scheme of
axioms and a set of derivation rules for the predicate calculus.

D: The set of derivation rules for this set of axioms consists of:

• The substitution rule allows one to replace all occurrences
of a given variable x in a formula u by a term t in case the
substitution u[x/t] is proper (see [Vereshchagin] for the detailed
and clear exposition; below we follow this source).

For logical connectives a proper substitution works as follows.

1. A substitution of t for x in ¬u is proper if it is proper for
the formula u itself:

(¬u)[x/t] = ¬(u[x/t]).

2. A substitution of t for x in u ∧ v is proper if it is proper
for each of u and v:

(u ∧ v)[x/t] = u[x/t] ∧ v[x/t].

3. The similar rule for u ∨ v:

(u ∧ v)[x/t] = u[x/t] ∨ v[x/t].

For quantified formulas the rules for proper substitutions are
more complicated and use some conditions.

4. Let u = ∀xv (the case u = ∃xv is treated in a similar way).
A substitution of t for y in u is proper if there are no free
occurrences of y in u (that is either y is a parameter for v
or y = x). Thus,

u[y/t] = u.

5. Let u be as above. A substitution of t for y in u is proper
if y is bound for u but x does not occur in t and the sub-
stitution of t for y in v is proper. Thus,

u[y/t] = (∀xv)[y/t] = ∀x(v[y/t]).

• The modus ponens rule, as before, states that the derivable
formulas u1 and (u1 → u2) imply u2.

• The generalization rule says that u implies ∀xu.
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Remark 3.3.1. If we treat a substitution as a function s : F → F,
then items (1)-(3) say that s induces an endomorphism of the corre-
sponding Boolean algebras. The relations between s and quantifiers
are ruled by (4)-(5), which will result in axioms of the Halmos alge-
bras (see Definition 3.3.17).

The following logical equivalences and implications of first-order
formulas are well known (see, for example, [Hi]) and can be deduced
from the axioms and derivation rules.

Proposition 3.3.2.

1. ¬(∃xu)↔ (∀x¬u),

2. ¬(∀xu)↔ (∃x¬u),

3. ∀x(u ∧ v)↔ ∀xu ∧ ∀xv,

4. ∃x(u ∨ v)↔ ∃xu ∨ ∃xv,

5. ∃x∃yu↔ ∃y∃xu,

6. ∀x∀yu↔ ∀y∀xu,

7. ∃y∀xu→ ∀x∃yu,

If the variable x is not free for the formula u, then

8. u↔ ∃xu,

9. u↔ ∀xu,

10. ∀x(u ∨ v)↔ u ∨ ∀xv,

11. ∃x(u ∧ v)↔ u ∧ ∃xv. �
We finish an excerpt from the syntax of the predicate calculus to

the following well-known observation (see, [Vereshchagin]): one can
exclude axioms (7) and (8) from the set of axioms of the predicate
calculus, replacing the generalization law by the derivation laws of
P.Bernays. Suppose that the variable x does not occur freely in the
formula u. Then

1. u→ v implies u→ ∀xv.

2. v → u implies ∃xv → u.

As for semantics of the predicate calculus one can repeat the
reasoning from Section 3.1.2. In particular, Theorems 3.1.12–3.1.14
hold true. In view of Theorem 3.1.12 we can freely use ⊢ for the
syntactical/semantical derivability of formulas.



118CHAPTER 3. BASICS OF ALGEBRAIC LOGIC ANDMODEL THEORY

3.3.2 Quantifiers on Boolean algebras

Let B be a Boolean algebra.

Definition 3.3.3. An existential quantifier on a Boolean algebra B
is a map ∃ : B → B subject to the conditions:

1. ∃0 = 0,

2. b ≤ ∃b,

3. ∃(b1 ∧ ∃b2) = ∃b1 ∧ ∃b2,

where b1, b2 are elements of B, 0 is the zero element of B.

Remark 3.3.4. The map ∃ : B → B can be also considered as a
unary operation on the algebra B.

The universal quantifier ∀ is defined dually:

∀b = ¬(∃(¬b)).

Hence,
∃b = ¬(∀(¬b)).

The universal quantifier can be characterized as a map ∀ : B → B
having dual, with respect to ∃ properties:

1. ∀1 = 1,

2. b ≥ ∀b,

3. ∀(b1 ∨ ∀b2) = ∀b1 ∨ ∀b2.

Proposition 3.3.5. Let a, b be elements of a Boolean algebra B.
The quantifiers ∀ and ∃ possess the following properties:

1. ∃1 = 1; ∀0 = 0.

2. ∃(∃a) = ∃a, ∀(∀a) = ∀a, i.e., the maps ∃ and ∀ are idempotent:
∃2 = ∃, ∀2 = ∀.

3. If a ≤ b, then ∃a ≤ ∃b and ∀a ≤ ∀b, i.e., the maps ∃ and ∀ are
monotone.

4. ∃(a ∨ b) = ∃a ∨ ∃b, i.e., ∃ is distributive over ∨.

5. ∀(a ∧ b) = ∀a ∧ ∀b, i.e., ∀ is distributive over ∧.

6. ∃(¬(∃a)) = ¬(∃a).

7. ∃(∀a) = ∀a; ∀(∃a) = ∃a.
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8. ∃(a ∧ ∀b) = ∃a ∧ ∀b.

Proof. 1. Since b ≤ ∃b for every b ∈ B, we have 1 ≤ ∃1. Hence
∃1 = 1.

2. Indeed:

∃2a = ∃(∃a) = ∃(1 ∧ ∃a) = ∃1 ∧ ∃a = 1 ∧ ∃a = ∃a.

3. Let a ≤ b. Then a ≤ ∃b and a = a ∧ ∃b. Hence

∃a = ∃(a ∧ ∃b) = ∃a ∧ ∃b

and ∃a ≤ ∃b.
4. Since ∃ is monotone, we have ∃a ≤ ∃(a∨ b) and ∃b ≤ ∃(a∨ b).

Thus, ∃a ∨ ∃b ≤ ∃(a ∨ b). Furthermore,

a ∨ b ≤ ∃a ∨ ∃b, ∃(a ∨ b) ≤ ∃(∃a ∨ ∃b).

Applying once again ∃ we get the reverse inequality ∃(a ∨ b) ≤
∃a ∨ ∃b. Thus, ∃(a ∨ b) = ∃a ∨ ∃b.

6. We have ¬(∃a) ∧ ∃a = 0. Thus,

0 = ∃0 = ∃(¬(∃a) ∧ ∃a) = ∃(¬(∃a)) ∧ ∃a.

Note that in a Boolean algebra if a ∧ b = 0 then b ≤ ¬a. Hence,
∃(¬(∃a)) ≤ ¬(∃a). On the other hand, since ∃ is monotone, we have
¬(∃a) ≤ ∃(¬(∃a)). So, ∃(¬(∃a)) = ¬(∃a).

7. By the definition of the universal quantifier: ∃(∀a) = ∃(¬(∃(¬a))).
Using property (6) we get

∃(¬(∃(¬a))) = ¬(∃(¬a)) = ∀a.

Thus, ∃(∀a) = ∀a.
8. Using the definition of the existential quantifier and property

(7), we have ∃(a ∧ ∀b) = ∃(a ∧ ∃(∀b)) = ∃a ∧ ∃(∀b) = ∃a ∧ ∀b.
The corresponding statements (1)–(3), (5), (7) for the universal

quantifier can be obtained by the duality.

3.3.3 Examples of quantifiers on Boolean algebras

In this section we give examples of quantifiers on various Boolean
algebras (cf. [HalGiv], [Pl-Datab]).

Example 3.3.6. The identity map on any Boolean algebra is a
quantifier (in this case the existential and the universal quantifiers
coincide).
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Example 3.3.7. Let B be a Boolean algebra, b ∈ B. Then the map
∃ defined as follows:

∃0 = 0, ∃b = 1, for all b ̸= 0,

is an existential quantifier.

The next example follows the exposition in [HalGiv].

Example 3.3.8. Let A be a set and B = P(A) the Boolean algebra
of all subsets of A. Consider the Boolean algebra BA of all functions
from A to B. So, if a ∈ A and f ∈ BA, then f(a) is a subset of A.
Define the map ∃ : BA → BA as follows:

(∃f)(a) =
∪
ai∈A

f(ai),

for all a ∈ A. The set
∪
ai∈A f(ai) is the union of the values of f for

all ai ∈ A. So, ∃f is a constant function. The map ∃ : BA → BA

defined in such a way satisfies the conditions from Definition 3.3.3.

This example admits a geometrical interpretation. The Boolean
algebra BA is isomorphic to the Boolean algebra of all subsets of
A× A. This isomorphism assigns to each f ∈ BA the subset Af in
A× A:

Af = {(a1, a2) | a2 ∈ f(a1)}.
So, the set corresponding to the function ∃f is

∃Af = {(a1, a2) | a2 ∈ (∃f)(a1) =
∪
ai∈A

f(ai)},

We can also describe this set as follows:

∃Af = {(a1, a2) | there is ai ∈ A such that a2 ∈ f(ai)}.

Remark 3.3.9. Let us, at the moment, come back to the algebra
BA. If we associate with a function f ∈ BA the statement ”a2
belongs to f(a1)”, then the function ∃f correspond to the statement
”there is ai ∈ A such that a2 belongs to f(ai)”.

Let us illustrate all above by some pictures. Suppose that A is
the set of real numbers. Then A×A is the Cartesian plane. Let f1
be the function from BA defined by:

f1(a) =


{1, 4}, if a = 2,
{3}, if a = 4,
{1, 3, 5}, if a = 7,
∅, otherwise.
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Then the constant function ∃f1 is defined for every a ∈ A as follows:

(∃f1)(a) = {1, 3, 4, 5}.

On the plane we have the following situation:
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In this case,

Af1 = {(2, 1), (2, 4), (4, 3), (7, 1), (7, 3), (7, 5)},

and the set ∃Af1 consists of all points (a1, a2), such that the second
coordinate a2 is one of 1, 3, 4, or 5. So, the set ∃Af1 is the union of
four horizontal lines:
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Let us give one more similar example. Define f2 to be the following
function from BA:

f2(a) =

{
{a′ ∈ A | 1 ≤ a′ ≤ 2}, if a = 2,
∅, otherwise.

Then the constant function ∃f2 is defined for every a ∈ A by the
rule:

(∃f2)(a) = {a′ ∈ A | 1 ≤ a′ ≤ 2}.
On the plane we have:

Af2 = {(2, a′) | 1 ≤ a′ ≤ 3},
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By definition the set ∃Af2 consists of all points (a1, a2) such that
a1 ∈ A and a2 ∈

∪
ai∈A f(ai). In this case∪
ai∈A

f(ai) = {a′ | 1 ≤ a′ ≤ 3}.

So, ∃Af2 is the cylinder:
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∃Af2

Example 3.3.10. Let A1 and A2 be two (not necessarily different)
sets. Let B = P(A1 × A2) be the Boolean algebra of all subsets of
the set A1 × A2. Let

A = {(a1, a2) | a1 ∈ A1, a2 ∈ A2}

be an element of the algebra B. Define two maps:

∃x1 : B → B and ∃x2 : B → B

as follows:

∃x1A = {(a1, a2) | there is a′1 ∈ A1 such that (a′1, a2) ∈ A},

∃x2A = {(a1, a2) | there is a′2 ∈ A2 such that (a1, a
′
2) ∈ A}.

These maps are existential quantifiers on the Boolean algebra B.
Let us check that the map ∃x1 is an existential quantifier. The
proof for ∃x2 is similar.
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Proposition 3.3.11. The map ∃x1 defined above is an existential
quantifier on the Boolean algebra B = P(A1 × A2).

Proof. The zero element of the algebra B is the empty set ∅. So,

∃x1∅ = {(a1, a2) | there is a′1 ∈ A1 such that (a′1, a2) ∈ ∅}.

Thus,
∃x1∅ = ∅.

From the definition of ∃x1 it follows that, if a point (a1, a2) belongs
to the set A, then this point belongs to the set ∃x1A. So,

A ⊆ ∃x1A

for any element A ∈ B. It remains to check that

∃x1(A ∩ ∃x1A′) = ∃x1A ∩ ∃x1A′,

for every A,A′ ∈ B. Note that if some point (a1, a2) belongs to the
set ∃x1A, then the point (a′1, a2) lies in ∃x1A for every a′1 ∈ A1. Let
a point (a1, a2) belong to the set ∃x1(A ∩ ∃x1A′). This means that
there exists a point (a′1, a2) in A ∩ ∃x1A′. The point (a′1, a2) lies in
A ⊆ ∃x1A. So, the set ∃x1A contains the point (a1, a2). The point
(a′1, a2) lies also in ∃x1A′, then the point (a1, a2) belongs to ∃x1A′.
Thus,

(a1, a2) ∈ ∃x1A ∩ ∃x1A′.

Now, let (a1, a2) lie in ∃x1A∩∃x1A′. Since (a1, a2) is in ∃x1A, then
there is a point (a′1, a2) in A, and this point also belongs to ∃x1A′.
So, (a′1, a2) lies in A ∩ ∃x1A′ ⊆ ∃x1(A ∩ ∃x1A′). Hence,

(a1, a2) ∈ ∃x1(A ∩ ∃x1A′).

Thus,
∃x1(A ∩ ∃x1A′) = ∃x1A ∩ ∃x1A′.

The proposition is proved.

Let us illustrate this example on the plane. Take a set of points
A:
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Recall that the set ∃x1A consists of all points (a1, a2) ∈ A1 × A2

such that the point (a′1, a2) belongs to A for some a′1 ∈ A1. This
means that a point (a1, a2) lies in ∃x1A if and only if the horizontal
line passing through the point (a1, a2) has an intersection with the
set A.

-
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So, the set ∃x1A is the cylinder:
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For similar reasons we get that the set ∃x2A is the following one:
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Note that for the given set A, the universal quantifiers ∀x1A and
∀x2A produce empty sets. Indeed, by definition

∀x1A = ¬(∃x1(¬A)).

The set ¬A is the set-theoretical complement of A. So, the set
∃x1(¬A) is the whole plane A1 × A2 and ¬(∃x1(¬A)) is the empty
set. Recall that A ⊆ ∃x1A. So, if the set A is ”unbounded” then the
set ∃x1A is also ”unbounded”. For instance, let A be the following
set:
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Then the sets ∃x1A and ∃x2A are the whole plane A1 × A2.
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∃x1A

Let us consider the universal quantifiers ∀x1A and ∀x2A for this
particular set A. The set ¬A is the following one:
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The set ∃x1(¬A) is:
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Finally, the set ∀x1A = ¬(∃x1(¬A)) is the cylinder:
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One can show that the set ∀x2A is empty, since ∀xA consists of the
points (a, b) ∈ A such that all (a′, b) also belong to A. Thus, ∀xA is
the largest cylinder in the direction of x among those lying in A.

We use Example 3.3.10 in order to illustrate on the plane the
definition and some properties of quantifiers.

The pictures above depict first two conditions of Definition 3.3.3:
∃∅ = ∅ and A ⊆ ∃xiA, i = 1, 2. For instance, for i = 1:
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The third condition of Definition 3.3.3 is ∃(b1 ∧ ∃b2) = ∃b1 ∧ ∃b2.
Take, for example, sets A and A′ as follows:
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��
A
��
��
A′

and exhibit the equality ∃x1(A ∩ ∃x1A′) = ∃x1A ∩ ∃x1A′. Indeed,
∃x1A′ is
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Then A ∩ ∃x1A′ is the following set

-

A1

6A2

��
��
A
��
��
A′

�� �� �� �� ��

and ∃x1(A ∩ ∃x1A′) is

-

A1

6A2

��
��
A
��
��
A′

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ∃x1(A ∩ ∃x1A
′)

On the other hand, the set ∃x1A ∩ ∃x1A′ looks as follows

-
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D
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D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

D
D
DD

∃x1A

Hence, the set A ∩ ∃x1A′ coincides with ∃x1A ∩ ∃x1A′.
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Let us illustrate properties (4), (6), (7) and (8) of quantifiers
(Proposition 3.3.5). It is easy to see the other properties using the
previous pictures.

Property (4): ∃x1(A ∪ A′) = ∃x1A ∪ ∃x1A′. Let A, A′ be the
sets as before. Then ∃x1(A ∪A′) and ∃x1A ∪ ∃x1A′ give rise to the
following picture:

-
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∃x1A ∪ ∃x1A′

Property (6): ∃x1(¬(∃x1A)) = ¬(∃x1A). Let A be a set

-

A1

6A2

��
��
A

Then the sets ¬(∃x1A) and ∃x1(¬(∃x1A)) coincide

-
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¬(∃x1A)=∃x1(¬(∃x1A))

¬(∃x1A)=∃x1(¬(∃x1A))

Property (7a): ∃x1(∀x1A) = ∀x1A. Let A be a set
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-
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It was shown before (page 125) that the set ∀x1A is the following
one:

-

A1
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The set ∃x1(∀x1A) produces the same picture.
Property (7b): ∀x1(∃x1A) = ∃x1A. For the same set A the set

∃x1A is the whole algebra P(A1 × A2). Then ∀1 = 1 implies that
both ∀x1(∃x1A) and ∃x1A coincide with P(A1 × A2).

Property (8): ∃x1(A ∩ (∀x1A′)) = ∃x1A ∩ ∀x1A′. Let A, A′ be
the following sets.

-

A1

6A2

��
��
A
��
��
A′

Then ∀x1A′ = P(A1×A2) and A∩(∀x1A′) = A. So, ∃x1(A∩(∀x1A′))
is the following one:

-

A1

6A2
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A′

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
�� ∃x1(A ∩ (∀x1A′))
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This is exactly the intersection of P(A1×A2) and the cylinder ∃x1A.
Other configurations of the sets A and A′ are left as an exercise.

3.3.4 Quantifier algebras

Now we continue the way:

Boolean algebras⇒Monadic algebras⇒

⇒ Quantifier algebras⇒ Polyadic algebras,

which leads to an algebraization of the predicate calculus. First,
we dwell on concepts of monadic and, especially, quantifier algebras
which are situated between Boolean algebras and polyadic algebras.

Definition 3.3.12. A monadic algebra is a pair (B, ∃), where B is
a Boolean algebra and ∃ is a quantifier on B.

In other words, a monadic algebra is a Boolean algebra with
a single additional operation ∃. Examples from Subsection 3.3.2
of Boolean algebras equipped with quantifiers provide examples of
monadic algebras. For more details and for properties of monadic
algebras see [Halm], [HalGiv].

Definition 3.3.13. Let X be a set. A Boolean algebra B is a quan-
tifier X-algebra if a quantifier ∃(Y ) : B → B is defined for every
subset Y ⊂ X, and the following conditions hold:

1 . ∃(∅) = IB, the identity function on B,

2 . ∃(X1

∪
X2) = ∃(X1)∃(X2), where X1, X2 are subsets of X.

If we restrict ourselves to finite non-trivial subsets Y of X, then a
Boolean algebra B is a quantifier X-algebra if a quantifier ∃x : B →
B is defined for every variable x ∈ X, and

∃x∃y = ∃y∃x,

for every x, y ∈ X. Indeed, condition (2) from Definition 3.3.13
implies commutativity of quantifiers, and, conversely, one can define
∃(Y ) = ∃y1 . . . ∃yk, where Y = {y1, . . . , yk}.

Remark 3.3.14. The quantifier algebras defined here are a version
of diagonal-free cylindric algebras of Tarski (see [HMT]).

The next example generalizes Example 3.3.10.
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Example 3.3.15. LetD be the Cartesian product of the setsDα, α ∈
I. Consider the Boolean algebra P(D) of all subsets of D. Let J be
a subset of I. Define the quantifier ∃(J) as follows: for any subset
A ⊂ D, an element a belongs to the set ∃(J)A if and only if there is
an element a′ ∈ A such that a(α) = a′(α) for all α outside J . Cor-
respondingly, b ∈ ∀(J)A means that every a such that b(α) = a(α)
outside J belongs to A.

Correspondingly, a ∈ ∀(J)A means that a ∈ A and every a′ such
that a(α) = a′(α) outside J , also belongs to A.

In order to check that ∃(J) is, indeed, a quantifier we need to
verify that it satisfies conditions (1)–(3) from the definition of an
existential quantifier. Since conditions (1)–(2) are clear, only the
third condition should be verified. Clearly, A ⊂ B implies ∃(J)A ⊂
∃(J)B, and ∃(J)2 = ∃(J). Therefore,

∃(J)(A ∩ ∃(J)B) ⊂ ∃(J)A ∩ ∃(J)B.

To prove the converse, assume that a ∈ ∃(J)A ∩ ∃(J)B. Let b ∈ A
and a(α) = b(α) outside J . Since a ∈ ∃(J)B, we conclude that

b ∈ ∃(J)(∃(J)B) = ∃(J)B.

Hence, b ∈ A ∩ ∃(J)B, and a ∈ ∃(J)(A ∩ ∃(J)B).
The Boolean algebra P(D) considered together with quantifiers

∃(J) satisfies conditions (1)–(2) from Definition 3.3.13 (see [Pl-Datab]).
Thus, P(D) is a quantifier I-algebra.

3.3.5 Polyadic algebras

Quantifier algebras do not yet represent the predicate calculus. The
main obstruction is as follows: in terms of Boolean operations and
quantifiers we cannot describe the transformations of individual vari-
ables. In other words, we have no way to convert, for example, a
sentence p(x1, x2, x3) into p(x2, x1, x3).

This problem did not exist when we treated Boolean algebra as
an algebraization of propositional calculus. In this case any sub-
stitution of variables respects logical connectives and parentheses.
Hence, substitutions of variables in the propositions sentences are
realized by homomorphisms of Boolean algebras.

This is not true for quantifier algebras because interaction of the
variables substitutions with quantifiers in a predicate calculus is
subject to more complex rules (see Subsection 3.3.1).

There are various ways to solve this problem. One of them is to
consider quantifier algebras together with their endomorphisms and
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to impose additional axioms on these endomorphisms which imitate
the substitution rules for the predicate calculus. In other words the
idea is to postulate the laws of transformation of variables as the
axioms of the corresponding algebra.

Using this idea we come up with the notion of a polyadic algebra
introduced by P. Halmos [Halm]. Another important approach was
considered by A. Tarski who introduced cylindric algebras [HMT].
These algebras correspond to predicate calculus with equality.

Let X = {xα, α ∈ I} be a (finite or infinite) set and S be the
semigroup of all transformations of X. We can consider I as a copy
of the set X.

Definition 3.3.16. A polyadic X-algebra B is a quantifier X-algebra
considered together with a representation of the semigroup S as a
semigroup of Boolean endomorphisms subject to the following con-
ditions:

1. the unit sid of S acts trivially on B;

2. s1∃(J)a = s2∃(J)a, if s1, s2 ∈ S satisfy s1(x) = s2(x) for all
x ∈ X \ J ;

3. ∃(J)sa = s∃(s−1J)a, if s ∈ S never maps two distinct elements
of X onto the same element of J , (i.e., if sx1 = sx2 ∈ J then
x1 = x2).

Here a ∈ B, J ⊂ X, and s−1J is the full inverse image of J under
s.

Reformulating this definition of a polyadic algebra in terms of an
algebra having the signature of operations and a set of identities we
have:

Definition 3.3.17. A polyadic X-algebra B is an algebra in the
signature

Ω = {∧, ∨, ¬, 0, 1, sσ, ∃(J)},
where σ : X → X, J ⊂ X. The algebra B in the signature

{∧, ∨, ¬, 0, 1}

is a Boolean algebra and sσ, ∃(J) are unary operations, which in-
teract as follows:

1. sσ(a ∨ b) = sσa ∨ sσb,

2. sσ(¬a) = ¬(sσa),

3. (sσsτ )a = sστa,
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4. sid = idB,

5. ∃(J)0 = 0,

6. a ≤ ∃(J)a,

7. ∃(J)(a ∧ ∃(J)b) = ∃(J)a ∧ ∃(J)b,

8. ∃(∅) = IB, the identity function on B,

9. ∃(J1 ∪ J2) = ∃(J1)∃(J2), where J1, J2 are subsets of X,

10. sσ∃(J)a = sτ∃(J)a, if σ, τ satisfy σ(x) = τ(x) for x ∈ X \ J ,

11. ∃(J)sσa = sσ∃(σ−1J)a, if σ is injective on σ−1J,

for all a, b ∈ B; σ, τ : X → X; J, J1, J2 ⊂ X.

Identities (1)–(4) demonstrate that S = {sσ}, σ : X → X is the
semigroup of endomorphisms of the Boolean algebra B, identities
(5)–(7) came from the definition of a quantifier ∃, (8)-(9) are ex-
tracted from the definition of a quantifier algebra, and, finally, (10)–
(11) control interaction of transformations with quantifiers.

This set of identities determines the variety of polyadicX-algebras.
Conditions (10)–(11) which look, at a first glance, complicated

play a special role. In fact, they are related to substitution rules
in a predicate calculus (cf. Subsection 3.3.1) and were invented by
P.Halmos after numerous experiments.

To make them transparent, suppose J consists of a single element
{xα}. Let σ = σβα : X → X take xα to xβ and leave all other elements
of X unchanged. Since sσ and sid coincide outside J = {xα}, the
corresponding sσ acting on B possesses the property

sσ∃(J) = ∃(J).

Quoting [Halm], one can say that ”this equation corresponds to
a familiar fact, that once a variable has been quantified, the replace-
ment of that variable by another one has no further effect”.

Note that σ−1J = ∅ for σ and J as above. From condition (11)
it follows that

∃(J)sσ = sσ.

This equation corresponds to the fact, that ”once a variable has been
replaced by another one, a quantification on the replaced variable has
no further effect” ([Halm]).

Remark 3.3.18. Since it is customary for Boolean algebras, we will
use + for ∨, · for ∧ and ā for ¬a in the case of polyadic algebras
without a special notice.
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The cardinal number of X is called the degree of the algebra B.
Each element of X is called a variable of B. If X is the empty set,
than S = ∅. So, Boolean algebras are polyadic algebras of degree
0. If X is one-element set, then there is only one transformation,
namely, the identity transformation. The polyadic algebras of degree
1 are monadic algebras (see [Halm] for details).

Let b be an element of a polyadic X-algebra B.

Definition 3.3.19. An element b is independent of a subset J ⊂ X
if ∃(J)b = b.

Remark 3.3.20. The concept of independence corresponds to the
logical notion of bounded variables.

Definition 3.3.21. The set J is a support of b if b is independent
of J ′ = X \ J .

It is easy to see that all supports of the given element b in B
constitute a filter in the power algebra P(X). If b ∈ B has a finite
support, then it has a minimal finite support ∆(b). It is exactly
the set of elements x ∈ X such that ∃xb ̸= b. Now we define a
class of polyadic algebras which is most relevant to the aims of the
algebraization of the predicate calculus.

Definition 3.3.22. A polyadic X-algebra is called locally finite if
each of its elements has a finite support.

Since in a logical calculus the set of variables is assumed to be in-
finite while each formula depends only on finite number of variables,
the polyadic algebras in question should be locally finite polyadic
algebras of infinite degree.

In view of Definition 3.3.13 in locally finite polyadic algebras we
can restrict ourselves to the quantifiers of the form ∃x, where x is a
variable in X.

3.3.6 Examples of polyadic algebras

Example 3.3.23. Polyadic power algebra P(D).
Let again D be the Cartesian product of the sets Dα, α ∈ I.

The Boolean power algebra P(D) of all subsets of D is a quantifier
I-algebra (see Example 3.3.15).

Let S be the semigroup of all transformations of the set I. First
of all, define the action of S on D as follows:

(as)(α) = a(sα),
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a ∈ D, s ∈ S, α ∈ I. Now we specify the representation of the
semigroup S as a semigroup of Boolean endomorphisms of P(D).
For each s ∈ S the corresponding endomorphism s ∈ End(P(D)) is
defined as:

sA = {a ∈ D | as ∈ A},

where A ⊂ P(D). Then

Proposition 3.3.24. The quantifier algebra P(D) with the given
representation of the semigroup S is a polyadic algebra.

Proof. We shall check three conditions of Definition 3.3.16. Condi-
tion (1) is obvious.

Let us verify condition (2). Suppose that s1 and s2 agree outside
J , and choose A ⊂ D. We need to verify that

s1∃(J)A = s2∃(J)A.

Let a ∈ s1∃(J)A, i.e., as1 = b ∈ ∃(J)A. Take c ∈ A such that
b(α) = c(α) outside J . We have

b(α) = as1(α) = a(s1α) = a(s2α) = as2(α),

where α ∈ J̄ , J̄ is the complement of J . So, c(α) = as2(α) outside
J , as2 ∈ ∃(J)A, and a ∈ s2∃(J)A. The inverse inclusion holds for
the same reasons.

Applying condition (2) for the case J = I, we get two properties:
if A is empty then ∃(I)A = ∅, and if A ̸= ∅ then ∃(I)A = D.

We move to condition (3). Let a ∈ ∃(J)sA, b ∈ sA with a(α) =
b(α) outside J , so that bs = c ∈ A. For α out of s−1J , sα does not
belong to J , and then

as(α) = a(sα) = b(sα) = c(α).

It follows that as ∈ ∃(s−1J)A and a ∈ s∃(s−1J)A. We notice that
the inclusion ∃(J)sA ⊂ s∃(s−1J)A does not presuppose any restric-
tions on s. The restriction mentioned in the condition will be used
to prove the converse conclusion.

Assume that a ∈ s∃(s−1J)A, i.e., as ∈ ∃(s−1J)A, and select
b ∈ A such that as(α) = b(α) outside s−1J . We construct an el-
ement c as follows: c(α) = a(α) outside J, c(α) = b(s−1α) if
α ∈ s(s−1J) (s(s−1J) is a part of J , so s−1α makes sense here
by condition (3)); on the rest c may be defined arbitrary. Now if
β ∈ s−1J , then

cs(β) = c(sβ) = b(s−1sβ) = b(β),
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and
cs(β) = c(sβ) = a(sβ) = as(β) = b(β),

otherwise. Consequently, b = cs ∈ A and c ∈ sA. Since a coincides
with c outside J , we conclude that a ∈ ∃(J)sA.

The polyadic algebra P(D), where D is the Cartesian product of
the sets Dα, α ∈ I, can be treated as the algebra 2D = Fun(D,2) of
characteristic functions on D. In the next example we replace the
Boolean algebra 2 by an arbitrary Boolean algebra B.

Example 3.3.25. Functional polyadic algebra.
Consider the set Fun(D,B) of all functions from the Cartesian

product D =
∏
Dα onto B, where B is a Boolean algebra, α ∈

I. For the sake of simplicity assume that B is a finite algebra or,
more generally, a complete Boolean algebra, i.e., an algebra which
contains supremum (arbitrary join) and infimum (arbitrary meet)
of any subset of elements from B.

The algebra Fun(D,B) is a Boolean algebra (cf. Example 1.1.10).
Define, first, the action of the semigroup S of all transformation of
the set I on Fun(D,B). Let f ∈ Fun(D,B), s ∈ S, a ∈ D. The
action of S on Fun(D,B) is defined as follows:

(sf)(a) = f(as),

where as(α) = a(sα), for α ∈ I.
Now we define quantifiers on Fun(D,B). Let J be a subset of I.

Let J∗ be the binary relation on D determined by the rule:

aJ∗b⇔ a(α) = b(α) whenever α ∈ I \ J,

for all a, b ∈ D. The quantifier ∃(J)f is defined by

∃(J)f(a) =
∨
{f(b) | aJ∗b }.

Since B is a complete Boolean algebra the latter formula makes
sense. One can check that ∃(J) is indeed an existential quantifier
and that all axioms of a polyadic algebra are fulfilled for Fun(D,B).

In the case when B is an arbitrary Boolean algebra the algebra
Fun(D,B) is not necessarily a polyadic algebra. However, it con-
tains a maximal Boolean subalgebra which is invariant with respect
to the action of the semigroup S and with the action of ∃(J). Hence,
in general case the functional polyadic algebra is defined as follows.

Definition 3.3.26. A functional polyadic I-algebra is a Boolean
subalgebra Fun′(D,B) of Fun(D,B) such that
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1. sf ∈ Fun′(D,B) whenever f ∈ Fun′(D,B), s ∈ S,

2. ∃(J)f exists and belongs to Fun′(D,B) whenever f ∈ Fun′(D,B),
J ⊂ I.

3.3.7 QAI-algebras

In this section we follow the approach of C.Pinter [Pi2], where a
transparent set of axioms for locally finite polyadic X-algebras is
introduced. Pinter defined a class of QAI-algebras which is close to
polyadic algebras. We start from the definition of a QAI-algebra
and then list some properties of these algebras.

Definition 3.3.27 ([Pi2]). A QAI-algebra B of degree I is an al-
gebra in the signature

Ω = {∧, ∨, ¬, 0, 1, sκλ, ∃α}, α, λ, κ ∈ I,

where B in the signature

{∧, ∨, ¬, 0, 1}

is a Boolean algebra and sκλ, ∃α are unary operations, which interact
as follows:

1. sκλ(¬a) = ¬(sκλa),

2. sκλ(a ∨ b) = sκλa ∨ sκλb,

3. sκκ = idB,

4. (sκλs
µ
k) = (sκλs

µ
λ)

5. ∃α(a ∨ b) = ∃αa ∨ ∃αb

6. a ≤ ∃αa,

7. sκλ∃κ = ∃κ,

8. ∃κsκλ = sκλ, κ ̸= λ,

9. sκλ∃µ = ∃µsκλ, µ ̸= κ, λ.

for all a, b ∈ B; µ, κ, λ, α ∈ I.

In a polyadic algebra we use an extended notion for the operations
sκλ and ∃α. Instead of quantifying over a single variable, as in a QA-
algebra, in a polyadic algebra we may quantify over an arbitrary set
of variables. Similarly, the simultaneous substitution of arbitrarily
many variables is permitted.
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Remark 3.3.28. Every polyadic I-algebra is a QAI-algebra. A
polyadic algebra becomes a QA-algebra after removing some of its
operations.

Lemma 3.3.29. Let B be an arbitrary QAI-algebra. Then the fol-
lowing statements hold for all a, b ∈ B and all κ, λ, µ ∈ I.

(i) ∃κ0 = 0,

(ii) ∃κ(a ∧ ∃κb) = ∃κa ∧ ∃κb,

(iii) ∃κ∃λ = ∃λ∃κ,

(iv) sκλs
κ
µ = sκµ, if µ ̸= κ,

(v) sκλs
µ
ν = sµνs

κ
λ, if κ ̸= ν, µ and µ ̸= λ.

Proof. We start with the following statements

(a) a ≤ b implies sκλa ≤ sκλb,

(b) a ≤ b implies ∃κa ≤ ∃κb,

(c) sκλa ≤ ∃κa.

(d) ∃κa is the least element of the set {b ∈ range sκλ | b ≥ a},
if κ ̸= λ.

Since a ≤ b means a∨b = b, item (a) is an immediate consequence
of axiom (2) of Definition 3.3.27; (b) is an immediate consequence
of axiom (5) of Definition 3.3.27. Finally, (c) follows from (a) and
axioms (6-7) of the same definition.

The statement (d) is true, since by (7), ∃a belongs to the range
sκλ and by (6), a ≤ ∃κa. If b lies in range sκλ, then for some c ∈ B
we have b = sκλc = ∃κsκλc = ∃κb. Thus, if b in range sκλ and b ≥ a,
then by (2), ∃κ ≤ ∃κb = b.

It follows from axiom (4) and Theorems 4-5 from [Halm] (page
45), that ∃κ is a quantifier in the sense of polyadic algebras, and,
hence, it satisfies (i) and (ii).

Using axioms (7)-(9) from Definition 3.3.27 repeatedly, for any
µ ̸= λ, κ, we have

∃λ∃κ∃λa = ∃λ∃κsλµ∃λa = ∃λ∃sλµκ∃λa =

sλµ∃κ∃λa = ∃κsλµ∃λa = ∃κ∃λa.
Now by axiom (6) and by (b),

∃λ∃κa ≤ ∃λ∃κa∃λa = ∃κ∃λa.
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Symmetrically, ∃κ∃λa ≤ ∃λ∃κa. Hence, ∃κ∃λa = ∃λ∃κa, and
(iii) is proved.

Item (iv) follows from axioms (7) and (8). Indeed, if µ ̸= κ, then

sκλs
κ
µ = sκλ∃κsκµ = ∃κsκµ = sκµ.

Letting µ = λ in (iv) we have

sκλs
κ
λ = sκλ.

We omit the proof of (v), referring to the original paper [Pi2].

Let B is a QAI-algebra, and a ∈ B.

Definition 3.3.30. The support ∆a of a is the set of all κ ∈ I,
such that ∃κa ̸= a.

In view of axioms (7) and (8), the set ∆a is also the set of all
κ ∈ I, such that sκλa ̸= a.

Definition 3.3.31. A QAI-algebra B is called locally finite if the
support ∆a is finite for every a ∈ B.

As was mentioned in Remark 3.3.28, every I-polyadic algebra is
a QAI-algebra. The converse is true for locally finite QA-algebras
of infinite degree.

Theorem 3.3.32. A locally finite QAI-algebra of infinite degree is
a locally finite polyadic I-algebra.

Proof. We preface the formal reasoning with a few general obser-
vations. Locally finite polyadic X-algebras possess a lot of good
properties. One of them is an ability to replace the operations of
the general type ∃(J) and sτ , where J is an arbitrary subset in X
and τ is an arbitrary transformation of the set X, by ”local” opera-
tions ∃α and skλ. Their prototype is the quantification along a single
variable and substitutions of a single variable by another one.

Now our aim is to equip an arbitrary QAI-algebra with the struc-
ture of a locally finite polyadic algebra.

Let B be a locally finite QAI-algebra and let J ⊂ I. Define ∃(J)a
by

∃(J)a = ∃κ1 . . . ∃κna,
where {κ1, . . . , κn} = J∩∆a. Since all ∃κi commute and the product
of two commuting quantifiers is again a quantifier, ∃(J) is unam-
biguously defined and is a quantifier.

A map σ : I → I is called replacement if σ(κ) = λ and σ(µ) = µ
for every µ ̸= κ. This map is denoted (κ/λ).
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If J is finite, then for any σ : I → I the restriction of σ to J can
be represented as a product of replacements (κi/λi). So, we define
the operation sσ by

sσa = sκ1λ1 . . . s
κn
λn
a,

where all pairs (κi, λi) correspond to the restriction of σ to ∆a,
a ∈ B. In view of (iv) and (v) from Lemma 3.3.29, this definition
does not depend on the order of replacements. One can show that
this definition is indeed unambiguous in the course of the choice of
replacements (see [Gal], [Halm] for the details).

Since ∃(J) is a quantifier, axioms (5)-(7) from Definition 3.3.17
of a polyadic algebra are fulfilled. Axiom (7) of Definition 3.3.27
guarantees that (8) of Definition 3.3.17 holds.

Now let J1, J2 be subsets of I. We shall check that ∃(J1 ∪ J2) =
∃(J1)∃(J2). Indeed,

∃(J1 ∪ J2)a = ∃α1 . . . ∃αka,

where {α1, . . . , αk} = (J1∪J2)∩∆a, a ∈ B. Rewriting {α1, . . . , αk} =
(J1 ∪ ∆a) ∩ (J2 ∪ ∆a) and using permutable quantifiers ∃αt, t =
1, . . . , k, we have ∃(J1 ∪ J2) = ∃(J1)∃(J2).

Straightforward check shows that axioms (1)-(4) of a polyadic al-
gebra, which regulate the action of sσ, follow from the corresponding
axioms for the operations sκλ.

It remains to verify the technical axioms (10)-(11) of a polyadic
algebra (see Def. 3.3.17). The proof of these axioms is a bit long
although the meaning is clear and explained after the definition of
the polyadic algebra. In order not to overload the exposition with
technicalities we omit it here, and note for the reader that the formal
proof is contained in [Gal], Corollary 2 and Lemma 9.

The key point of the proof in [Gal] is Lemma 7 which enables
one to study the effect of a finite transformation σ on a finite set J
by examining the image of each element λ separately. The method
is commonly used in mathematical logic; i.e., mapping the element
λ first into another element µ far from the scene of the action, and
then mapping µ into σ(λ).

3.3.8 Algebraization of the predicate calculus

Let an infinite set of variables X = {xα, α ∈ I} be fixed. The set
of formulas, axioms and derivation rules of the predicate calculus
over X is given in Subsection 3.3.1. Denote the set of formulas by
LP (X).
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We view LP (X) as the absolutely free algebra over atomic formu-
las with respect to signature {∨, ¬, ∃xα}. Since atomic formulas
are just variables, LP (X) is the absolutely free algebra over X.

For the aims of applications it is convenient to treat LP (X) as
an algebra in the extended signature {∨, ∧, ¬, ∃xα, ∀xα}.

As usual, denote by τ the Lindenbaum-Tarski equivalence on the
set of formulas LP (X). So, uτv if and only if

⊢ (u→ v) ∧ (v → u).

It was mentioned in Proposition 3.1.15 that the equivalence τ is
a congruence for every first-order theory. This fact is a key point
first used by Tarski ([Ta], [Ta1]) to establish an algebraic relation
between propositional calculus and Boolean algebras (see also [FJP]
and references therein).

Let us check the implications:

1. (u1τv1) ∧ (u2τv2) ⊢ (u1 ∨ u2)τ(v1 ∨ v2),

2. uτv ⊢ (¬u)τ(¬v),

3. uτv ⊢ (∃xαu)τ(∃xαv),

Items (1)-(2) have been checked in Proposition 3.2.18. Suppose
now uτv, that is ⊢ (u → v) ∧ (v → u). So, ⊢ (u → v). Since
v implies ∃xαv we have ⊢ (u → ∃xαv). By generalization rule
⊢ ∀xα(u → ∃xαv). The latter implies ∃xαu → ∃xαv. Since we
have symmetrically ⊢ (v → u), the property uτv ⊢ (∃xαu)τ(∃xαv)
follows.

So, on the base of LP (X) one can construct the quotient algebra
LP (X)/τ which can be viewed as the algebra of formulas.

The algebra LP (X)/τ possesses the following property.

Theorem 3.3.33. The algebra LP (X)/τ is a locally finite X-polyadic
algebra.

Proof. Let us show that the algebra LP (X)/τ has a structure of
QAX-algebra.

Proposition 3.2.19 implies that LP (X)/τ is a Boolean algebra.
We shall define the operations ∃α and sκλ. Given α ∈ I and

u ∈ LP (X), we set
∃αu = ∃xαu,

and

sκλu =

{
u[xκ/xλ], if the substitution [xκ/xλ] is proper,
u, otherwise.
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Define the action of ∃xα and sκλ on the Boolean algebra LP (X)/τ
by

∃xα[u]τ = [∃xαu]τ ,

sκλ[u]τ = [sκλu]τ ,

where [ ]τ stands for the τ -equivalence class. The first definition
is correct. Indeed, suppose u1τu2. If u1 → u2, then u1 → ∃xαu2
since u2 → ∃xαu2 is an axiom (see axiom (6) on page 115). Then,
by the second rule of Bernays: ∃xαu1 → ∃xαu2. By symmetry,
∃xαu1τ∃xαu2. The second definition is also correct, since u1τu2
implies su1τsu2.

So, we shall check that axioms (1)–(9) from Definition 3.3.27 are
fulfilled on LP (X)/τ .

The substitution rules (1)–(3) from Subsection 3.3.1 give rise to
axioms (1)–(4) from Definition 3.3.27. Axiom (5) is the logical equiv-
alence of formulas (4) in Proposition 3.3.2.

Now, we shall check that in LP (X)/τ we have u ≤ ∃xαu, i.e.,
(u ∧ ∃xαu)τu. But ((u ∧ ∃xαu) → u) ∧ (u → (u ∧ ∃xαu)) holds in
view of the axiom u→ ∃xu. Thus, axiom (6) holds true.

As it was said before, axiom (8) expresses the well-known in
the first-order logic fact that once a variable has been replaced by
another one, a quantification on the replaced variable has no further
effect. Analogously, axiom (9) means that the replacement of a
quantified variable by another one changes nothing. Both of these
substitution operations follow from rules (4) and (5) postulated in
Subsection 3.3.1. Thus, LP (X)/τ is a QAX-algebra.

By the definition of a first-order formula each u ∈ LP (X) has a
finite support and as we have seen u ∈ LP (X)/τ is a locally finite
QAX-algebra.

According to Theorem 3.3.32, LP (X)/τ is a locally finite polyadic
algebra.

3.3.9 Ideals and filters of polyadic algebras

Let H1 and H2 be polyadic X-algebras with the acting semigroup
S. We will consider H1 and H2 as Boolean algebras in the signature
{·, +, ¯ , 0, 1}.

A homomorphism of polyadic algebras should respect all oper-
ations. Thus, a homomorphism µ : H1 → H2 is a Boolean ho-
momorphism, which additionally is compatible with quantifiers and
transformations:

µ(∃(J)a) = ∃(J)µ(a), a ∈ H, J ⊂ X;
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µ(sa) = sµ(a), a ∈ H, s ∈ S.
Let δ be the congruence of H determined by this homomorphism.

Just as in the case of Boolean algebras, we consider the equivalence
classes of 0 and 1, respectively.

Definition 3.3.34. A subset U of a polyadic X-algebra H is called
a polyadic ideal if

• U is an ideal of the Boolean algebra H;

• J ⊆ X and a ∈ U , then ∃(J)a ∈ U ;

• if a ∈ U and s ∈ S, then sa ∈ U .

Dually,

Definition 3.3.35. A subset F of a polyadic X-algebra H is called
a polyadic filter if

• F is a filter of the Boolean algebra H;

• if J ⊆ X and a ∈ F , then ∀(J)a ∈ F ;

• a ∈ F and s ∈ S, then sa ∈ F .

Straightforward check shows that the δ-equivalence class of 0 is
an ideal, and the class of 1 is a filter.

Moreover, polyadic ideals (correspondingly, filters) are in one-to-
one correspondence with congruences of polyadic algebras. Indeed,
every ideal U of H is also a Boolean ideal. It defines a Boolean
congruence δ:

aδb⇔ ab̄+ āb ∈ U.
Let aδb, a, b ∈ H. We have

(sa)(sb) + (sa)(sb) = s(ab̄+ āb) ∈ U

providing ab̄+ āb ∈ U . Thus, aδb implies (sa)δ(sb).
It remains to check that aδb yields ∃(J)aδ∃(J)b. Indeed,

∃(J)a · ∃(J)b+ ∃(J)a · ∃(J)b = ∃(J)a · ∀(J)b̄+ ∀(J)ā · ∃(J)b.

Using the equality ∃(a∀b) = ∃a · ∀b (see Proposition 3.3.5), we
obtain

∃(J)a · ∀(J)b̄+ ∀(J)ā · ∃(J)b = ∃(J)(a · ∀(J)b̄) + ∃(J)(∀(J)ā · b).

Since ∀(J)b̄ ≤ b̄ then a · ∀(J)b̄ ≤ a · b̄. The map ∃ is monotonic, so

∃(J)(a · ∀(J)b̄) + ∃(J)(∀(J)ā · b) ≤ ∃(J)(ab̄) + ∃(J)(āb).
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Thus,
∃(J)(ab̄) + ∃(J)(āb) = ∃(J)(ab̄+ āb) ∈ U

by properties of quantifiers (see Proposition 3.3.5).
So, all congruences on polyadic algebras and, correspondingly,

the kernels of homomorphisms are represented by the ideals U or
filters F = U .

Proposition 3.3.36. A subset U of a polyadic X-algebra H is a
polyadic ideal if and only if U is an ideal of the Boolean algebra H
and ∃(X)a ∈ U for every a ∈ U . A subset F is a polyadic filter of
H if and only if F is a Boolean filter of H and ∀(X)a ∈ F whenever
a ∈ F .

Proof. The latter assertion easily follows from the first one if we
take into account the connection between ideals and filters. We
shall prove the first statement.

If U is a polyadic ideal then by definition U is a Boolean ideal
and ∃(X)a belongs to U for all a ∈ U .

Now we assume that U is an ideal of the Boolean algebra H and
that ∃(X)a ∈ U for every a ∈ U . If J ⊆ X, then

∃(J)a ≤ ∃(X)(∃(J)a) = ∃(X ∪ J)a = ∃(X)a.

So, U contains ∃(J)a for every J ⊆ X.
Now we verify that sa ∈ U , if a ∈ U and s ∈ S. Since a ≤ ∃(X)a

and s is a Boolean homomorphism, then sa ≤ s∃(X)a. Furthermore,
according to axioms (1) and (2) from Definition 3.3.16,

s∃(X)a = sid∃(X)a = ∃(X)a,

since s = sid outside X. Hence, sa ≤ ∃(X)a and sa ∈ U .

Now we look for the rule which describes the polyadic filter F (T )
generated by a set of elements T in H.

Let H be a polyadic X-algebra and T be a subset in H. Let T1
be the set of elements of the form ∀(X)a, where a ∈ T . Denote by
Fb(T1) the Boolean filter in H over T1.

Proposition 3.3.37. Fb(T1) is a polyadic filter and it coincides with
the polyadic filter F (T ).

Proof. Let us check that Fb(T1) is a polyadic filter in H. Since
Fb(T1) is a Boolean filter generated by T1, by Proposition 3.2.11
every element of Fb(T1) has the form

∀(X)a1 . . . ∀(X)an + b,
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where ai ∈ T , b ∈ H. Now

∀(X)(∀(X)a1 . . . ∀(X)an + b) = ∀(X)a1 . . . ∀(X)an + ∀(X)b.

So, Fb(T1) is closed under ∀(X) and is a polyadic filter by Proposi-
tion 3.3.36.

Show that Fb(T1) = F (T ). Since ∀(X)a ≤ a, the filter Fb(T1)
contains T and F (T ) ⊆ Fb(T1). On the other hand, by Defini-
tion 3.3.35, T1 ⊆ F (T ), thus Fb(T1) ⊆ F (T ).

Analogously, denote by T2 the set of elements of the form ∃(X)a,
where a ∈ T , and by Ub(T2) the Boolean filter in H over T2. Then
Ub(T2) is a polyadic ideal which coincides with the polyadic ideal
U(T ) generated by T .

Define an element a ∈ H to be derivable from the set T if there
exists a sequence a0, a1, . . . , ai, . . . an = a such that a0 ∈ T , and
either ai ∈ T , or ai = ∀(J)ak, k < i, J ⊂ X, or there exist ak, al,
k, l < i with al = ak → ai.

A straightforward computation shows that F (T ) is exactly the set
of all elements of H derivable from T . Hence, the problems of deriv-
ability in the predicate calculus are translated in the corresponding
polyadic algebra to the problems about the filters generated by some
set of elements.

A polyadic ideal U of a polyadic algebra H is said to be maximal if
U is distinct from H and is included in no other proper polyadic ideal
of this algebra. The ideal U is maximal if and only if the quotient
algebra H/U is simple. A polyadic filter F of H is a maximal filter
(an ultrafilter) if F is distinct from H and is included in no other
proper polyadic filter of this algebra.

By Proposition 3.2.7, a Boolean ideal (filter) is maximal if it
contains either an element of the algebra H or its negation. The
conclusion of Proposition 3.2.7 remains true for polyadic ideals and
filters with the following modification. An element a of a polyadic
X-algebra is said to be closed if ∃(X)a = a.

Proposition 3.3.38 ([Halm]). The set B of closed elements in a
polyadic algebra H is a Boolean subalgebra. The polyadic ideal U of
H is maximal if and only if the Boolean ideal B

∩
U is maximal in

H. �

So, the conclusion of Proposition 3.2.7 remains true for polyadic
ideals if we replace an arbitrary a ∈ H by a closed a. The similar
result holds for the maximal filters.
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3.3.10 Some facts on structure of polyadic algebras

Definition 3.3.39. A polyadic algebra is called simple if it does not
have non-trivial polyadic ideals.

According to Theorem 3.2.8 there is only one simple Boolean
algebra, the two element algebra 2 = {0, 1}. This is not the case for
polyadic algebras.

Theorem 3.3.40 ([Halm],[DM], [Pl-Datab]). A polyadic algebra H
is simple if and only if H is isomorphic to a polyadic power algebra
P(D) or its subalgebra. �

Definition 3.3.41. A polyadic algebra is called semisimple if the
intersection of all its maximal polyadic ideals is zero.

The next theorem is an analogue of Theorem 3.2.9 for Boolean
algebras [Halm].

Theorem 3.3.42. Every polyadic algebra is semisimple. �

Theorem 3.3.42 and Theorem 3.3.40 describe the structure of an
arbitrary polyadic algebra. They provide a polyadic counter-part of
the P.M.Stone’s Boolean structural theorem 1.1.12.

3.3.11 Consistency and compactness in polyadic algebras

In accordance with the notion of consistency for first-order theories
we call a subset T of H consistent if it generates a proper polyadic
filter F (T ). In other words T is consistent if for every a ∈ H which is
derivable from T , the element ā is not derivable, because otherwise
T contains zero and coincides with H. In view of duality, one can
state that T is consistent if it generates a proper polyadic ideal in
H.

This definition of consistency is none ether then an algebraic
counterpart of the syntactical consistency, which basically claims
that in a consistent theory no two contradictory statements are both
derivable.

A subset T of H is called complete if it generates either the whole
H or an ultrafilter F (T ) (or a maximal ideal U(T )). This notion is
an algebraic counterpart of the notion of a complete theory in logic.
If F (T ) is the whole H, then the set T and, respectively, the theory
T , is inconsistent. For consistent theories we have

Proposition 3.3.43. A consistent set T is complete if and only if
the quotient polyadic algebra H/U(T ) is simple. �
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In view of Proposition 3.3.38, a consistent set T is complete if and
only if for each closed a ∈ H, either a or ā belongs to F (T ). This
conclusion fully agrees with the well-known fact that in a first-order
theory for each sentence u, either u or its negation is checkable.

We finish this section with one more quote from P.Halmos: ”
We see thus that the celebrated Gödel’s incompleteness theorem as-
serts that certain important polyadic logics are either incomplete or
inconsistent. In other words, if (H,U) is one of those logics, then
either the ideal U is very large (H = U), or else it is rather small
(non-maximal)”. Here H is a polyadic algebra and U is an ideal in
H.

3.3.12 Polyadic algebras with equality and cylindric alge-
bras

Up to now we dealt with predicate calculus without relation symbols.
Once we intend to apply algebraic logic to geometric and algebraic
problems, we need to build a version of the logical calculus with
an equality predicate. In particular, the logic with equalities is
indispensable for the study of solutions of systems of equations.
Thus, we are interested in algebraizations of the first-order logic
with equality predicate.

We use for the equality predicate the symbol ≡, which leaves
among the symbols of relations of a first-order logic. Note that we
can also use the equality symbol E( , ) instead of ≡, whenever this
notation is more convenient and underlines the binary nature of this
predicate. The equality predicate expresses a binary relation which
satisfies some set of axioms. We assume that in each interpretation
this symbol is interpreted as a coincidence of elements, which means
that we consider the so-called normal models.

Under equality in a first-order logic we mean a binary predicate
≡ which satisfies the following scheme of axioms:

1. Reflexivity: ∀x(x ≡ x), where x is a variable.

2. Substitution law:

(x ≡ y)→ (u(. . . , x, . . .)→ u(. . . , y, . . .)),

where x, y are variables, and u(. . . , y, . . .) is a formula obtained
by replacing any number of free occurrences of x in u with y,
such that all these remain free occurrences of y.

These axioms imply the well-known properties of the equality
predicate: symmetry and transitivity.



148CHAPTER 3. BASICS OF ALGEBRAIC LOGIC ANDMODEL THEORY

Now we can add symbol ≡ to the set of relations, axioms (1)-
(2) to the set of axioms from Subsection 3.3.1, and consider the
absolutely free algebra over elements of the form xj ≡ xj in the
signature ¬, ∨, ∃.

Thus, let X = {xα, α ∈ I} be a set and L(X) be an ab-
solutely free algebra with free generators of the form xα ≡ xβ,
xα, xβ ∈ X with operations ∨, ¬, ∃xα. As before, one can define
the Lindenbaum-Tarski equivalence relation τ on L(X) (see Subsec-
tion 3.1.3).

The quotient algebra L(X)/τ is a cylindric algebra (see [HMT]
for details and for the axiomatic definition of a cylindric algebra).

Shortly speaking, a cylindric X-algebra is a Boolean algebra
equipped with the commuting quantifiers of the form ∃α, α ∈ I
and with the special elements (equalities) of the form e(λ, κ). In
the Lindenbaum-Tarski algebraization process the distinguished el-
ements e(λ, κ) are taken to be the equivalence classes of the formulas
xκ ≡ xλ. The elements e(λ, κ) satisfy the following axioms:

1. e(κ, κ) = 1.

2. e(λ, µ) = ∃κ(e(λ, κ) ∧ e(κ, µ)) if κ ̸= λ, µ; a ∈ B.

3. ∃κ(e(κ, λ) ∧ a) ∧ ∃κ(e(κ, λ) ∧ ā) = 0 if κ ̸= λ; a ∈ B.

Now we return to polyadic algebras. One can define also the
equality predicate on a polyadic algebra.

Let H be a polyadic X-algebra and S be the semigroup of all
transformations of X. A predicate of a polyadic algebra is defined
as follows (cf. [Halm]).

Definition 3.3.44. An n-ary predicate of a polyadic X-algebra H
is a function P from Xn into H such that if (xα1 , . . . , xαn) ∈ Xn

and s ∈ S, then

sP (xα1 , . . . , xαn) = P (sxα1 , . . . , sxαn).

Definition 3.3.45. A binary predicate E is reflexive if E(xλ, xλ) =
1 for every xλ ∈ X.

Definition 3.3.46. A binary predicate E of H is substitutive if for
every xκ, xλ ∈ X and a ∈ H

a ∧ E(xκ, xλ) ≤ sκλa,

where sκλ is a transformation on X such that sκλxλ = xκ, s
κ
λxµ = xµ

for µ ̸= λ.
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Definition 3.3.47. An equality for a polyadic algebra H is a reflex-
ive and substitutive binary predicate of H.

Remark 3.3.48. We reserve a free use of the notation ∃xα = ∃α
and E(xα, xβ) = E(α, β), where xα, xβ ∈ X, α, β ∈ I in the
appropriate places in the sequel.

Not every polyadic X-algebra can be equipped with an equality.
For examples of polyadic algebras with equality and without equality
see [Halm]. However, if a polyadic algebra has an equality then it is
unique.

Definition 3.3.49. A polyadic X-algebra with equality is a polyadic
X-algebra equipped with an equality predicate.

The equality in a polyadic algebra enjoys a number of useful
properties. The most known of them are

1. Symmetry: E(xα, xβ) = E(xβ, xα).

2. Transitivity: E(xα, xβ) ∧ E(xβ, xκ) ≤ E(xα, xκ).

Let us quote some other properties of the equality in polyadic
algebras (for proofs see [Halm], [Pi2], [Pl-Datab]).

Proposition 3.3.50. Let B be a polyadic X-algebra with equality.
Then

i. a ∧ E(xκ, xλ) = sκλa ∧ E(xκ, xλ).

ii. ∃xκE(xκ, xλ) = 1.

iii. sκλa = ∃xκ(a ∧ E(xκ, xλ)) if κ ̸= λ.

iv. E(xκ, xλ) = min{a | sκλa = 1}.

v. sκλE(xκ, xλ) = 1.

vi. sκνE(xλ, xµ) = E(xλ, xµ) if κ ̸= λ, µ.

vii. sκµE(xκ, xλ) = E(xµ, xλ) if κ ̸= λ, µ.

viii. ∃xκ(E(xλ, xκ)) ∧ E(xκ, xµ) = E(xλ, xµ) if κ ̸= λ, µ,

where a ∈ B, κ, λ, µ, ν ∈ I.

Any element of the form E(xα, xβ) may be treated as an addi-
tional nullary operation on a polyadic algebra, and then the ho-
momorphisms of polyadic algebras with equality predicate must
be compatible with them. This means that if H and H ′ are two
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polyadic X-algebras with equality predicates E and E ′, respec-
tively, then a homomorphism µ : H → H ′ is subject to condition:
E(xα, xβ)µ = E ′(xα, xβ) for any xα, xβ ∈ X. Similarly, subalgebras
must be closed with respect to these elements: if H ′ is a subalgebra
in H, then E(xα, xβ) always must belong to H ′.

Let us turn to examples.

Example 3.3.51. We begin with algebras of subsets of Cartesian
products, i.e., algebras of the form P(D), where D is the Cartesian
product of the sets Dα, α runs the set I. As we know, P(D) is a
polyadic I-algebra.

The equality predicate E on P(D) is defined by the condition

E(α, β) = Dαβ,

where Dαβ is a diagonal, namely, the set of those a ∈ D such that
a(α) = a(β) for all α, β ∈ I. The predicate E satisfies the condition
to be a predicate on a polyadic algebra and it is reflexive.

Let us check that it is substitutive. Indeed, if A is a subset of
D and a ∈ A ∩ Dαβ, then asαβ = a and a ∈ sαβA, where sαβ is a
transformation on I such that sαββ = α, sαβµ = µ for µ ̸= β. Thus,
A ∩Dαβ ⊂ sαβA.

So, E = Dαβ is an equality predicate on the algebra P(D).

Example 3.3.52. We have defined already the algebra of a first-
order calculus with equality predicate L(X)/τ (see page 147). One
can consider this algebra as a polyadic X-algebra. Then

E(xα, xβ) = [xα ≡ xβ]τ ,

where [ ]τ is a τ -equivalence class.

It is intuitively clear that polyadic algebras with equality and
cylindric algebras express the same essence, and that there should
be a passage back and forth between them. This is indeed the
case, if we confine ourselves with the locally finite algebras over an
infinite X. The passage is explicit and gives rise to an appropriate
construction according to particular needs and, in a sense, according
to a particular taste. Throughout the book we use polyadic algebras
with equalities as an instrument which allows us to make algebraic
and logical geometry more transparent.

Pursuing this goal, in Part II we will generalize polyadic algebras
with equality up to multi-sorted Halmos algebras.

Remark 3.3.53. Two last examples give us semantical and syntac-
tical approaches.
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These approaches are connected to the value homomorphism

V al : L(X)/τ → P(D),

defined as follows:

V al([xα ≡ xβ]τ ) = Dαβ.

Since the algebra L(X) is generated by the elements of the form
xα ≡ xβ, we can define the image of all elements from L(X)/τ .
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