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Chapter 1

Basics of Universal Algebra
and Category Theory

1.1 Universal Algebra

1.1.1 Sets

We shall start with some notation. As usual, a € A means that a is
an element of a set A, and A C B indicates that A is a subset of B.
The empty set is denoted by @. Given two sets A and B, we use

notation f: A — Band A L Bfora map f of A to B. The image
b of the element a € A under the map f is denoted by b = f(a).
Sometimes we use also "right-hand” notation: b = a/.

As usual, N and U denote the intersection and union of sets. For
the complement of a set A we use A.

The Cartesian product A = A; x --- x A, consists of n-tuples
(ay,...,a,), where a; € A;,; i =1,...,n. For any integer n > 0 the
Cartesian power A™ of the set A is A" = A x --- x A where the
product is taken n times. For n = 0 the set A% is assumed to be a
one-element set.

Every sequence (ay,...,a,) can be treated as the function that
takes every i = 1,...,n to the element a; of A;. Now assume that
I is any set, and let a set A, be associated to every a € I. The
Cartesian product A = []_, A, is the set of functions a defined on
I and selecting, for any a € I, an element a(a) = a, in A,. If all
sets A, coincide with some fixed A, then A’ =[], A is the set of
all functions a: I — A.

A binary relation p between elements of sets A and B is a subset
of the Cartesian product A x B. The subset consists of the pairs
(a,b) such that a stands in the given relation p to b. We use the
notation apb or (a,b) € p. With every map f: A — B one can

7



S8CHAPTER 1. BASICS OF UNIVERSAL ALGEBRA AND CATEGORY THEORY

associate a binary relation which consists of all pairs of the form
(a, f(a)). Therefore, a map can be viewed as a binary relation of a
special kind.

Consider binary relations between elements of the same set. We
select the following properties of such relations.

1. Reflexivity: apa for every a € A.

2. Symmetry: apb implies bpa, for all @ and b in A.

2'. Antisymmetry. apb and bpa implies a = b.

3. Transitivity: apb and bpc implies apc.

Definition 1.1.1. A reflexive, symmetric and transitive relation is
called an equivalence on A. A reflexive, and transitive relation is a
preorder relation. A reflexive, antisymmetric and transitive relation
1s an order relation. An order relation is total order if apb or bpa

for all a and b in A.

Let A be a partially ordered set, i.e., a set with an order relation
< onit. If Bisasubset of Aand a € A, then a is an upper bound of
B if every element of B is comparable with a and does not exceed
a. The upper bound that is less than any other upper bound is the
least upper bound of B. Lower bounds and the greatest lower bound
of a subset are defined in a similar way. The least upper bound and
the greatest lower bound may not exist. An element a of A is called
maximal if for every o' € A, a < o' implies a’ = a.

Lemma 1.1.2 (Zorn). Suppose that every totally ordered non-empty
subset of an ordered set A has an upper bound in A. Then the set
A has a maximal element.

Zorn’s Lemma is equivalent to the axiom of choice and plays a
principal role in many considerations.

Definition 1.1.3. A directed set is a non-empty set A together with
a preorder relation <, subject to condition: for any a and b in A
there exists ¢ in A such that a < c and b < c.

Given an equivalence p on A, denote by [a], a € A, the class of
all a’ € A satisfying the condition apa’. This class of equivalent
elements is called a coset with respect to the equivalence p with
the representative a. To emphasize the relation p, the notation [a],
is used. Every element of the coset [a] may be chosen to be its
representative: [a] = [d/] if ¢’ € [a]. All mutually distinct cosets
with respect to a given equivalence p make up a partition of A into
disjoint classes, and, moreover, partitions and equivalences are in
one-to-one correspondence to each other.
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Let A be a set, and let p be an equivalence on A. We denote by
A/p the set of all cosets of the form [a],, @ € A. This set is called the
quotient set of A modulo p. We also obtain the associated canonical
surjection 7 : A — A/p determined by transition from a to [a|. This
surjection is called the natural map of A onto the quotient set A/p.

Denote by 2 the set consisting of two elements: 2 = {0,1}. Given
a set M, we define the power set P(M) of M as the set of all subsets
of M. Let A be a subset of M. Assign to A a two-valued function
Xa: M — 2 defined by ya(a) =1ifa € Aand ya(a) = 0 otherwise.
This function is called the characteristic function of A. There is a
bijection between the set of characteristic functions Fun(M,2) and

P(M).
1.1.2 One-sorted algebras

Definitions and examples

Let H be a set. A map w : H" — H is called an n-ary algebraic
operation on H:

w:\HxHx---xHj—>H.

n

In particular, a nullary algebraic operation takes any element of H
into a distinguished element of H and can be identified with this
element. These distinguished elements of H are called constants.
The notation a; ...a,w or w(as,...,a,) is used for the result of
application of an n-ary operation w to the argument (ay,...a,).

Definition 1.1.4. A set Q of symbols of operations, where each
symbol w € Q) is equipped with an integer n(w) > 0 is called a
signature of operations.

Definition 1.1.5. An algebra H of signature Q is a triple (H,€2, f)
where H is the underlying set, () is the set of symbols of operations,
and the function f realizes every symbol of operation w as the oper-
ation f(w) of arity n(w) acting on H.

In fact, we usually omit the reference to the realization f and
write simply a; - - - a,w instead of a; - - - a,, f(w). Furthermore, if the
set ) is already fixed, we speak merely about an algebra H. We
use also the term (2-algebra in order to emphasize the role of the
signature ).

Every n-ary operation can be treated as an (n + 1)-ary relation:
if w is an n-ary operation and w’ is the corresponding relation, then
(@1, .., Gp,any1) € W whenever a; -+ a,w = apyq.
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For a fixed (2, we have the class of (2-algebras. In this large class
various subclasses may be distinguished by selecting sets of axioms.
For the commonly known classes of algebras we use for symbols of
operations the standard notation: + , x ,- ,® ,V, ..., etc. We shall
list briefly some classes of algebras.

Recall that a semigroup is an algebra S with one operation -
subject to the associativity condition (z-y)-z=x - (y-2). Usually
the sign - is omitted in the notation. A semigroup S is said to be
a monoid if it has an identity element e such that xe = ex = x
for every x € S. The element e is easily seen to be unique. It
is often denoted as 1. The signature of a monoid consists of one
binary operation and one nullary operation that are subject to three
axioms.

A group G is a monoid in which all elements are invertible. Thus,
it is an algebra with three operations: the binary multiplication, the
unary inverse element operation, and the nullary operation that dis-
tinguishes the identity element. These operations satisfy the axioms:

L(x-y)-z=a-(y-2);
2. 1-z=2-1=u;

J.x-xt=a"t2=1.

From now on we will omit ”-” in the notation. A group G is
called abelian or commutative if xy = yx for every x,y € G. For
abelian groups the additive notation is common. In this notation
the binary operation is called addition and denoted by 4. Then
the commutatitivity law looks as © + y = y + x, the inverse of a
is denoted by —a and is said to be the opposite of a, and the zero
element 0 stands for the identity in those groups.

A ring is a set R endowed with two binary operations called
addition (4) and multiplication (-) that are subject to the following
conditions:

1. R is an abelian group with respect to addition;
2. R is a semigroup with respect to multiplication;
3. addition and multiplication are related by the distributive laws:

r(y+z2)=ay+axz, (x+y)z=12+yz.

A ring R is commutative if the multiplication is commutative. A
field is a commutative ring with the unit element 1 in which any
non-zero element is invertible with respect to multiplication.
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In order to define a vector space, we should specify a field of
scalars K. A wector space A over a field K is an abelian group
A with respect to addition and the corresponding l-ary and 0-ary
operations, on which a multiplication of the elements of A by ele-
ments of K is defined: for any a € A and a € K, we have aa € A.
Moreover, the following axioms should be satisfied:

L. a(x +y) = azr + ay;
2. 1.1 =

3. (a+ p)x = ax + Pux;
4. (aB)x = aBz).

Here 1 denotes the unit element of K, x,y € A, and o, 8 € K. In
this definition, we regard any element a of K as a 1l-ary operation
that assigns to an element a of the underlying set A the element aa.
We include all the elements of K in the signature of operations (2.

If in the definition of a vector space we replace a field K of scalars
by a commutative ring R, we obtain the notion of a module over a
ring. We can regard any additive abelian group A as a module over
the ring of integers Z by letting na = a+---+a and (—n)a = —na.

Let H be a R-module over a commutative ring R. Suppose also
that H is a multiplicative semigroup.

The module H is said to be an associative algebra over R if it
satisfies the following conditions:

1. H is a ring with respect to addition and multiplication;
2. Mzy)=(A-z)-y=2-(\y), AER, x,y€ H.

The non-commutative polynomials f(x1, ..., z,) with coefficients
in a given field K constitute an associative algebra. Another exam-
ple is provided by the algebra of square matrices of order n whose
entries are elements of a commutative ring R. We denote this al-
gebra by M(n, R). The group of invertible elements of M (n, R) is
denoted by GL(n, R) and called the general linear group.

A Lie algebra is a module L over a commutative ring R together
with a bilinear product [, ] : L x L — L subject to conditions:

L. [l’,y} = _[Z/,x],
2. [z [y, 2]l + ly, [z, 2] + [z, [=,9]] = 0,

for all x,y,z € L.
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If Ais an Q-algebra, then a subset B of A is called a subalgebra
of A if B is closed with respect to all operations w € 2. This
means that for any n-ary operation w € 2 and any b,...,b, € B,
the element by ---b,w belongs to B. In particular, it should be
closed with respect to all nullary operations, that is B contains all
constants.

Let B be a subset of A. Denote by (B) the minimal subalgebra
containing B, that is the intersection of all subalgebras of A con-
taining B. We say that the subalgebra (B) is generated by the set
B.

Homomorphisms of algebras

Let A and B be (-algebras of the same signature, and let yp: A — B
be a map. This map is said to be compatible with an n-ary operation
w € Qif

(ay - apw)* =al - ahw,

where (aq,...,a,) is an arbitrary n-tuple in A™.

Definition 1.1.6. A map pu: A — B compatible with all operations
w € Q is called a homomorphism from A to B.

If u: A — B is a bijective homomorphism, then y=': B — A
is a homomorphism, too. Moreover, then p is an tsomorphism and
pu~!is the inverse isomorphism. Algebras A and B are isomorphic
if there is an isomorphism p: A — B.

A property of an algebra is called abstract if it respects isomor-
phic images. Surjective and injective homomorphisms are also called
epimorphism and monomorphism, respectively. The set of all endo-
morphisms is denoted by End(A). If A = B, then homomorphisms
A — A are called endomorphisms. Bijective endomorphisms are
called automorphisms of A. All endomorphisms of a given algebra
A constitute a monoid with respect to composition of maps. Anal-
ogously, all automorphisms of A form its group of automorphisms
denoted by Aut(A).

Let A be an Q-algebra, and let p be an equivalence on A, i.e.; a
reflexive, symmetric, and transitive binary relation. If w is an n-ary
operation in €2, then the relation p and the operation w are said to
be compatible if, for any n-tuples (ay,...,a,) and (a},...,a,) the
condition a;pal, i = 1,...,n, implies

(a1 -+ anw)p(al - ).

Definition 1.1.7. An equivalence p is called a congruence of an
Q-algebra A, if p is compatible with every operation from €.
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If p is a congruence then any n-ary operation w € {2 induces
an operation on the quotient set A/p by the rule [a;---a,|w =
[ay - - - ayw], for every n-tuple of cosets from A/p. Here the element
[a1] - - - [an]w does not depend on the choice of representatives of the
cosets because of compatibility of p and w.

Thus, we have an Q-algebra A/p which is called the quotient
algebra of A modulo p. The natural map 7: A — A/p becomes a
natural homomorphism. In fact, it is an epimorphism of algebras.

If 4w : A — B is a homomorphism of algebras then the kernel
p = Kerp is defined to be the binary relation on A determined by
the rule: ajpas if and only if af = a, a;,as € A. This means that
a; and ag are p-equivalent if their images under p coincide. The
equivalence p = Keru is always a congruence. Thus, the quotient
algebra A/Kerp is defined. The commutative diagram

A K - B

A/Keru
states that 7 is an epimorphism and the quotient algebra A/Kerpu
is naturally isomorphic to the image of A.

For some classes of algebras the kernel equivalence, i.e., the ele-
ments of A/Kerpu, can be specified by distinguishing a single equiv-
alence class. For example, if u : Gy — Go is a homomorphism of
groups, then Kerpy = u='(1g,) is the set of elements in G equiv-
alent to 1g,. This set is always a normal subgroup. Recall that a
subgroup N of a group G is called normal if gNg=! = N for every
g €G.

A homomorphism of rings p : Ry — Ry preserves addition, mul-
tiplication and the zero element of the ring. The set H = Kerpy =
p 1 (0g,) of elements in R; equivalent to O, determines the kernel
congruence. The set H is a two-sided ideal of the ring, that is

1. H is a subgroup of the additive group (Ry,+).
2. For every r € Ry and h € H we have rh € H,
3. For every r € Ry and h € H we have hr € H.

If H is a two-sided ideal of a ring R then the relation p defined
by apb if and only if a — b € H is a congruence on R and each
congruence can be obtained in such a way by taking an appropriate
Kerpu.

Note that even in the case when the ring R; is a monoid with
respect to multiplication, the set u~1(1z,) does not determine the
whole kernel congruence since (Ry,-) is not a group.
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1.1.3 Boolean algebras and lattices

Boolean algebras and lattices play a special role in this book. We
will meet them once again in Section 3.2 devoted to algebraization
of the propositional logic.

Definition of a Boolean algebra.

Definition 1.1.8. A Boolean algebra is a set A viewed together
with two binary operations +,- and one unary operation ~. These
operations are subject to the following axioms.

l.a+a=a; a-a=a.
.a+b=b+a; a-b=b-a.
(a+b)+c=a+(b+c); (a-b)-c=a-(b-c).

. (a) = a.

=l

a-b=a-+

S

.a+b=a-

2
3
4oa-(b+c)=a-b+a-c; a+b-c=(a+Db)-(a+c).
5
)
7

. (a+a)-b=0b;, a-a+b=0b.

S]]

It follows from the axioms that the identities a - a =b-band
a+a = b+ b always hold. Therefore, one can single out the elements
0O=a-aand 1=a+a, and then

a+0=a, a-1=a,

a+1=1, a-0=0.

The zero and identity elements, regarded as nullary operations,
could be included into the signature of Boolean algebras. One can
check that in this signature the system of axioms defining a Boolean
algebra is equivalent to the following one.

l.a+b=b+a;, a-b=0>b-a.

2. (a+b)+c=a+(b+c); (a-b)-c=a-(b-c).
3.alb+c)=a-b+a-¢; a+b-c=(a+b)-(a+c).
4. a-(a+b)=a+a-b=a.
5

.a+0=a, a-1=a,
a+1=1, a-0=0.
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6.a-a=0, a+a=1.

We will freely use the notation V and A instead of + and -, and
also replace = by —. This is especially the case when we want to
underline relations between Boolean algebras and propositional cal-
culi or two distinguish between the operations in a Boolean algebra
and in some other algebra. Another system of axioms equivalent to
above defined is given in Section 3.2.

Homomorphisms of Boolean algebras play a special role in further
considerations. A map u of Boolean algebras is a homomorphism if
it preserves all operations of the signature. Thus,

pla+b) = p(a) + pu(d),
pi(ab) = p(a)u(b),
u(@) = (u(a)),
p(1) =1 and p(0) = 0.
Let us give some examples of Boolean algebras.

Example 1.1.9. The simplest example of a non-trivial Boolean
algebra is the algebra 2. It is two-element set {0, 1} with the oper-
ations defined in terms of usual arithmetic operations as follows:

by V by = max(by, by),
by A by = by - bo,
—by =1 — by,
where by, by € {0, 1}.

Example 1.1.10. Let A be an arbitrary set and B a Boolean alge-
bra with operations V, A, =. Then the set Fun(A, B) = B of all
functions from A to B is also a Boolean algebra with operations V,
A, — defined by the rules:

(f1V f2)(a) = fi(a) V fa(a),
(i fo)(a) = fi(a) A fa(a),
(=fi)(a) = =(fi(a)),
where a € A, f1, f» € BA.

Example 1.1.11. Let S be a set. Denote by P(S) the power set
of S, that is the set of all subsets of S. The set P(S) with the set-
theoretic operations union U, intersection N and complementation

— forms a Boolean algebra, which is called the power set algebra
(Boolean). Note, P(S) & Fun(S,2) = 25.

~— —
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The well-known Stone’s theorem states that:

Theorem 1.1.12. Fvery Boolean algebra is isomorphic to a subal-
gebra of the Boolean power set algebra of some set. 0

The set 2 is also a ring, via the addition and multiplication mod-
ulo 2. 2™ is a ring as well, so here we have simultaneously a ring and
a Boolean algebra. There are certain links between ring operations
and Boolean operations.

Boolean rings. Now we consider definition and some properties of
Boolean rings.

Definition 1.1.13. An associative ring R with unity is called a
Boolean ring, if the identity 2> = x holds in R.

An element a of a ring R is called idempotent if a*> = a. Hence,
a Boolean ring consists of idempotent elements.
Moreover, in a Boolean ring R

(a+b) = (a+b)?=a+ab+ba+b,

which implies ab + ba = 0. Replacing a = b we get a = —a for any
a € R. Now ab + ba can be rewritten as ab — ba = 0, and each
Boolean ring is commutative. Thus:

Proposition 1.1.14. Every Boolean ring is commutative and sat-
i1sfies the identity x = —xx. O

There is a natural connection between Boolean algebras and
Boolean rings.

Proposition 1.1.15. Let R be a Boolean ring. We define the op-
erations V, N\, ~ on R by setting

aVb=a+b+ab, aNb=ab, a=a+1.
Relatively to these operations, R is a Boolean algebra denoted by
A= R*.
Conversely, if A is a Boolean algebra with respect to operations
V, A, 7, we define addition and multiplication on A by the rules

a+b=(aAb)V(aAb), ab=aAb.

Then A becomes a Boolean ring denoted by R = A*.
Moreover, R** = R and A*™ = A. The elements 0 and 1 are
the zero and unit elements both of the ring and the Boolean algebra.

O
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Lattices. In any Boolean algebra, an order relation is introduced
in a natural way: a < b if ab = a or, equivalently, if a +b = 0. It is
easy to check that < satisfies the order axioms.

Definition 1.1.16. A partially ordered set A is called a lattice if
every pair of elements a,b of A has the least upper bound supa(a,b)
and the greatest lower bound inf4(a,b).

It is easy to see that a+b is the least upper bound of the elements
a and b of a Boolean algebra, and that ab is the greatest lower bound.
Therefore, every Boolean algebra is a lattice.

Now assume that A is a lattice. For arbitrary a,b € A, we denote
by a + b and ab their least upper bound and greatest lower bound,
respectively. A simple checking shows that the following axioms
hold:

l.ata=a; aa=a.

2.a+b=b+a; ab=ba.

3.a+(b+c)=(a+b)+c¢ a(bc) = (ab)c.
4. ala+b)=a; a+ab=a.

These axioms occurred in the definition of a Boolean algebra.
They are called idempotent, commutative, associative and absorption
laws, respectively.

Therefore, to any lattice we have assigned an algebra with two

binary operations, addition and multiplication, which satisfy condi-
tions 1 — 4.

Proposition 1.1.17. Define an order relation on an algebra A sat-
1sfying axioms 1 — 4 by the rule: a < b if ab = a. Then A becomes a
lattice, and the algebra corresponding to it coincides with the original
algebra A. O

The proposition shows that a lattice can be defined as an algebra
of a specific kind.

Definition 1.1.18. A lattice is said to be distributive, if it satisfies
the identity a(b+ ¢) = ab+ ac.

Proposition 1.1.19. A lattice A is distributive if it satisfies one of
the equivalent conditions

1. a(b+c¢) = ab+ ac,
2. a+bc=(a+b)(a+c),



18CHAPTER 1. BASICS OF UNIVERSAL ALGEBRA AND CATEGORY THEORY

3. a(b+c) < ab+ ac,
4. a+b=a+c and ab= ac imply b = c. O

A lattice is said to be bounded if it has elements 0 and 1 such
that 0 < a < 1 for every a € A. If A is a bounded lattice and
a € A, then bis a complementof aifa+b=1andab=0. If Aisa
bounded distributive lattice, then every element a € A has at most
one complement. Indeed, let a + by = a + by and ab; = aby,. Then
b1 = bl + Clbl = bl + Clbg = (bl + a)(b1 + bQ) = (bg + (l)(bg + bl) =
by +ab; = by +aby = by. A bounded lattice A is called complemented
if every element of A has a complement. Hence in a complemented
distributive lattice each element a has a unique complement denoted
by @. This means that ~ is an unary operation on a complemented
distributive lattice.

Definition 1.1.20. A lattice A is Boolean if it is distributive, has
0 and 1, and every element of A has a complement.

Proposition 1.1.21. Let A be a Boolean lattice. Then A is a
Boolean algebra with respect to the operations + , - , and =~ de-
fined on it. Denote this algebra by B = A*. Conversely, if B is

a Boolean algebra, then, by setting a < b if ab = a, we obtain a
Boolean lattice A = B*. Moreover, A* = A, and B** = B. O

The proposition means that, when dealing with Boolean algebras,
we may treat them as Boolean lattices, and vice versa.

Definition 1.1.22. A lattice is called modular if it satisfies the iden-
tity a(ab + ¢) = ab + ac.

This property is equivalent to the following one: if a < ¢, then
(a 4+ b)c = a + be. Every distributive lattice is modular since the
modular identity is a particular case of the distributive law.

i Paragraph, chto-to
napisat’ Ideals and filters.

Definition 1.1.23. A subset U of a Boolean algebra A is called
an ideal of A if U is closed with respect to addition and ab € U
whenever a € U and b € A.

In fact, a subset U of A closed with respect to addition is an ideal
if and only if @ € U implies b € U for any b < a. In particular, an
ideal always contains the zero element of the algebra. Every Boolean
algebra H has the trivial ideal consisting only of the zero element.

The minimal ideal containing a € A is denoted by (a);q. For an
arbitrary a € A, the ideal (a);4 consists of all elements b, such that



1.1. UNIVERSAL ALGEBRA 19

b < a. Any ideal of such kind is called principal. An ideal U of a
Boolean algebra B is proper if U # B. Clearly, an ideal is proper if
and only if it does not contain 1.

Proposition 1.1.24. A subset U of a Boolean algebra A is an ideal
if only if U s an ideal of the corresponding Boolean ring. FEvery
tdeal U of A determines a congruence p of the Boolean algebra as
follows: apb if and only if ab 4+ ab € U. Every congruence can be
obtained in such a way. ([l

If 4 : A — B is a homomorphism of Boolean algebras then the
equivalence classes with respect to Kerp are determined by the set
p~1(0p). This is an ideal of A and each ideal of A can be represented
in such a way. However, there is another approach to characterize
these classes using the inverse image of 15. It leads to the notion of
filter which is dual to the notion of ideal.

Definition 1.1.25. A subset F' of a Boolean algebra A is a filter
of A if it is closed with respect to multiplication, and a +b € U
whenever a € U and b € A.

A statement dual to one for ideals states that F' is a filter of A
if and only if U is closed with respect to multiplication and a € F
implies b € F' for any b > a. In particular, a filter always contains
the unit element of A. A filter is called trivial if it coincides with 1.

For any a € A, the set F' = (a)s; consisting of all the elements
b > a is a filter, called the principal filter generated by a.A filter F
of a Boolean algebra B is proper if F' # B. Clearly, F' is proper if
and only if it does not contain 0.

The duality between ideals and filters in Boolean algebras is given
via the operation ~. If U is an ideal, then the set F' = U consisting
of all @, such that u € U, is a filter. Conversely, the ideal U = F

corresponds to the filter F', and U=U , F' = F. Duality also implies

Proposition 1.1.26. Every filter F' of A determines a congruence
p of the Boolean algebra as follows: apb if and only if

(@+b)(b+a) € F

The same congruence is determined by the ideal U = F. Every
congruence can be obtained in such a way. O

We denote the quotient algebra A/p by A/U or A/F as well. We
will see that the notion of a filter is tightly related to derivability of
formulas in propositional calculus. This is a reason to write a — b
for @ 4+ b and regard — as a derived binary operation on a Boolean
algebra.Then
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Proposition 1.1.27. A subset F' of a Boolean algebra A is a filter
if and only if the following two conditions hold:

1. 1eF,

2. ifa€e Fanda—beF, thenbe F.

Proof. See Proposition 3.2.10. [

Corollary 1.1.28. A subset U of a Boolean algebra A is an ideal if
and only if the following two conditions hold:

1. 0eU,

2. ifaeU andb\a=ba e U, thenbe U.

A subset C' of a Boolean algebra B has the finite intersection
property if for every finite set of elements {ci,...,¢,} in C their
product ¢; - - - ¢, is not 0.

Proposition 1.1.29. Any subset C' with finite intersection property
lies in a minimal proper filter. This is the filter generated by C.

Indeed, one can add to C' all finite products of elements of C' and
extend the obtained set with all bigger elements. The obtained filter
is proper since it does not contain zero.

Now we postpone further consideration of Boolean algebras till
Section 3.2.2

1.1.4 Multi-sorted algebras

Our next aim is to define multi-sorted algebras. There are many
reasons to deal with algebras of such kind. For instance, we will need
a multi-sorted variant of Halmos algebras (see Part 2, Chapter 7?7

N Ssylka ?77) in order to work with finite dimensional affine spaces and
construct a geometry related to first-order calculus in an arbitrary
variety ©.

Basic definitions

Let I be an arbitrary set, which is treated as a set of sorts. There
are no restrictions on I', this set can be finite or infinite. Consider
a multi-sorted set D = (D;, i € I'), where I' is a set of sorts, and
D; is a set called a domain of the sort i. Now we shall make D a
multi-sorted algebra.

Every operation w on D has a specific type 7 = 7(w), which is
an (n + 1)-tuple of the form (iy,...,4,;J), ix, j € I'. This notion
generalizes the notion of arity of an operation defined on a one-sorted
set.
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Definition 1.1.30. A map
WIDiIX"'XDin—)Dj
is called an operation on D of the type (i1,...,1n;7).

Denote by €2 a set of symbols of operations.

Definition 1.1.31. A set Q of symbols of operations, such that each
symbol w € Q is equipped with an (n+1)-tuple 7(w) = (i1,...,1n;7),
where iy, 7 € I, is called a signature of multi-sorted operations. A
tuple () corresponds to a symbol of nullary operation, j € T

Definition 1.1.32. A multi-sorted algebra D = (D;, i € T") of the
signature ) is a 4—tuple (D, T, Q. f), where D is a multi-sorted set
with set of sorts I', Q is the signature of multi-sorted operations,
and the function f realizes every symbol of operation w of type T =
(11, ..,1n;7) as the operation

f(w) : Dil X e X Di" —>Dj.

In the sequel we will not use the function f in the notation for
operations on D and simply write D = (D;, ¢ € ). Now we shall
define binary relations on a multi-sorted set D = (D;, i € T'). Each
binary relation p has a type 7, which is an n-tuple (i, . .. ,4,), iy € I

A binary relation p of type T on D = (D;, i € I') is a collection
(Piys- -, pin), where p; is a binary relation on D;, . A relation p =
(Piys-- - piy) is called an equivalence if each p;, is an equivalence.

Let now D = (D;, i € I') be an Q-algebra, w an operation from 2
of type 7(iy, .. .,i,;7), and p an equivalence of type 7. Compatibility
of p and w means that if (a;,,...,a;,) and (aj ,...,a; ) are elements

of Dy x---x D, ,and a; p;.a;, forall s=1,... n, then
(s, - - ag,w)p;(as, - - a5, w).

An equivalence p is called a congruence if it is compatible with all
operations w € ().

Homomorphisms of multi-sorted algebras act componentwise and
are of the form p = (u;,0 € I') : D — D', where u; : D; — D, are
homomorphisms of algebras and, besides that, every u respects each
operation w of type 7 = (i1,...,9,;7):

(a]_anW)HJ:alfl'a/anj aSEDiS’S:17...,n.

The kernel of a homomorphism g : D = (D;, i € T) - D' =
(D;, i € T) is of the form p = (p;, ¢ € I') where each p; is the kernel
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congruence of the homomorphism ;. If p is a congruence, then the
quotient algebra D/p is defined as follows:

D/p=(Di/pi, i €T).

Subalgebras and Cartesian products of multi-sorted algebras are
defined in a usual way. For example, if D* = (D$,i € '), a € 1,
are ()-algebras, then the Cartesian product is the algebra

[[p*=(]Dps ier),
and if w is an operation of type 7(w) = (i1,...,4,;J), then

(aras - apw) (@) = ar(@)as(@) - - - ay(a)w,

where a, € [[, D5 ,...,a, € [[, D5 .
The following general fact, known as Remak’s theorem, remains

true for multi-sorted algebras.

Theorem 1.1.33. Let D = (D;, i € I') be an Q-algebra, and let
a collection of congruences py, 0 € I, be given; we set p = (), pa-
Then the quotient algebra D/p can be embedded as a subalgebra into
the Cartesian product of all D/p,. O

Examples

Let us consider some examples of multi-sorted algebras.

e A semigroup representationis a two-sorted algebra (V) S), where
V is a set, S is a semigroup acting on V' by the operation o: V xS —
V subject to condition

U0 8189 = (uosy) 0 S,

where u € V, 51,82 € S. Any semigroup representation (V,.S)
defines a homomorphism v: S — End(V') and vice versa.

e A linear semigroup representation is a two-sorted algebra (V 5),
where V' is a R-module, S is a semigroup acting on V' by the oper-
ation o: V' x § — V subject to conditions

U1 0 5152 = (ug 051) 0 Sa,

(cquy + agug) o s = ay(ug 0 8) + (g 0 ),

where aq, a0 € R uj,us € V, 51,80 € S. Any linear semigroup
representation (V,.S) defines a homomorphism v: S — End(V') and
vice versa. In view of this observation one can define:
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o A linear group representation (V,G) is defined if a group ho-
momorphism v: G — AutV = GL(V) is given. Introducing the
operation o : V x G — V by

aog=ag’,
we view the group representation as a two-sorted algebra.

e A pure automaton A = (A, B, C) is a three-sorted algebra with
two operations, o: A x B — A and x: A x B — C. The corre-
sponding set of sorts consists of three elements: I' = {1,2,3}; 1
corresponds to the set of states A, 2 corresponds to the set of input
signals B, and 3 corresponds to the set of outputs C'. The operations
o and * are of types (1,2;1) and (1,2;3), respectively. No axioms
are assumed here. If either of the sets A, B, C' is a semigroup or an
R-module, then a bunch of axioms appear.

o A semigroup automaton A = (A, B,C) is an automaton in
which B is a semigroup and the operations o: A x B — A and
x: A x B — C are subject to conditions

1. aobiby = (aoby) o by,
2. a*b1b2 = (aObl) *bg.

where a € A and by,by € B. Any semigroup representation can be
viewed as a particular case C' = 0 of a semigroup automaton.

o A linear semigroup automaton A = (A, B,C) is a semigroup
automaton where A and C are vector spaces over a field or, more
generally, modules over a commutative ring R with unit, and the
operations a — a o b and a — a *x b are linear maps for any b € B.

Any linear semigroup representation can be viewed as a particular
case of a linear semigroup automaton.

According to the general definition, a pure automata homomor-
phism is a map p = (o, 3,7): (A, B,C) — (A, B',C") which is
compatible with the operations. The compatibility conditions are
of the form (a o b)® = a®o b’ and (a * b)? = a® * b°.

For semigroup automata, we also assume that the map 5: B —
B’ is a semigroup homomorphism, while for linear automata we sup-
pose that a: A — A" and v: C — C’ are linear maps.

A congruence of an automaton (A, B, C) is a triple of equivalence
relations p = (p1, pa, p3) compatible with all operations.

1.1.5 Free algebras

One-sorted case

Let us start with the one-sorted case. Assume that a signature of
operations €2 and a set X are fixed. The set X will play a role
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of an alphabet while the operations w € €2 provide the rules for
constructing elements of the absolutely free algebra Q(X) over X.
We call elements of 2(X) words over the given set X. The rules are
as follows.

1. All elements of X and all symbols of nullary operations are
words in (X).

2. If w is an n-ary operation symbol from €2, n > 0, and if
wy, ..., w, are words, then the expression w; - - - w,w is a word

in Q(X).
3. There are no other rules.

The set (X)) is defined in such a way that all operation symbols
from € are naturally realized in Q(X). Indeed, if w is an n-ary
operation symbol and wq,...,w, are words, then, by definition of
(X)), the expression w; - - - w,w is a word. So, define the realization
wax) of w in Q(X) by

Wy -+ Wplo(x) = W1+ * * WpW.
A nullary symbol selects the word corresponding to it.

Definition 1.1.34. The obtained Q-algebra Q(X) is called the ab-
solutely free Q2-algebra over X, or the algebra of words over X.

This algebra is sometimes called the term algebra (see, for exam-
ple, [DenWis]).

This algebra possesses the following important freeness property
in the class of all (2-algebras.

Theorem 1.1.35. Every map pu: X — A, where A is an Q-algebra,
has a unique extension up to a homomorphism p*: Q(X) — A of
Q-algebras.

Proof. First, we shall verify that such an extension exists. Assign
to every symbol of a nullary operation in £(X) the corresponding
element of A, and then proceed in accordance with the recursive
definition of a word. If w € X, then w* = w*. If w is an n-
ary operation symbol, n > 0, and wy,...,w, are words for which
the elements w/ *, ...,w” in A are already defined, then we set
(wy -+ wpw)* = w" - w”w. This rule defines the map pu* for
every element of Q(X). By definition, p* is a homomorphism ex-
tending the map p. Every homomorphism v : Q(X) — A coincides
with p* since v = p* on the set X. O]
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In the sequel we often denote the map p and the homomorphism
1* by the same letter p.

Theorem 1.1.35 implies that every (-algebra A can be repre-
sented as a homomorphic image of an absolutely free algebra Q(X).
Denote by p the kernel of the corresponding surjection. Then the
quotient algebra Q(X)/p is isomorphic to A.

It is easy to see that (X) = Q(X). Hence, X is the generating set
of Q(X).

A class X of Q-algebras is called abstract if it contains all algebras
isomorphic to a given algebra from X. Suppose that X is an abstract
class of (2-algebras. The property described in Theorem 1.1.35 is a
characteristic property and can be taken for the definition of a free
in X algebra over a set X.

Definition 1.1.36. Let W(X) be an algebra in X with the set of
generators X. The algebra W (X)) is called free in X if for any alge-
bra A in X and any map v : X — A, there exists a homomorphism
p: W(X)— A such that the diagram

X i W(X)
i

X‘A

1s commutative. Here vd denotes the identity map.

Note that not every abstract class of algebras X possesses free
algebras. We hold fixed the alphabet X and the algebra Q(X) over
it. Consider formal expressions (formulas) of the kind w; = wy,
where w; and wq are words of Q(X).

Definition 1.1.37. An expression (formula) wy = ws, where wy, wy €
Q(X), is an identity of an Q-algebra A if for every homomorphism
p: QUX) — A we have wi = wh in A.

This means that if wy; = wq (21, ..., 2,) and wy = we(xq, ..., k),
then any substitution z; — a;, where a; € A, results into an equality
of the corresponding elements of A.

Definition 1.1.38. A class of algebras satisfying a set of identities
15 called a variety.

A formula wy = wy is an identity of a class X of algebras if it is
an identity of every algebra from X.

In every variety © a set X determines a free algebra, which
is a quotient algebra of the absolutely free algebra (see Proposi-
tion 1.1.42). Given the variety O, a set of identities w; = wy in the
free in © algebra W (X)) determines subvarieties of ©.
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The next aim is to give an invariant characteristic of varieties.
Let X be a class of Q2-algebras. Define

1. Q(X) is the class of algebras isomorphic to homomorphic im-
ages of algebras of X.

2. S(X) is the class of algebras isomorphic to subalgebras of alge-
bras from ©.

3. C(X) is the class algebras isomorphic to Cartesian products of
algebras from X.

A class X is closed with respect Q, S, C'if Q(X) C %, S(X) C X,
C(X) C X, respectively. The closure of a class X is the minimal
closed class of algebras containing X.

Birkhoft’s theorem states:

Theorem 1.1.39. A class X of Q-algebras is a variety if and only

if it 1s closed with respect to the operators QQ, S and C'. The closure
of X is denoted Var(X) and equals QSC(X%). O]

Hence, the minimal variety containing a given class of algebras
Xis © = Var(X) = QSC(X). This variety O is said to be generated
by X.

In a variety © one can consider free products of algebras.

Definition 1.1.40. Given two algebras A and B from O, the free
product A x B is an algebra with homomorphisms iy : A — A %
B and ig : B — A x B, such that for any algebra H € © with
homomorphisms u : A — H and v : B — H there is a unique
homomorphism

puxv:AxB—H

extending p and v.

Although the free products of algebras exist in any variety, spe-
cific constructions realizing free products depend on a particular
variety ©. Free products of algebras can be generalized by the no-
tion of amalgamated products of algebras glued together along a
subalgebra.

This construction is most explicit for the case of the amalgamated
product of two groups. Let groups G, G, G5 and homomorphisms
v1: Gg — Gy and ps : Gg — G4 be given. Denote by N the normal
subgroup of the free product Gy % G5 generated by the elements
QOl(h)QOQ(h)_l, h € Go.
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Definition 1.1.41. The quotient group
(Gl * GQ)/N

1s called the amalgamated product of the groups Gy and Gg over the
group Gy.

The free product G; *x G5 is a particular case of this construction
when Gy is a trivial group. The definition of the amalgamated
product for algebras is similar to that for groups. One should replace
the normal subgroup N by a congruence generated by o;(h)pa(h) ™.

Multi-sorted case

The whole setting of free algebras considered above for the one-
sorted case can be transferred to the multi-sorted one.

We keep fixed the set Q) of operation symbols, and choose a multi-
sorted set X = (X, € I') which will play the role of the multi-sorted
alphabet. Define the set Q(X) of Q-words as follows.

1. All elements of X; and all symbols of nullary operations of type
(1) are words of sort i, i € I

2. If w is an operation symbol of type 7 = (i1,...,i,;7) from €,
and wy,...,w, are words of sorts iy,...,1, respectively, then
wy ... wyw is a word of sort j.

3. Any word is constructed only by use of these rules.

Similarly to the one-sorted case we come up with the absolutely
free multi-sorted Q-algebra Q(X) = (Q(X;), i € T') generated by
X = (X;, i € T'). In particular, every map X = (X;, i € ') —
D = (D;, i € I'), where D is an Q-algebra, is extended uniquely to
a homomorphism Q(X) — D.

An expression (or formula) w; = we, where w; and wq are words
of QX) = (X;), ¢ € I') of the same sort, is called an identity of
an algebra A = (A;,i € T') if for any homomorphism

p= (i €l): QX)=(QX;),i€l) > A= (A;,i €l

we have wi" = wh*, where i is the sort of w; and wy.

Analogously to Definition 1.1.38, a class of multi-sorted alge-
bras satisfying a set of identities is called a variety and any X =
(X;, i € T') with non-empty domains determines a free algebra
W(X) = (W(X;), i €I') of the variety, which is a quotient algebra
of the absolutely free algebra Q(X) = (Q(X;), i €T) .
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Indeed, given a variety of algebras ©, consider various homomor-
phisms p: Q(X) — A for all algebras A from ©. Let p = (p;, i € I)
be the intersection of the kernels of all these homomorphisms. Then

Proposition 1.1.42. W(X) = Q(X)/p is the free algebra over X
n O. O

It follows immediately from definitions that a formula w; = ws,
where wy, wy are words of sort 7, is an identity of © if and only if
wip;we. Here p; is the i-th component of p. The relation p is called
a verbal congruence with respect to ©.

Birkhoff’s theorem remains true in the multi-sorted case, that is
if X is a class of multi-sorted algebras, then Var(X) = QSC(X).

Now we want to characterize congruences in the free algebra
W (X) that correspond to varieties.

Definition 1.1.43. Let p = (p;,t € T') be a congruence of an algebra
A= (A1 el), and p = (it € I') an endomorphism of A. A
congruence p = (p;, © € I') is called a fully invariant congruence if
aip;as implies al* p;a’ for every i € T, ay,as € A;.

Proposition 1.1.44. There is a one-to-one correspondence between
fully invariant congruences p = (p;, i € I') of the free algebra
W(X)=(W(X;), iel) and subvarieties in ©.

1.1.6 Classes of algebras

Varieties, i.e., classes of algebras defined by identities, present one
of the most interesting classes of algebras. We shall start with a list
of very important varieties:

1. Variety of groups Grp.

2. Variety of semigroups Smg.

3. Variety of associative algebras over a field K, Ass — K.

4. Variety of associative and commutative algebras over a field K,
Com — K.

5. Variety of Lie algebras over a field K, Lie — K.

6. Variety of lattices.

7. Variety of Boolean algebras.

8. Variety of representations of groups over a ring R, Rep — R.
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All varieties of the above list except the last one are varieties of
one-sorted algebras. The variety Rep — R is a variety of two-sorted
algebras.

Each of these varieties is a universe where the corresponding the-
ories live. In particular, universal algebraic geometry and logic, the
subjects of this book, live there. Recall that identities of a variety ©
are simplest formulas of the form w; = w,, where wy, wy are words
of a free algebra W(X) in ©. Let us call such formulas atoms. We
may and shall consider algebraic structures defined by arbitrary sets
of formulas.

Formulas are produced from atoms by means of Boolean con-
nectives and quantifiers. For a precise definition of a formula with
respect to a signature of logical operations see Definition 3.1.6. By
now, we shall assume that all this is intuitively clear, noting that
given w; = w;(xq,...,x), the expression

V3 ((wy = ws) V (w; = ws))
is an example of a formula while
Ve 3zs((wy = ws) V wy)

is not. It will also be explained what does it mean precisely that a
formula w is valid on an (2-algebra H. Meantime we can think that
a formula u = u(zy, ..., z) is valid on the point (hy, ..., k) € H*
if replacing the variables x; in u by the elements h; we obtain a true
statement in H. The formula u is valid on H if v holds for any point
from H*.

An axiomatic, or aziomatizable class of -algebras € is a class
defined by some collection of formulas S. This means that € consists
of all Q2-algebras satisfying all formulas from S. If otherwise is not
explicitly stated, we consider only first-order formulas, i.e., formulas
of the first-order predicate calculus. We emphasize that formulas of
S can be multi-sorted, and that axiomatizable classes have certain
signature of (2-algebras.

An axiomatic class € is said to be universal, or universally az-
1omatizable, if it can be defined by a set .S of universal formulas, i.e.,
formulas which being rewritten in the so-called prenex normal form
(see [Mendelson]) do not contain existential quantifiers. The latter
means that a formula v is universal if it is equivalent to a formula
of the kind Vz,Vxs ...V, (quantifier-free part). The formulas of S
are called axioms of the class €.

Definition 1.1.45. A formula w = u(z1, ..., xx) of the form

W= A NANWy =V, = W=,
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where w;, v;, w,v belong to W(X), is called a quasi-identity.
A quasi-identity is satisfied in an (-algebra H if
wi =V AN AWl = o = wh = o!
is true in H for any homomorphism pu: W (X) — H.

Definition 1.1.46. A class € of Q2-algebras is called a quasivariety
if it is defined by a set of quasi-identities.

Definition 1.1.47. A formula u = u(x,...,zx) of the form
W = Vwy =02 V- Vw, = vy,
where w;, v; belong to W(X), is called a pseudo-identity.
A pseudo-identity is satisfied in an Q-algebra H if the statement
wi =o' VeVl =l
is true in H for any homomorphism p: W(X) — H.

Definition 1.1.48. A class € of Q-algebras is called a pseudovariety
if it is defined by a set of pseudo-identities.

Remark 1.1.49. The term "pseudovariety” is often used for classes
of algebras closed under homomorphic images, subalgebras, and fi-
nite Cartesian products. In this sense all solvable and all nilpotent
groups constitute a pseudovariety. In this book the term “pseudova-
riety” is reserved for classes of algebras in the sense of Definition
1.1.48.

Remark 1.1.50. Quasivarieties (hence, varieties) and pseudovari-
eties are ariomatizable classes of algebras. They can be written in
the form

Vay .. Ve (wy =v A Awy, = v, = w = 0),

Vay.. Ve, (wy = v Vwy =0 Ve Vaw, =0y,),
respectively. Note that any identity w = w', where w = w(zy, ..., x,),
w =w'(xy,...,x,) can be represented as the quasi-identity:

V.. Ve,((x1=z) Ao A (T = 2,) = (w0 =w')).
Thus, a variety of algebras is a quasivariety.

Quasivarieties and pseudovarieties admit invariant Birkhoff-type
characterizations that use an important construction of a reduced

product. Define, first, filters over sets (cf. filters for Boolean alge-
bras).
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Definition 1.1.51. Let I be a non-empty set. A filter over I is a
collection D of non-empty subsets of I subject to conditions:

1. The intersection of two subsets from D belongs to D.

2. If J € D, then every subset J' of I, including J, belongs to D
as well.

3. The empty set & does not belong to D.

A filter D is said to be an wltrafilter if it is not included in a
larger filter. This condition is equivalent to another one: for every
subset J of I, either J or its complement .J is an element of D (not
both!).

Now assume that a collection of Q-algebras 2, = (A%,i € T),
a € I, is given. We are going to define the reduced product of
these algebras relatively to a filter D. We start with the Cartesian
product A =[], As. Then

A= (A,iel)= HAwer

Define a relation p = (p;,i € I') on A: if a and o’ belong to A;, then
ap;a’ means that

J=A{a: a(a) =d(a)} € D.
This relation is a congruence on 2.

Definition 1.1.52. The filtered product of the algebras A, relatively
to the filter D is the quotient algebra A/p. If D is an ultrafilter, then
the corresponding filtered product is called an ultraproduct.

The reduced product of algebras 2, with respect to the filter
D is denoted by Hae p Ao If all A, coincide with A and D is an
ultrafilter, then ] ., 2 is called the ultrapower of A. Applications
of this construction are based on the following theorem.

Theorem 1.1.53. Fvery aziomatic class of Q2-algebras is closed with
respect to ultraproducts. 0

The following three theorems give us the characterization of uni-
versal classes of algebras, quasivarieties and pseudovarieties.

Theorem 1.1.54. A class of Q-algebras X is universal if and only
if the following conditions are fulfilled:

1. X is abstract,



32CHAPTER 1. BASICS OF UNIVERSAL ALGEBRA AND CATEGORY THEORY

2. X is closed with respect to subalgebras,

3. X is closed with respect to ultraproducts. 0

Theorem 1.1.55. A class of Q-algebras X is a quasivariety if and
only if it satisfies the following conditions:

1. X s an abstract class containing the trivial algebra,
2. X 1s closed with respect to subalgebras,

3. X 1s closed with respect to filtered products. 0]
Theorem 1.1.56. A class of Q-algebras X is a pseudovariety if and
only if

1. X is closed with respect to subalgebras,

2. X 1s closed with respect to homomorphic images,

3. X is closed with respect to ultraproducts. 0

Let X be an arbitrary class of (-algebras. Birkhoft’s theorem
states that the variety generated by X is QSC(X). Similar char-
acterizations for universal classes of algebras, quasivarieties and
pseudovarieties look as follows. Denote by Uc(X), ¢Var(X), and
PsVar(X) the minimal universal class, minimal quasivariety, and
minimal pseudovariety of algebras containing X, respectively. Then
the Birkhoff-type theorem ([Mal2],[GrL], [Pl-Datab],[MR]) is as fol-

lows:

Theorem 1.1.57. Let P,(X) be the class of algebras isomorphic to
ultraproducts of algebras of X. Then

1. Uc(X) = SP,(X),

2. qVar(X) = SCP,(X),

3. PsVar(X) = QSP,(X%). O

We will need one more class of (2-algebras.

Definition 1.1.58. A class X is called a prevariety if it is closed
under taking subgroups and Cartesian products.

This class is not necessarily an axiomatizable class of algebras.

Proposition 1.1.59. Given a class X of Q-algebras, SC(X) is the
prevariety generated by X.
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1.2 Category Theory

1.2.1 Categories

Definition of a category. Examples

We shall start with basic definitions.
Definition 1.2.1. A category KC consists of objects and morphisms.

1. Let ObKC denote the class of all objects of category IC, and let
MorkC be the class of all its morphisms. A set of morphisms
Mor(A, B) is associated with any pair of objects A and B from

ObK.. Denote elements of this set by f: A — B, or A EN B, or
simply . We suppose that the class MorkK is a disjoint union
of the sets Mor(A, B). Some of these sets may be empty.

2. For any triple of objects A, B and C from ObKC, we are given
a map
Mor(A, B) x Mor(B,C) — Mor(A,C).
This enables us to speak about composite maps, i.e., about prod-

ucts of morphisms. Denote the product of morphisms f: A —
B and p: B—C by fo: A—C.

Moreover, we assume that the product of morphisms has the
following properties:

a) f(ey) = (fo) forany f: A— B, p: B— C, andp: C —
D, i.e., the product of morphisms is associative;

b) for any A € ObK there exists an identity morphisme,: A —
A such that eaf = f and peq = @ for any f: A — B and
p: C— A

Such a morphism € 4 is easily seen to be unique for any A.

The set End(A) = Mor(A, A) is a semigroup for any object A.
This semigroup is said to be the endomorphism semigroup of A.
The morphism €4 is the identity element of End(A). All invertible

elements of End(A) form a group. This is the automorphism group
of the object A which will be denoted by Aut(A).

Example 1.2.2. Sets and their maps form the category Set. The
class of objects of Set is the class of all sets, and Mor(A, B) is
Fun(A, B) for any pair A and B. The products of morphisms are
defined to be products of maps, the identity map plays the role of
€A.

One can also consider the category of non-empty sets and the
category of finite sets.
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Example 1.2.3. The category of (2-algebras with (2-algebras as
objects and homomorphisms as morphisms.

With every fundamental structure and its homomorphisms one
can associate the corresponding category. We obtain therefore the
category of groups, the category of semigroups, the category of rings,
the category of modules over a given ring, the category of represen-
tations, etc.

Example 1.2.4. Let R be a commutative ring. We introduce the
category whose objects are all positive integers 1,2, 3, ..., and mor-
phisms n — m are n X m-matrices with entries in R. We define
the product of morphisms to be the product of matrices. We obtain
therefore a category where €,,: n — n is the identity matrix of order
n.

Example 1.2.5. Let A be a set, and suppose we are given with an
order relation on this set. Then A is said to be a partially ordered
set. We shall construct a category whose objects are the elements
of A. For any pair of objects a and b, there is a unique morphism
a — b if a < b, otherwise Mor(a,b) is empty. Since a < a, we have
the identity morphism a — a, and the product of a — b and b — ¢
is a — ¢ because of transitivity of an order relation. Therefore, any
partially ordered set yields a category.

Example 1.2.6. A discrete category is a category with trivial (iden-
tical) morphisms. This means that if the objects A and B are dis-
tinct, then Mor(A, B) = @. Every class of objects can be equipped
with the structure of a discrete category.

Example 1.2.7. The category Bin of binary relations. Its objects
are sets, morphisms are presented by binary relations.

It follows from the examples that class ObK may be not a set.
Also the class MorK is not necessarily a set. If ObK is a set, then
so is MorK, and the category K is said to be small.

A category L is said to be a subcategory of a category K if any
object of L belongs to K and any morphism of £ is a morphism
of K. Besides, the product of morphisms in £ coincides with their
product in K and identity morphisms of £ are identity morphisms
in IC. A category L is a full subcategory of the category K if, for any
A, B € ObL, we have Mors(A, B) = Morx(A, B).

Morphisms. Dual categories

Definition 1.2.8. A morphism f: A — B in a category K is said
to be a monomorphism in IC if for any two morphisms ¢: C — A
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and ¢: C — A, the equality o f = f implies p = 1).
Epimorphisms are defined dually. A morphism f: A — B is an
eptmorphism in IC if for any pair ¢: B — C and ¢¥: B — C, the
equality fop = fi implies o = 1.
In any variety of (2-algebras © categorical monomorphisms co-
incide with injective homomorphism of (2-algebras. However, sur-

jective homomorphisms of algebras from © are always categorical
epimorphisms, but not necessarily vice versa.

Definition 1.2.9. A morphism f: A — B s called an isomor-
phism if there exists a morphism f~': B — A such that ff™' =¢e4,
f1f = ep. An isomorphism of the form A — A is called an auto-
morphism of the object A.

Every isomorphism is epimorphic and monomorphic, while a mor-
phism which is both monomorphic and epimorphic may not be an
isomorphism.

Definition 1.2.10. Let K be a category. The dual category (oppo-
site category) K is defined as follows:

1. Objects of K°P coincide with objects of K.
2. Given objects A and B in K, we have

Morger (A, B) = Morg(B, A).

The product of morphisms is taken in a reverse order. Namely,
if f+ A— B and p: B — C are morphisms in IC, denote them
regarded as morphisms in K by fP: B — A and p?: C — B,
and define their product by

@77 = (fo): C > A

Each notion or construction in the category K has a mirror in
K and vice versa. Besides, K = (K°)°P.

Functors. Examples

Definition 1.2.11. Let Ky and Ky be categories. A covariant func-
tor F: K1 — Ko is a map that takes every object A € ObKy to F(A)
in ObKCy and every morphism f € MorkC, to F(f) € MorKCy. The
functor F satisfies the conditions:

1. if f € Mor(A, B), then F(f) € Mor(F(A), F(B));
2. F(ea) = €ra) for every A € ObK,;
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3. F(fp)=F(f)F(p) for any pair of appropriate morphisms in
MorkC;.

A functor F is called contravariant if the first and the third con-
ditions are replaced by the following two conditions

1. if f € Mor(A, B), then F(f) € Mor(F(B),F(A));
5. F(fe) =F(e)F(f),

respectively.

One can view covariant functors as homomorphisms of categories.
Correspondingly, contravariant functors are antihomomorphisms of
categories.

Example 1.2.12. The identity functor K to K is a covariant func-
tor.

Example 1.2.13. For an arbitrary category K, we have a canonical
contravariant functor from K to the dual category K%: F(A) = A,
F(f) =[*.

Thus, a contravariant functor from & to K is a covariant functor
from K to K77

Example 1.2.14. Let K; be the category of finite dimensional vec-
tor spaces over a field K. Its objects are vector spaces V', morphisms
are linear maps p : V) — Vs.

Given a vector space V' denote by V* the vector space of all linear
maps [ : V — K, where K is regarded as a one-dimensional vector
space. Every linear map u : Vi — V5 gives rise to a linear map
e Vot — V' defined by the rule f — p*(f), where p*(f)(v) =
f(p(v)) for every f € V5 and every v € V4.

Denote by Ky the category with objects V* and morphisms p*.
Since (uv)* = v*p* the transition * determines the contravariant
functor from Ky to ICs.

Example 1.2.15. Let K be a category of (2-algebras. Given A €
ObKC, denote by F(A) the underlying set (it can be multi-sorted) of
the algebra A. For every homomorphism f of K, we denote by F(f)
the map of sets that acts in the same way as f. The constructed
functor F from K to the category of sets is called a forgetful functor,
since it ”forgets” the algebraic operations.

Example 1.2.16. Consider an arbitrary category K and fix an ob-
ject A of K. We associate with A a covariant functor

Fa: K — Set
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by letting F4(B) = Mor(A, B) for any object B of K. For every
morphism ¢: B — B’ in K , we define a map of sets

Fa(p): Mor(A,B) — Mor(A, B)

according to the rule: f — fp for any f € Mor(A, B).
Similarly, we define a contravariant functor

FA K — Set.

By definition, F4(B) = Mor(B, A), and given a morphism ¢: B’ —
B in IC, the map

FA(p): Mor(B, A) — Mor(B', A)
is defined according to the rule: f — ¢f for any f € Mor(B, A).

Thus, with every object A of an arbitrary category K, we have
associated the functors F4 and F4 that act from the category K to
the category of sets. These functors are called representing functors.

Natural transformations of functors

Let /1 and F, be covariant functors that act from a category X
to another category K'. We introduce the notion of morphism (or
natural transformation) for such functors. In particular, we shall
obtain the notion of isomorphism for functors.

Definition 1.2.17. A natural transformation f of functors Fy and
Fo assigns to each object A of I a morphism fa : F1(A) — Fo(A)
in the category K' such that for every morphism p: A — B in the
category K we have the commutative diagram

Fi(A) —L20 Fy(A)
Fiw) 720
Fi(B) 2+ Fy(B).

Definition 1.2.18. If the morphisms fa are isomorphisms for any
object A of IC, then f: F1 — Fy is called an isomorphism between
the functors F, and Fs.

Two functors F; and JF, are said to be isomorphic if there ex-
ists an isomorphism between them. For any functor isomorphism
f: F. — F, , there exists the inverse isomorphism f~': F — F
given by the class of isomorphisms f;': F»(A) — Fi(A) that are
inverse to the isomorphisms fa: Fi(A) — F2(A) in the category K.
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Given categories IC; and Ko, one can define the category of func-
tors from KCy to Ky with natural transformations of functors as mor-
phisms.

Proceed now to an example of natural transformations that make
use of the representing functors. Suppose a category K is given. We
have associated the functor F4 from K to Set with any object A of
K. Given a morphism p: A — B in K, we shall define a natural
transformation f: Fg — F4. We have to define a map

fo: Fp(C) = Mor(B,C) — Fa(C) = Mor(A,C).

for any object C' € ObK. Define it by the rule: fo(y) = pe for any
p: B — C. It is easy to verify that f is a natural transformation
and, therefore, we obtain a contravariant functor from the category
K to the category of functors acting from K to Set. The same
argument shows that the correspondence A — FA gives rise to a
covariant functor from C to the corresponding category of functors.

An isomorphism of objects A and B induces an isomorphism
between the functors F4 and Fg, and also between FA and F5.
The converse statement is also true.

The notion of functor isomorphism enables us to pose the follow-
ing class of problems related to representing functors: when a given
functor to the category of sets could be realized, up to a functor
isomorphism, as a representing functor associated with a suitable
object of the category. If such a representation exists, then the
corresponding object of the category is uniquely determined up to
isomorphism.

Definition 1.2.19. Categories Ky and Ko are called equivalent if
there exist covariant functors F: K1 — Ko and F': Koy — Ky such
that FF' is isomorphic to the identity functor of the category K,
and F'F is isomorphic to the identity functor of the category Ks.
Such F and F' are said to be inverse to each other up to isomor-
phism.

Definition 1.2.20. Categories K1 and Ko are called isomorphic if
there exist covariant functors F: K1 — Ko and F': Ky — Ky such
that FF' is the identity functor of the category Ky, and F'F is the
identity functor of the category Ko. Such F and F' are said to be
inverse to each other.

If K1 = Ky = K then we get the notions of autoequivalence and
automorphism of the category IC, respectively.
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Definition 1.2.21. Categories Ky and Ky are dually equivalent if
K1 is equivalent to K3¥. Categories Ky and KCo are dually isomorphic
if Ky is isomorphic to KC3F.

Definition 1.2.22. An automorphism ¢ of the category IC is called
wmner if it is isomorphic to the identity automorphism 1.

According to Definition 1.2.18 this means that if s : 1x — ¢ is
an isomorphism of functors, then for every object A of the category
KC there is an isomorphism s4 : A — ¢(A) such that the diagram

A —4+ p(A)

/) o)

B —E+ (B)

is commutative for any morphism v : A — B in K. So, ¢ is inner if
and only if it can be represented in the form:

p(v) = s4'vsp : p(A) = ¢(B).

This formula motivates the term ”inner automorphism”.

1.2.2 Products and coproducts

We start this section with the notion of a universal object of a
category.

Definition 1.2.23. An object A of a category KC is called an initial
object of IC if for any object B € ObIC there exists a unique morphism
f:A—B.

Dually, an object A is a terminal object of a category IC if for
every B € ObK there is a unique morphism f: B — A.

All initial objects as well as terminal objects are canonically iso-
morphic. Any object which is isomorphic to an initial object is
initial, and the same is true for terminal objects.

Every one-element set is a terminal object in the category of sets.
The trivial group is an initial and, at the same time, a terminal ob-
ject in the category of groups. There exist categories that have
neither initial nor terminal objects. Most of the constructions of
the universal algebra, like Cartesian, free, amalgamated and other
products, like universal cover and universal enveloping algebra, and
so on, can be realized in categorical terms as initial (terminal) ob-
jects in appropriate categories. This fact guarantees the uniqueness
(up to an isomorphism) of these objects.
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Let K be a category and A = {A,, o € I} a collection of objects
of K. Take a new category K 4, whose objects are objects B of
together with morphisms f, : B — A, for all « € I. Morphisms of
two objects (By, fl), a € I and (By, f2), a € I are represented by
morphisms p : By — By which satisfy the commutative diagrams

By K By

A R

for all a € [I.

Definition 1.2.24. A terminal object of the category K 4 is called a
product of the collection of objects A = {A,, o € I} in the category
IC. In other words, a product of the objects A,, o € I, is an object
C supplied with morphisms ©, : C — A, such that, for any object
B and any morphisms fo: B — A,, there exists a unique morphism
f: B — C satisfying the conditions f, = fr,

The product C of A, a € I is denoted by [], .,
are defined dually, by reversing direction of arrows.
Let KC be a category and A = {A,, o € I} a collection of objects
of K. Take a new category K, whose objects are objects B of K
together with morphisms f, : A, — B for all @ € I. Morphisms of
two objects (By, fl), o € I and (B, f2), a € I are represented by

morphisms p : By — By which satisfy the commutative diagrams

By K By

A,. Coproducts

fa 12
A

for all a € 1.

Definition 1.2.25. An initial object of the category KA is called
a coproduct of the collection of objects A = {An, a € I} in the
category IC. In other words, a coproduct of the objects A,, a € I,
is an object C supplied with morphisms i, : Aq — C such that, for
any object B and any morphisms f,: A, — B, there exists a unique
morphism f: C'— B satisfying the conditions i, f = f,.

The coproduct C' of A,, o € I is denoted by [[,.; As. Prod-
ucts are often called direct products, while coproducts are called free
products. In these cases morphisms 7, are called projections, while
morphisms ¢, are called embeddings.

Example 1.2.26. 1. Let K be the category Set of sets. Products
and coproducts exist in Set and coincide with the Cartesian
products of sets and the disjoint unions of sets, respectively.
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2. Let K be the category of arbitrary algebras. The direct prod-
ucts coincide with the Cartesian products provided the cate-
gory K is a variety. This follows from the fact that a variety is
closed under Cartesian products.

3. Let K be the category (and the variety) of all groups. Then
coproducts coincide with free products of groups.

4. Let IC be the category (and the variety) of abelian groups. Then
the coproduct of abelian groups A,, o € I coincide with their
discrete direct product. A discrete direct product of groups
A,, a € I is a subgroup of A = [[ A, consisting of elements
a such that a(«) is equal to the identity element for all but a
finite number of o € I. Using the additive notation for abelian
groups, one can write that [ ., Aa = @), c; Aa, the direct
sum of abelian groups A,. Hence, if the set [ is finite, then
products and coproducts coincide in the category of abelian
groups.

5. Let IC be the category of commutative algebras over a commu-
tative ring with unity R. Then the coproduct of a collection of
algebras coincides with their tensor product.

Inverse and direct limits

In the constructions of products and coproducts the indexing set [
was arbitrary. Assume now that I is a partially ordered set with
the order relation <. Recall that a partially ordered set [ is called
directed if for any «, 3 € I there exists 7 € I such that a < v and
B < (see Definition 1.1.3) .

Once again, let K be a category, I a directed set and A =
{A., a € I} a collection of objects of IC.

Definition 1.2.27. A family of morphisms {f§} € Mor(Aa, Ap),
a,B €1, a<p is called directed if

1. f& is the identity morphism in A, for all a € I.
2. f§ 10 =[S foralla < B <.

Take the same category K as is Definition 1.2.25. Distinguish a
collection of objects A = {A,, « € I} over the directed set I and
assume that the family of morphisms {fg} is directed. An initial
object in this category is the direct limit of objects A = {A,}. In
terms of the category K a direct limit of A = {A,} is defined as
follows:

' Umnozhenie morfizmov
spravall!
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Definition 1.2.28. Let K be a category, A = {A,, o € I} a family
of objects, {f§} a directed family of morphisms between objects of
A. An object C of K supplied with morphisms i, : A, — C' is called
the direct limit of {A.} if

L iq = fgig, for alla < .

2. Given any object B and morphisms f, : Ao — B, a € I such that

Joa = J§[s for all a < B, there exists a unique morphism f: C — B
such that io f = fa.

The direct limit of {Aqs, o € I} is denoted by lim A,. A moti-
vating example for direct limits is an increasing infinite sequence of
sets A,, with the inclusions as morphisms. The direct limit is the
union (J A,.

The direct limit of {A,, a € I} of algebras can be represented

as
@Aa = |_|Aa/p7

where the congruence p on | | A, is defined by anpag, aq € Aa,
ag € Ap, if there exists v € I such that f(a,) = f(as). So,
a direct limit of algebras is a quotient algebra of a coproduct of
algebras.

Reversing direction of arrows in the previous definitions leads to
the notion of an inverse limit.

Definition 1.2.29. A family of morphisms {f§} € Mor(Ag, Aa),
a,Bel,a<pinKy s called inversely directed or just inverse if

1. f& is the identity morphism in A, for all o € I.

11! Umnozhenie morfizmov 2. f$f§‘ =[5, fora < B <7.
spravalll

Take the same category K4 as is Definition 1.2.24. Distinguish
a collection of objects A = {A,, a € I} over the directed set I
and assume that the family of morphisms { fg‘} is inversely directed.
A terminal object in this category is the inverse limit of objects
A = {A,}. In terms of the category K an inverse limit of A = {A4,}
is defined as follows:

Definition 1.2.30. Let K be a category, A = {A,, a € I} a family
of objects, {f§} an inversely directed family of morphisms between
objects of A. An object C of K supplied with morphisms 7, : C —
A, is called the inverse limit of {Ay} if

L mo = mpf§, for alla < 5.

2. Given any object B and morphisms f, : B — Ay, a € I such that
Jo = [faf§ for alla < 3, there exists a unique morphism f: B — C
such that f, = fr,.
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The inverse limit of {A,, « € I} is denoted by Hm A,. Inverse
limits exist in many categories, in particular in the categories of
sets, groups, rings topological spaces and more general algebras. For
example, in the category of groups, the inverse limit of a family of
groups G, a € I with homomorphisms f§ : Gg — G, is a subgroup
of the Cartesian product [[, G, consisting of the sequences (ga),
a € [ such that:

lim G = {(92) | f5(95) = ga for all a < ).

In particular, if we take the inverse limit of finite groups we come
up with the notion of a profinite group. The example of groups can
be generalized to a very general setting of algebras (see [DMR2] for
the exposition useful for the geometric aims).

1.2.3 Constants in algebras

The next step is devoted to algebras with the distinguished algebra
of constants.

Recall that we consider all nullary operations in an algebra G
as constants (see Subsection 1.1.2). In this subsection we give a
categorical insight on algebras with constants.

Let © be an arbitrary variety of algebras, G be a fixed algebra
in ©, |G| > 1. Consider a new variety, denoted by ©¢. First we
define the category Y. Objects in O are of the form h : G — H,
where H € O, and h is a homomorphism of algebras, not necessarily
injective. These objects will be called G-algebras, i.e., a G-algebra
H is a pair (H, h). Morphisms in © are presented by commutative
diagrams

G-t H

Py

H/
where p, h, h' are homomorphisms in ©.

An algebra H, treated as a G-algebra, is denoted by (H, h). We
view elements ¢" € G as constants, i.e., nullary operations in H.
Adding them to the signature €2, we come up with the extended
signature Q¢.

Identities of a G-algebra are just identities in the signature Q¢
(G-identities). They are presented by identities of © and by defining
relations of the algebra G. A wvariety of G-algebras is a class of
G-algebras determined by a set of G-identities. A quasivariety of
G-algebras consists of all G-algebras which satisfy a set of G-quasi-
identities , i.e., quasi-identities over Q. Other axiomatic classes of

1! Perepisat’

777
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G-algebras and prevarieties of (GG-algebras are defined in a similar
way.

A free algebra W(X) in ©Y is of the form G * Wy(X), where
Wo(X) is the free algebra in © over X, * is the free product in ©
and the embedding ig : G — W(X) = G % Wy(X) follows from the
definition of a free product.

A G-algebra (H, h) is called faithful if h : G — H is an injection.
In particular, a free algebra (W (X),i¢) and the G-algebra G with
the identical map G — G are faithful.

Let (H,h) be a G-algebra, and p: H — H' be a homomorphism
in ©. Take A/ = ph, then H' becomes a G-algebra, and p is a
homomorphism of G-algebras. Since one can start from an arbitrary
congruence 7' in H and from the natural congruence H/T, we say
that T is faithful if the G-algebra H/T is faithful. A congruence T
is faithful if and only if g% = g% is equivalent to g, = g».

Let a morphism

G-t H
PN
H/
be given, and let (H',h') be a faithful G-algebra. Then (H,h) is a
faithful G-algebra. If T" = Kerpu, then T is a faithful congruence
and H/T is also faithful.

We can assume that homomorphisms of faithful G-algebras leave

elements from G unchanged.

Example 1.2.31. A variety Com — K is a variety of the type ©F,
where © is a variety of associative and commutative rings with 1,
and G is a field K. In this example, elements of the field K are
constants in K-algebras. They are viewed as nullary operations,
and, simultaneously, using multiplication, we can look at them as
unary operations.

Example 1.2.32. G-group is another example of G-algebras. Here,
elements from G also can be viewed as unary operations. Using the
analogy with Com — K we can denote the free G-group by G[X] =
G * Wy(X) and view its elements as non-commutative polynomials
with coefficients from the given group G.

Since Y is a variety of algebras, all constructions like Cartesian
and free products, subalgebras and homomorphisms are naturally
defined for ©Y. Note that the free product of two G-algebras H,;
and H is exactly the amalgamated product H; xg H» in the variety
0.
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Consider special property on ©¢. Namely, we assume that the
G-algebra G generates the whole variety ©%, i.e., in G there are
no non-trivial identities with coefficients from G. This property is
fulfilled in Com — K if the field K is infinite and in (Grp)¥, where
F is a free group.

Every faithful G-algebra H contains G' as a subalgebra. Thus,
the property above implies that every faithful G-algebra H generates
the whole variety ©F, i.e., in ©Y there are no proper subvarieties
containing faithful algebras.

In the category ©F along with morphisms, one can consider also
semimorphisms. They are of the form

G-+ H

| i

G-, g

where 0 € End(G). Then, one can consider semi-isomorphic G-
algebras.

Another possibility is to vary also the algebra of constants G.
This leads to a diagram of the form

G-l H

| i

el h' H'

with componentwise multiplication.

Let us make a remark on equations. Equations of the form w = w’
with w,w" € W(X) = G« Wy(X) are equations with constants from
G. Consider a system of such equations 7. If T is a congruence,
then T has a solution in a faithful G-algebra H if and only if T is
a faithful congruence on W(X). Thus, a system 7 has a solution
if T is contained in a faithful congruence in W (X). Note that, by
definition, all faithful congruences are proper.

In what follows if we speak about the variety of algebras © we
always keep in mind also the case ©F, where G € © is an algebra
of constants. All the constructions above can be transferred to the
multi-sorted case (see [Hig]).
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Chapter 2

Basics of Universal
Algebraic Geometry

"

\%

Universal algebraic geometry spreads the ideas of classical algebraic TEOREMAH

geometry to arbitrary varieties of algebras. So, one of its objectives PRIVESTI

KAKIH

DOKAZA-

is to study solutions of equations over a given algebra H from a TEL’STVAT??RESHIT”

given variety of algebras ©. However, in what follows we focus
our attention on the other goal of the universal algebraic geometry,
namely, on studying geometric invariants of the algebras from ©.

In this section we sketch the basics of universal geometry mostly
avoiding proofs and complicated considerations related to geometry
in the particular varieties. In fact, we give a list of general facts
and notions which illuminates analogies and distinctions between
classical geometry and universal one. Besides, the passage

classical algebraic geometry = universal algebraic geometry
will be extended in Part II to a further one
universal algebraic geometry = logical geometry.

Subsections 2.1.2 — 2.1.4 of Section 2.1 are devoted to basics of classi-
cal algebraic geometry. Subsections 2.2.1 — 2.2.5 of the same section
are completely parallel to them and treat the same material from the
positions of universal algebraic geometry. Subsections 2.2.6 — 2.2.8
deal with the notions which are peculiar for universal algebraic ge-
ometry. In the short subsection 2.2.10 there is a bibliography which
can help to navigate in the field of universal algebraic geometry.

We start with recalling the elementary (scheme-free) setting of
classical algebraic geometry.

47
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2.1 Classical Algebraic Geometry

The material of this section is standard. For the general references
the books [Shaf], [Harts|, [Haris|, [Hulek] could be taken.

2.1.1 Galois correspondence

Let K be a field and K[X] = K|z, ...,x,| the ring of polynomials
in the commuting variables zy, ..., x, with coefficients in K.

Algebraic geometry was grown up from the desire to describe the
solutions of the systems of equations of the form

filze, .o xn) =0, fulzg, ... x,) =0,
where all f;(xq,...,z,) are the polynomials from Kz, ...,z,].

Definition 2.1.1. The set of all n-tuples of the form (ai,...,a,),
a; € K is called the affine n-space over the field K.

The affine n-space is denoted by K™ which means that as a set
this is exactly the n-th Cartesian power of the field K. For the

elements of K™ the vector notation a = (aq, ..., a,) is used.
The space K" is the place were the solutions of polynomial equa-
tions f(xq,...,2,) =0 live. A point a = (ay,...,a,) € K" is a so-

lution of the equation f(xy,...,z,) =0if f(ai,...,a,) = 0. Given
the set of polynomials T"in Klz1, ..., x,| denote by V(T') C K™ the
set of common zeros of the polynomials from 7"

V(T) ={a=(a1,...,a,) € K" | f(a) =0, for all f € T}.
By definition, if 77 C Ty, then V(T}) 2 V(15).

Definition 2.1.2. A subset A in the affine space K™ is called al-
gebraic set if there exists a set T' of polynomials from K|xq,. .., ]
such that A is the set of common zeros of the polynomials from T.

In other words every element a of an algebraic set A C K™ is the

solution of a system of equations 7' C Klz1,...,z,|, and we have:
A=V(T).
We view V' as the correspondence between subsets in Kz, ..., z,]

and subsets in the affine space K™ which assigns to a set of polyno-
mials 7" in K|[zy,...,x,] the algebraic set V(T') in K". Let (T') be
the ideal generated by a set T'. It is easy to see that V(1) = V((T')).
Hence, one can assume that the set 1" is an ideal and V' establishes
a correspondence between the ideals in K[zq,...,z,] and algebraic
sets in K™.
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Theorem 2.1.3 (Hilbert basis theorem). If R is a commutative
Noetherian ring (see 2.2.74), then R[xy,...,x,] is also Noetherian.
In particular, K[zi,...,x,] where K is a field is Noetherian, i.e.,
every its ideal is finitely generated. 0

This implies that in the correspondence
Vi ideals in Kzy,...,z,] — algebraic sets in K",

all ideals are finitely generated. The latter means that there is no
need to consider systems with infinite number of equations: every
algebraic set can be defined by finitely many polynomials.

Let A be an arbitrary set in the affine space K™. Define the ideal
I(A)in K[xq, ..., z,)] as the set of all polynomials vanishing at every
point from A:

I(A)={f € Klxy,...,z,) | f(a) =0, forall a € A}.

By definition, if A; C Ay, then I(A;) O I(Az). We view [ as the
correspondence between subsets in the affine space K™ and ideals in
Klzq, ..., x,]:

I: setsin K" — ideals in K[zq,...,x,].

In this correspondence the image (&) of the empty set is the whole
ring K[z1,...,x,|. Hence, the image of a point is always a maximal
ideal in K[xq,...,z,)].

Consider the general notion of a Galois correspondence between
partially ordered sets.

Definition 2.1.4. Let (P, <) and (Q,<) be two partially ordered
sets. A pair of order-reversing functions p : P — @ and ¢ : Q) — P
constitutes the Galois correspondence between P and @ if for all
p € P and g € QQ we have:

U(p(p)) = p, v(¥(q) > q.

Elements p = ¥(p(p)), and § = p(v(q)) are called the Galois clo-
sures of p and q, respectively. Elements p € P and q € ) are called
Galois closed if p=p and q = q.

The maps V' and I give rise to the Galois correspondence between
the ideals in the polynomial ring and the subsets in the affine space:

V(T)={a=(a,...,a,) € K" | f(a) =0, for allf € T},
I(A) ={f e K[xy,...,z,) | f(@a) =0, for all a € A}.
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In a Galois correspondence ¢ and 1) are arbitrary order-reversing
maps. So are V and [: they are not necessarily injections or
surjections. For example, the ideals T} = (zq,...,2,) and Ty =
(xk. ... 2F) glue together under the action of V:

V({xy,...,2n) = V({{ah ... k),

and V is not injective. The map V is not surjective since there
are lots of infinite non-algebraic sets in K™. The map [ is neither
surjective, nor injective as well. For example, if K = R and A; =
27 C R, and Ay = 3Z C R then I(A4;) = I(Ay) = 0 in R[z].

On the other hand, the maps ¢ and 1 are the closure operators
for arbitrary Galois correspondence. Moreover, ¢ and 1 give rise to
a bijection between closed objects. Applying this observation to the
maps V and I we come up with the question: what are the closed
sets in Klxy,...,z,] and K", and how to describe the structure
of the closures IV(T) and VI(A), where T" and A are subsets in
Klzy,...,z,) and K", respectively.

According to Definition 2.1.2 algebraic sets are exactly the Galois
closed subsets in K. The next aim is to find out what are the Galois
closed ideals in K{z1,...,x,].

Definition 2.1.5. The radical Rad(J) of an ideal J in a commuta-
tive ring R s defined as

Rad(J) ={re R | r* € J, for somes e N}.

It is easy to see that Rad(J) is an ideal, and J C Rad(J). An
ideal J is called radical if J = Rad(J). Hence, every maximal ideal
is radical.

Theorem 2.1.6 (Hilbert’s Nullstellensatz). Let K be an algebraically
closed field. Then:

1. Every mazimal ideal J in K[xq,...,x,] is of the form
J={(x1—ay,...,z, —a,) = I(a),

where a = (ay, . ..,a,) i a point in K".
2. V(J) # @ for every proper ideal J in Kz, ..., x,].
3. The Galois closure of an ideal J in K[z1,...,x,] is Rad(J):

Rad(J)=1V(J). O

Thus, one can say that if a ground field K is big enough (e.g.
algebraically closed), then every (consistent) system of equations
has a solution, the Galois closed objects in K[x1,. .., z,| are exactly
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the radical ideals, and there is a one-to-one correspondence between
maximal ideals in K[xy,...,z,] and points in the affine space K™:

I
points in K" = maximal ideals in Klxy,...,z,].
1%

Since for an arbitrary Galois correspondence there is a bijection
between the closed subjects, we have the bijection:
I
algebraic sets in K" = radical ideals in K|xy,...,2,],
1%

over an algebraically closed field K. For the case of an arbitrary
field K the one-to-one correspondence is as follows:

I
algebraic sets in K" & ideals of the form IV (J) in Klz1, ..., z,],
1%

The Galois closure IV (J) for non-algebraically closed fields heavily
depends on the ground field K (see [BCR]|, [Du] for the real Null-
stellensatz).

Remark 2.1.7. The nilradical of a commutative ring is the set of
all nilpotent elements of the ring. It can also be characterized as the
intersection of all prime ideals of the ring. In these terms Hilbert’s
Nullstellensatz states that for an algebraically closed field K and
arbitrary ideal J, the nilradical of the ring K[z1,xs, ..., x,]/J coin-
cides with IV (J)/J.

Remark 2.1.8. Theorem 2.1.7 contains the so-called weak Null-
stellensatz. If K is an algebraically closed field, then the equality
Rad(J) = IV(J) implies V(J) # @ for every proper ideal J in
Klxy,...,x,]. Hence, if V(J) = @, then J = K[z, x2,...,T,)].

Now we formulate as a remark another vision of affine spaces.
This viewpoint will be a base for many generalizations.

Remark 2.1.9. Let us identify a point a = (ay,...,a,) € K™ with
the map u = po : K[ X] = K[xq,...,2,] — K, defined by u(x;) =
a;. Since K[X] = Klxi,...,x,] is a free algebra in the variety
of associative commutative rings with unity, every map of algebras
defined on generators gives rise to the homomorphism of algebras.

Thus, the affine space K™ can be viewed as the set of all ho-
momorphisms Hom(K[X],K). If f = f(x1,...,z,) € K[X] and
p € Hom(K[X],K), then f* = f(z,...,z) = f(a). A point p is
a root of the polynomial f if f € Kerp.
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In view of Remark 2.1.9 the Galois correspondence defined above
now looks as follows. Let T be a subset in the algebra K[X]. Con-
sider T" as a system of equations of the form f; = 0, where f; € T
It corresponds the set of points A C Hom(K[X], K), defined by the
rule

A=V(T)={p: K[X] = K |T C Keru}.

This means that a point p belongs to V(T') if u is a root of every
polynomial from 7'

Let A be an arbitrary set of points u : K[X] — K. It corresponds
the ideal I(A) in K[X] defined by

This is the set of all polynomials f, such that every point u € A is
a root of f.

2.1.2 Zariski topology

Recall that a topology (B,%) on a set B is defined, if there is a
distinguished collection B of subsets in B subject to conditions:

1. o€B, BeB.
2. If C4,C4,Ch, ..., is a family of sets from B, then () C; € B.

3. If Cy,...,C, is a finite family of sets from B, then |J C; € B.

=1

The elements from B are called closed sets, their complements to B
are open sets.

Lemma 2.1.10. The map V' satisfies the properties:
1. V(0)= K", V(Klxy,...,1,]) = 2.
2. If {Ti} is a family of ideals in Klx1, ..., x,], then NV(L;) =
VET). Z
3. If Ty and Ty are ideals in K[z, ..., x,)], then V(T1) UV (Ty) =
VI(LNT) =V(IT). O

In particular, Lemma 2.1.10 states that arbitrary intersections
and finite unions of algebraic sets are algebraic sets. Hence, algebraic
sets can be considered as closed sets of some topology. This topology
is called the Zariski topology on the affine space K™.
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Let us collect some facts about the Zariski topology (the field K
is assumed to be infinite).

e Every finite set is closed in the Zariski topology over an alge-
braically closed field, in particular, every point is closed.

e Every two non-empty open subsets of K™ have a non-empty
intersection, hence the Zariski topology is not Hausdorff.

e The Zariski topology is weaker than the usual topology where
closed sets are the zeros of continuous functions.

e Any open subset of the affine space is the Zariski dense, i.e., its
closure in the Zariski topology coincides with the whole affine
space K™.

e Let A be a subset of K™ The Zariski closure A of A coincides
with the Galois closure VI(A) of the set A.

Definition 2.1.11. A topology on K" is Noetherian, if every de-
scending chain of closed subsets A1 O Ay O A3 D --- stabilizes, that
is, there exists s such that Ay = Agyq for all k > s.

The Zariski topology on K" is Noetherian since K|xy,...,z,] is
Noetherian (Theorem 2.1.3) and the map V' is order-reversing.

Definition 2.1.12. An affine set A is called irreducible if it cannot
be represented as a union of two proper closed subsets. Otherwise A
18 reducible.

Every algebraic set A can be uniquely (up to the order of compo-
nents) represented as the finite union of irreducible closed subsets.
If the affine set A is irreducible, then I(A) is a prime ideal. The
algebraic set V(f) corresponding to an irreducible polynomial f in
K|z, ..., x,] is irreducible.

2.1.3 The coordinate ring of an algebraic set

Let A be an algebraic set in K™ and I(A) the corresponding ideal
in Kzy,...,x,).

Definition 2.1.13. The ring K[A] = K[z1,...,x,],/I(A) is called
coordinate ring of the algebraic set A, or the ring of polynomial
functions on A.

Since Klzy,...,x,| is Noetherian, the ring K[A] is also Noethe-
rian. Hence, a coordinate ring is finitely generated. If the field K
is algebraically closed, then by Hilbert’s Nullstelensatz a coordinate
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ring has no nilpotent elements. Recall that an algebra is reduced
if it has no nilpotent elements. So, a coordinate ring is a finitely
generated reduced algebra over K.

Remark 2.1.14. This property is characteristic: every finitely gen-
erated reduced algebra over K is a coordinate ring of some algebraic
set.

Since the ideal I(A) of an irreducible algebraic set A is prime,
the coordinate ring K[A] is an integral domain. This means that
K[A] does not contain zero divisors.

Definition 2.1.15. A map ¢ : A — K s called a polynomial (reg-
ular) function on A if there exists a polynomial g € Klxq,. .., x,)
such that p(a) = g(a) for alla € A.

Two polynomials ¢g; and go in K[z, ..., x,| define the same poly-
nomial function on A if and only if ¢;(a) — g2(a) =0, for all a € A,
i.e. g1 — go € I(A). Thus, elements of K[A] can be identified with
polynomial functions on A.

Definition 2.1.16. Let A and B be algebraic sets in K™ and K™
respectively. A map ¢ : A — B s called a polynomial map if there
exist polynomials g1, . .., gm in K[z1, ..., x,] such that for alla € A

o(a) = (g1(a),...,gm(a)) =b e B.

All polynomial maps are continuous in Zariski topology. If A, B
and C' are algebraic sets and ¢ : A — B, ¢ : B — (' are polynomial
maps, then the composition ¥ o p : A — (' is also a polynomial
map. A polynomial map ¢ : A — B, is called an isomorphism of
algebraic sets if there exists a polynomial map ¢ : B — A such that
the compositions ¢ o ¢ and v o ¢ are identity maps on A and B,
respectively.

2.1.4 Categories of algebraic sets and coordinate rings

Our next aim is to define the categories of algebraic sets and coor-
dinate algebras.

Denote by A(K) the category of algebraic sets over a field K. The
objects of A(K) are algebraic sets over K. Morphisms of A(K) are
polynomial maps of algebraic sets. According to Remark 2.1.14, the
category C(K) of coordinate rings is the category of finitely gener-
ated reduced algebras over K, with homomorphisms as morphisms.

Theorem 2.1.17. The category of algebraic sets A(K) is dually

equivalent to the category of finitely generated reduced K -algebras
C(K). OJ
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By Definition 1.2.21 the categories A(K) and C(K) are dually
equivalent if there are contravariant functors F, : A(K) — C(K)
and Fy : C(K) — A(K) such that Fi1F, and FoF; are isomorphic
to identity functors id 4k and ide (k). The functor F; on objects is
defined by F;(A) = K[A], where A is an algebraic set. Let ¢ : 4] —
Ay be a morphism in A(K), i.e., a polynomial map of algebraic
sets. We shall define Fi(¢) : K[Ay] — K[A;]. The morphism
Fi(p) : Fi(As) — Fi(Ay) is determined by diagram

Ay £ Ay
AN

where 1) is a polynomial function on A,, i.e., an element of K[As].
Given ¢ € K[A,], the morphism Fi(¢) acts as Fi(p)(¢) = o €
K[A;]. Tt can be checked that Fi(p) is indeed a morphism, that is
a homomorphism of K-algebras.

Lemma 2.1.18. Given a morphism v : K[As] — K[A,], there exists
a unique ¢ : Ay — Ag such that v = Fi(p). O

This lemma shows that there is a bijection between morphisms
in A(K) and in C(K).

Let D be a finitely generated reduced K-algebra with the gen-
erators dy,...,d,. Since K|xy,...,x,] is the free K-algebra, the
map pu(x;) = diy, ¢ = 1,...,n gives rise to the homomorphism
p o Klxy,...,z,] = D of K-algebras. Let J = Ker(u). Define
Fo(D) = V(J). Using Lemma 2.1.18, it is easy to see that the
contravariant functors F; and F, define an equivalence of the cate-
gories.

Remark 2.1.19. The algebra D is an integral domain if and only
if the ideal J is prime. In this case V(J) is an irreducible affine set.
So, the category of irreducible affine sets and the category of finitely
generated integral domains over the field K are equivalent.

Theorem 2.1.17 provides back and forth passages from the level
of algebraic sets, which is geometrical by its nature, to the level of
coordinate rings, which is purely algebraic.

Moreover, since both the categories depend on K, they can be

considered as dual algebraic-geometric invariants attached to the
field K.
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2.2 Universal Algebraic Geometry

From now on let © denote an arbitrary variety of universal algebras,
i.e., a class of algebras defined by some set of identities. It can be,
for example, the variety of groups, semigroups, associative algebras,
Lie algebras or any other variety. Our first aim is to set up the
system of notions of the universal algebraic geometry and to obtain
the setting similar to the classical one, described in Section 2.1.

Each notion of a universal character can be specialized to a par-
ticular variety of algebras ©. Fixing © and an algebra H in © we
come up with the algebraic geometry in the particular © over a given
H.

If we want to emphasize that this geometry is built with respect
to solutions of equations we call it equational geometry. This setting
will be later on spread out to logical geometry, where the equations
are replaced by arbitrary first-order formulas.

2.2.1 Equations and affine spaces

The classical algebraic geometry starts with consideration of system
of polynomial equations. These equations are expressions of the

form f(z1,...,2,) =0, where f is a polynomial, that is an element
of the polynomial algebra K[X] = Klxy,...,x,]. Looking at the
algebra K|[z1,...,x,] from the positions of universal algebra we note

that K[xy,...,x,] is the finitely generated free algebra in the variety
Com— K of commutative associative algebras with unit over the field
K. Hence, if we take instead of Com — K an arbitrary variety O,
we place equations in a finitely generated free in © algebra W(X),
ie.,
K[X]| = Klzy,...,x,] is replaced by W(X), |X| < oc.
The general form of equation in an arbitrary variety O is:
w(ry, ..., x,) =W (21,...,2,), w,w € W(X),|X|=n.
This means that in universal algebraic geometry
polynomial equations f(xi,...,x,) =0
are replaced by
equations w(zy,...,x,) = W' (Ty1,...,T,).
Remark 2.2.1. By abuse of language we will speak about "equations
from (or over) W(X)”, having in mind that they are elements of

W(X) x W(X). Later on we will consider them as formulas of a
special kind.
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The next object we shall introduce is the affine space. This is
the place were the solutions of equations are situated. In classical
algebraic geometry the affine spaces are of the form K", where K
is a ground field and n is the number of generators in a polynomial
algebra. We can also consider affine spaces L™ where L is an ex-
tension of the ground field K. In any case both K and L can be
viewed as algebras in the variety Com — K. Replace Com — K by
an arbitrary variety ©. This leads to the following definition.

Definition 2.2.2. Let H be an arbitrary algebra in the variety ©.
Affine spaces over H have the form H™, where n is the number of
generators in a free algebra W(X).

A point @ of an affine space H" is an n-tuple a = (ay,...,a,),
a;€eH,i1=1,....,n.
Now we explore the bijection of sets Hom(W(X), H) — H".

Let a = (aq,...,a,) beapoint in H". It corresponds the function
p: X — H defined by p(z;) = a;, i = 1,...,n. Since W(X) is a
free algebra, each function p(z;) = a;, @ = 1,...,n, gives rise to

the homomorphism p in Hom(W(X), H). Conversely, let u be a
homomorphism in Hom(W (X), H). It corresponds the point a =
(ay,...,a,) in H™ defined by pu(z;) = a;.

This correspondence allows us to identify the set of homomor-
phisms Hom(W(X), H) with H™ and to consider it as an affine
space. The next definition is equivalent to Definition 2.2.2.

Definition 2.2.3. Let H be an arbitrary algebra in the variety ©.
Affine spaces over H have the form Hom(W (X), H), where W (X)
18 a free algebra in ©.

Homomorphisms p from Hom(W (X)), H) are the points of the
affine space Hom(W (X), H).

Usually in this book we use Definition 2.2.3 as the definition of
an affine space.

So, in universal algebraic geometry in a variety O:

affine spaces K"

are replaced by
affine spaces H" ~ Hom(W(X), H),

where H € O, and W(X) is a free finitely generated algebra in ©.
Let the point u € Hom(W (X)), H) be induced by a map p: X —

H and corresponds to a = (aq, . .. ,a,) in H", where a; = p(z;). This

correspondence gives rise to kernels of points p € Hom(W (X), H).
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Definition 2.2.4. Let p € Hom(W(X), H) be a point in the affine
space Hom(W (X)), H). The kernel Ker(u) of the point p is the
kernel of the homomorphism pu: W(X) — H.

Let wy; = wy(z1,...,2,) and wy = we(xy, ..., x,) be the elements
in W(X).
Definition 2.2.5. A pointa = (aq,...,a,) € H" is a solution of the
equation wy = wy in the algebra H if wy(ay, ..., a,) = wo(ay, ..., a,).

This is equivalent to: a point p € Hom(W(X), H) is a solution of
w1 = W2 ’Lf
wl = W2 5

where w! = w;(p(z1),. .., w(x,)).

The equality wf = w} means that the pair (wy,ws) belongs to

Ker(u). In other words, a point p is a solution of the equation
wy = we if (wy,wsy) belongs to the kernel of the point . We will say
that w; = wy belongs to the kernel of a point if and only if the pair
(w1, ws) belongs to this kernel.

The kernel Ker(u) is a congruence on the algebra W (X) and,
thus, the quotient algebra W (X)/Ker(u) is defined. These kernels
play an important role in the sequel.

If © is the variety Grp of all groups, then W(X) = F(X) is
a finitely generated free group. Equations in F(X) have the form
w(zy,...,x,) = 1, where w € F(X), |X| = n. For the affine space
H" = Hom(W(X), H) there exists a plenty of choices. If H =
F(X), then we come up with equations over the free group, and
with the corresponding geometry. If H is a simple group then we
are looking for solutions of equations in a specific simple group.

If © is the variety Ass — K of associative algebras over a field K,
then W (X) is the free algebra of polynomials with non-commuting
variables. The affine space is K" = Hom(W(X),K) or L™ =
Hom(W (X), L), where L is an extension of the field K. The ob-
tained geometry is a non-commutative algebraic geometry.

If © is the variety Lie — K of Lie algebras over a field K, then
W(X) is the free algebra of Lie polynomials. The equations have
the form w(xy,...,x,) = 0, where w € W(X) is a Lie polynomial.
The choice of H depends on a particular problem and can vary from
simple algebras to free algebras.

Example 2.2.6. This case is of special importance. Let © be a
variety of algebras, G a fixed algebra in ©. Consider the variety
OFY of G-algebras (see Subsection 1.2.3). A free in ¢ algebra W =
W (X) is the free product G« Wy(X), where Wy(X) is a free algebra
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in ©. The elements from the distinguished algebra G play the role
of constants in an equation w = w’, w,w" € W(X). Usual equations
in the polynomial algebra K[z, ..., x,] are of these type, where the
elements of the field K play the role of constants. Another popular
example of such kind is the equations from Grp?®), where F(X) is
a free group. Here © is the variety of groups Grp and the G = F(X)
is the group of constants.

Example 2.2.7. Let F = F(x,y) be the free group with two gen-
erators. Take the variety © = Grp!’, and consider the equation

rybra = b1

in ©. It has a solution « = b~'a, y = a~3. Another example of an
equation in © = Grp is as follows

[xvy] = [a>b]>

where [z, y] = zyx~ly~!. It has two series of solutions x = ab", y =
band x =a, y=ba™, n,m=20,1,2,...

In fact, with each variety of algebras © the following algebraic
geometries are associated:

e Algebraic geometry in ©, that is coefficient-free algebraic geom-
etry. In this geometry equations have the form:

w(xy, ..., x,) =w' (T, .., T,).

Solutions of equations lie in the affine space Hom(W(X), H),
where H is an algebra in O.

o Algebraic geometry in ©F with coefficients in the algebra G €
©. The solutions lie in the affine space Hom(W (X), H), where
H € 6Y is a G-algebra. The elements of W(X) = G * Wy (X),
where Wy(X) is the free algebra in © can be viewed as words in
variables z1, ..., x, with coefficients in G. Equations in W (X)
have the form:

w(xla--wmn;glw"agk) :w/<xla"'7$n;gl>"'7gk)7

which means that every word w in W (X) involves the variables
x1,...,x, and the constants gq, ..., g; from G.

e Diophantine algebraic geometry. This is a particular case of
the previous item, i.e., the geometry in ©% with the solutions
of equations in the affine space Hom(W (X), G).

" See Sela for details, v
chem raznitsa 7
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2.2.2 Galois correspondence in the universal case

Let T be a system of equations of the form w(zy, ..., x,) = w'(x1, ..., T,),
where w,w" € W(X). With the vocabulary of Section 2.2.1 one can
define the operators:

V' : systems of equations — subsets of the affine space,
and
I : subsets of the affine space — systems of equations,

exactly in the same way as it is done for the case of classical algebraic
geometry:

{V(T) ={a=(a...,a,) € H" | w(a) = w'(a), for all w = w' € T},
I(A) ={w=vw ww € W(X) | w(a) =w'(a), forallae A C H"}.

As we know , the set of polynomials 7" and the ideal (T') have the
same set of common zeros in the affine space. Analogously, the set of
equations 7" and the congruence (T') generated by 7" have the same
set of solutions. Thus, the correspondence above can be viewed as
a correspondence between congruences on W (X) and subsets in the
affine space.

Warning 2.2.8. There is no reason to think that some analogue of
the Hilbert’s basis theorem holds for arbitrary ©. Hence, the setT of
equations in W(X) can be infinite. We will discuss the Noetherian
properties in Subsection 2.2.8.

Remark 2.2.9. For the sake of convenience we will use the stroke
notation instead of V and I operators. The direction the stroke
acts is clear from the context. For example, A = T}, is the set of
common solutions of the equations from T. The index specifies the
affine space we are dealing with.

In the new notation the Galois correspondence can be rewritten
as

w=A={a=(a,...,a,) € H" | w(a) =v'(a), forallw =w" € T,}
Ay =T ={w=v",w,w' € W(X) | w(a) =w'(a), foralla e A C H"}.

Rewrite this Galois correspondence once again using the bijection
between H" and Hom(W(X),H) and considering points of the
affine space as homomorphisms p : W(X) — H (cf. Remark 2.1.9 in
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the classical case). Recall that a point p is a solution of the equation
w = w' if (w,w’) belongs to the kernel of the point x. Then

Ty=A={u:W(X)—>H|TC Ker(u)},
Ay =T ={(w=w)| (wu) € ) Ker(n)}.

The set T}, consists of the points u satisfying each equation from
T. The set A’ consists of all equations w = w’ in W(X) which
satisfy every point from A. This is always a congruence being the
intersection of kernels of homomorphisms. The congruence A’ is an
ideal for the varieties Com — K, Ass — K, Lie — K, and a normal
subgroup for the variety Grp.

Definition 2.2.10. A set A in the affine space Hom(W (X), H)
18 called an algebraic set if there exists a system of equations T in
W(X) such that each point u of A satisfies all equations from T,
e, A=Ty.

A congruence T in W(X) is called H-closed if there exists A such
that T = A’;.

Example 2.2.11. The affine space Hom(W (X), H) is an algebraic
set being the solution of the system T of equations w = w, w €
W(X).

A point u: W(X) — H, p(z;) = h;, h; € H is not necessarily an
algebraic set for arbitrary ©. However this is the event for classical
algebraic geometry and for Diophantine geometry. In the latter
case the point p is defined by the system T' of equations z; = h;,
1=1,...,n.

Let © = Grp“. Consider an equation [z,a] = 1, where z €
W(X), a € G. Let H be a G-group. Then the centralizer Cy(a) is
an algebraic set in H.

The Galois closures of arbitrary sets A and T are defined as
AY = ((A)y)y and Tf; = ((T')y )y, respectively. Then A%, is always
an algebraic set, while T} is an H-closed congruence.

The one-to-one correspondence:

algebraic sets < H-closed congruences

takes place for every ©.

Remark 2.2.12. Hilbert’s Nullstellensatz exactly tells us what is
the description of the H-closed congruences if © = Com — K. It
also hints the following definition:
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Definition 2.2.13. Let T be a system of equations. The H-closed
congruence Ty is called the radical of T and denoted by Rady(T).

Given a set T', the congruence Radg(T) is the minimal H-closed
congruence containing 7. A congruence T' is called radical congru-
ence if T = Rady(T). Thus, the term radical congruence is just
another name for H-closed congruences and referring to the classi-
cal case, we can rewrite the one-to-one correspondence as:

algebraic sets & radical congruences.

2.2.3 Zarisky topology in arbitrary variety ©

The Galois correspondence between congruences in W (X) and alge-
braic sets in the affine space Hom(W (X)), H) possesses the following
properties:

Lemma 2.2.14. Given a set I, the maps’ satisfy

L N1y = (U T

2. ELJI(Y})’H - (QE)IH-
J. @(Ai)’H = (ELJIAi)}I-
4. LEJI(Ai)/H - (@Ai)}f-

If all A, and T, are H-closed sets, then

5 (UT)s = (NTa)y-
6. (UAVE = (NA)y. O

Thus, the intersection of algebraic sets is an algebraic set, and
the intersection of closed congruences is again a closed congruence.

Warning 2.2.15. To the contrary with the classical case the finite
union of algebraic sets is not necessarily an algebraic set.

Example 2.2.16. Let © = Grp and H be a cyclic group. Take
equations 22 = 1 as T} and 2® = 1 as T». The corresponding alge-
braic sets (11)%, (12)} in H consist of elements of exponent 2 and 3,
respectively. Then ((T7)y U (T%)’y) # (11 N'1T3)’y, because the latter
algebraic set consists of elements of exponent 6. Moreover, it is easy
to see that if H is an abelian group, then any algebraic set A C H"
is always a subgroup of H"™. Hence, ((1T1) U (1)) # (T1NT3)"; for
arbitrary T} and T3, since the union of subgroups is not a subgroup
(assuming Ty € Ty and Ty, € T7).
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Definition 2.2.17. The algebra H is said to be geometrically stable
if for every W(X) € © and every two algebraic sets A and B in the
space Hom(W (X)), H) the union AU B is also an algebraic set.

Remark 2.2.18. Geometrically stable algebras are also called equa-
tional domains ([DMR4]).

In particular,
(1) Y (1)) = (T N T2)y,

for geometrically stable algebras. A general criteria for an alge-
bra H from a variety © or ©Y to be geometrically stable is given
in terms of 2-groups (i.e., multioperator groups, see [Hig], [Kul]).
It turns out, that most of the interesting cases: non-abelian free
groups, free commutative and associative algebras, free associative
algebras and free Lie algebras, simple groups, fields and skew fields
are geometrically stable (see [BPP]).

If an algebra H in the variety © is geometrically stable, then one
can introduce a Zariski topology in the affine space Hom(W (X), H)
n a usual way, declaring affine sets to be closed sets in this topology.
Indeed, arbitrary intersections and finite unions of algebraic sets are
algebraic sets in geometrically stable algebras.

We shall make some remarks about trivial cases. A congruence
T corresponding to equalities w = w is called zero congruence. T is
called a unity or a non-proper congruence, if (w,w") € T is fulfilled
for every w,w’ € W(X). These congruences are denoted as 7' = 0,
T = 1, respectively.

Define a zero subalgebra of H as a subalgebra consisting of one
element which is distinguished by a unique nullary operation. For
example, zero element in an associative algebra is considered as a
zero subalgebra. Analogously, unit element is a zero subalgebra in
any group.

We have 0%y = Hom(W (X), H) and, therefore, Hom(W (X), H)
is an algebraic set. As for 17;, this is either an empty set, or a zero
point in Hom(W (X)), H), sending W (X) to the zero subalgebra in
H, if the latter exists.

Remark 2.2.19. If we consider equations in ©F (see Example 2.2.6),
i.e., equations with constants from an algebra G, then always 1%; =
@. If we consider equations without constants, then 1’; can be a
zero subalgebra. For example, if © = Grp, then any set T of

equations of the form w(zy,...,x,) = 1 has a common solution
p€ Hom(W(X), H) such that 2! =1,i=1,...,n.
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Zero congruence is not necessarily closed in W (X) because (0)%,=
(Hom(W(X), H ))/H =T, where T is the congruence of all identities
of H in the free algebra W (X). This is the minimal closed congru-
ence in W(X). If an algebra H generates the whole variety O, then
07, = 0, and 0 is a closed congruence. We use the following agree-
ment regarding empty sets: if 7' = @&, then T}, = Hom(W(X), H);
if A= o then A, = 1.

The constructed Zariski topology on the affine space Hom(W (X),
where H € © is a geometrically stable algebra, maintains many
properties of the Zariski topology for the classical geometry. In
particular, it introduces the Zariski topology on algebraic subsets
in the affine space, the Zariski closure A of an arbitrary set A C
Hom(W(X), H) coincides with its Galois closure A%, etc. How-
ever,

Warning 2.2.20. To the contrary with the classical case the affine
space Hom(W (X)), H) is not necessarily Noetherian for arbitrary
H € © (c¢f Warning 2.2.8).

The problem whether the Zariski topology over H € O is Noethe-
rian, is one of the key problems of the whole theory. As soon as
geometry for the particular H € © turns to be Noetherian, there is
a reasonable basis for the use of geometric methods (see Subsection
2.2.8 for details).

Now we define the Zariski topology for not necessarily stable
algebras. Given A and B the algebraic sets in Hom(W(X), H),
define

AUB = (AU B)Y,.

If 77 and T5 are closed congruences in W (X), then we set
TlgTQ - (TI U TQ)II{[

Definition 2.2.21. Let © be a variety of algebras and H an al-
gebra in ©. Closed sets in the Zariski topology on the affine space
Hom(W (X), H) are represented by finite unions of algebraic sets
and their arbitrary intersections.

In topological terms this definition means that algebraic sets form
a pre-base of closed sets for Zariski topology. In other words, the
Zariski topology on Hom(W(X), H) is a topology with respect to
the generalized union operation U. If the algebra H is geometrically
stable, then
AUB = AU B,

and we obtain the usual Zariski topology of algebraic sets.

),
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For a given H € © and W = W(X), denote by Alvg (W) the set
of all algebraic sets in Hom(W (X), H), and by Clg(W) the set of
all H-closed congruences in W (X). The sets Alvg (W) and Cly (W)

constitute lattices with respect to operations D defined above.
Proposition 2.2.22. Lattices Alvyg (W) and Cly (W) are dual. O

The duality is determined by the transition A — A’ and the
properties 5, 6 from Lemma 2.2.14. If H is a stable algebra, then
every lattice Alvy (W) is distributive. In this case it is a sublattice
in the lattice Boolg (W, H) of all subsets in Hom(W (X), H). A dual
lattice Cly (W) is also distributive. In general, the lattice Alvg (V)
is not necessarily distributive. Hence, Alvg (W) is not a sublattice
in Boolg(W, H).

There is another approach to the Zariski topology on Hom (W (X), H),
which hints further generalizations. Let us look at the formulas

wlzvlv"'vwnE/UTu wiav’iEW(X)7

called pseudo-equalities. Considering them as pseudo-equations, we
say that a point u € Hom(W (X), H) is a solution of a pseudo-
equation if there exists 1 < ¢ < n such that w! = v!". One can build
the Galois correspondence with respect to pseudo-equations, and to
define pseudo-algebraic sets as sets of common solutions of systems
of pseudo-equations.

Proposition 2.2.23. Closed sets in the Zariski topology on the
space Hom(W (X)), H) coincide with pseudo-algebraic sets.

According to definitions, every algebraic set is a pseudo-algebraic.
Conversely, if an algebra H is stable, then every pseudo-algebraic set
is algebraic.

2.2.4 Coordinate algebras

Our next aim is to imitate Definition 2.1.13 of the coordinate ring
for the case of arbitrary variety ©.

Definition 2.2.24. Let A be an algebraic set, T = A’y the corre-
sponding H-closed congruence. Algebra W/T is called the coordinate
algebra of the algebraic set A.

Coordinate algebras have many algebraic faces. First of all, sim-
ilarly to the classical case they can be treated as algebras of regular
functions on A.
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Definition 2.2.25. Let A be an algebraic set, H € ©. A function
a: A — H is said to be reqular if there is w € W(X) satisfying
alp) = w*, for every point u € A.

The function « can also be defined via another element w, €
W(X). Then w* = wf for every u € A. This means that (w,wy) €
A% Hence, the coordinate algebra W/A’; is isomorphic to the al-
gebra of regular functions on A.

The problem of characterization of H-closed congruences for a
specific variety O is, in fact, a Nullstellensatz-type problem for this
O and H € ©. It is a challenge, since each particular variety ©
and H € O has its own Nullstellensatz. However, let us point out
some algebraic properties of the closed congruences and coordinate
algebras which can be viewed through the prism of the general Null-
stellensatz.

First of all, let us make a comment on the structure of the ”gen-
eral solution” of equations from 7". We look for solutions in the alge-
bra H € ©. Consider the natural homomorphism pg : W — W/T.
This homomorphism gives rise to the commutative diagram

W b WT

l i l

Hom(W,H) ~*— Hom(W/T, H)
where 11y is defined by fio(v) = vuo, for v € Hom(W/T, H). Denote
Hom(W/T,H)uo = {vpo: W — H | ve€ Hom(W/T,H)}.

Commutativity of the diagram implies
Proposition 2.2.26.
Ty = Hom(W/T, H)po,
for any T € W. Moreover, fio : Hom(W/T, H) — T}, is a bijection.
O

Thus, the set of solutions A of the system of equations T', where
T is a congruence, can be presented as:

Ty = A= Hom(W/T, H)pyp.
For arbitrary algebras H and G, denote
(H— Ker)(G) = ﬂ Kerv.
v:G—H

Let T be a congruence in W and take ug : W — W/T. Using
Proposition 2.2.26 we have
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Proposition 2.2.27.
Ty = po ' ((H — Ker)(W/T)).

Proof. Let 7 = (H — Ker)(G). Consider W 28 G 5 G/r, where 114
is the natural homomorphism, and set T' = Ker(uopu). Then wlw’
means that w Ker(u)w'™, ie. w'orw™. So, T = us'(r). We
shall verify that T = T7,.

Assume that wTw’. By definition of 7, we have (w"o,w™) €
Ker(v) and w"” = w™" for every v: G — H. By Proposition
2.2.26, pov is an element of T} = A, and (w,w’) € Ker(uov).
Therefore, (w,w’) € T, and thus T C Ty.

Now assume that wTjw'. Then w” = w™"*” for every v: G —
H, and (w",w™) € (N, Ker(v) = 7. This implies that wHor =
w"" and wTw'. So, T C T. Thus, T = T}, for every G. Take
G=W/T.

[

Proposition 2.2.27 can be viewed as one of the forms of Hilbert’s
Nullstellensatz.

Example 2.2.28. Let us derive the classical Hilbert’s Nullstellen-
satz (Theorem 2.1.6) from Proposition 2.2.27. We use two general
facts (see [AM], [E]).

The first one says that if H is a finitely generated associative
and commutative algebra, then its Jacobson radical J(H) is, at the
same time, the nill-radical of H, i.e., it coincides with the set of all
nilpotent elements of H.

The other fact is as follows: if T is a proper ideal of the ring
R = Klxy,...,x,], and L is the algebraically closed extension of
the field K, then there is a homomorphism p : R — L, such that
T C Keru. A property like this could serve as a general definition
of the algebraic closeness of arbitrary universal algebras.

We shall check that:

(L = Ker)(W/T)) = 3(R/T).

The radical J(R/T) is the intersection of all maximal ideals. Sup-
pose that T;/T" is a maximal ideal of R/T. Then Tj is a maximal
ideal of R, and there is a homomorphism p : R — L with T C
Kerp. It follows from the maximality condition that Ty = Kerp.
Since T" C Keru, the homomorphism g induces another homomor-
phism v : R/T — L and here Ty/T = Kerv. Therefore, every
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maximal ideal of R/T is realized as the kernel of some v. This
means that the inclusion

(L — Ker)(W/T)) C J(R/T)

holds. Every element of J(R/T) is nilpotent, and every nilpotent
element of R/T belongs to the kernel of any v : R/T — L. Hence
the converse inclusion is true. The Hilbert’s theorem (see Theo-
rem 2.1.3) now follows from Proposition 2.2.27.

Since T7; is the minimal H-closed congruence containing 7, it
can be represented as the intersection of all H-closed congruence
containing T, i.e., T = (|Ta, where all T, are H-closed. Every
W/T, lies in H. Then, by Remak’s theorem

Proposition 2.2.29. A congruence T in W is H-closed if and only
if for some set I there is an injection

w/T —H'. O

From Proposition 2.2.29 follows that an algebra G € © can be
presented as a coordinate algebra of an algebraic set A over given
algebra H € O if and only if G is finitely generated algebra and
there is an injection G — H! for some set I.

Recall, that the class of algebras X is called a prevariety if X
is closed under Cartesian products and subalgebras (see Subsec-
tion 1.1.6).

For an arbitrary class X the corresponding closure up to pre-
variety is SC(X) (Proposition 2.2.30). Here S and C' are closure
operators on classes of algebras: C' under Cartesian products and S
under subalgebras. Proposition 2.2.29 implies

Proposition 2.2.30. A congruence T in W is H-closed if and only
if W/T € SC(H). O

Besides, if T' is an arbitrary binary relation in W, then T} is an
intersection of all congruences T, with 7' C T,, and W/T,, € SC(H).

Definition 2.2.31. An algebra G is called residually H (or H sep-
arates G) if for every pair of elements g1 and g in G, g1 # go, there
exists a homomorphism ¢ : G — H such that ¢(g1) # ¢(ge).

An algebra is residually H if and only if there exists a set of
congruences p,, such that (p, = 1 and for every « there is a
monomorphism G/p, — H.

We collect the properties of coordinate algebras in
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Proposition 2.2.32. Let T be a congruence in W (X). Algebra
W/T € © is a coordinate algebra of an algebraic set A in Hom(W (X)), H)
if and only if one of the following conditions hold:

o W/T is embedded in H', for some set I,
o W/T belongs to the prevariety generated by the algebra H,
o W/T is a residually H algebra. U

2.2.5 Categories of coordinate algebras and algebraic sets

Let ©° be the category of all free algebras W = W (X) in ©, where
X is finite. Homomorphisms of algebras are morphisms in 6©°.

Let us introduce the category of affine spaces K§(H). Objects of
this category are affine spaces

Hom(W(X), H).
Morphisms
s:Hom(W(X),H) - Hom(W(Y), H)

of KJ(H) are induced by homomorphisms s : W(Y) — W(X) ac-
cording to the rule s(v) = vs for every v: W(X) — H.

The correspondence W (X) — Hom(W(X), H) and s — S gives
rise to a contravariant functor

F:0° = KJ(H).

Proposition 2.2.33. The functor F : ©° — KQ(H) determines the
duality of categories if and only if Var(H) = ©.

Proof. The condition of duality means that if s; # s, for the given
morphisms sy, s : W(Y) — W(X), then 57 # 5.

Let assume that Var(H) = © and the categories are not dual,
so there are morphisms s; and sy such that s; # s and s7 = $5.
Take some y € Y such that s;(y) = wi, s2(y) = wy and wy # ws.
We will show that in the algebra H there is the non-trivial identity
w; = wy. Take an arbitrary homomorphism v : W(X) — H. The
equality §; = Sy implies $1(v) = S3(v) or vs; = vsy. We apply this
morphism to the variable y:

vs1(y) = vsa(y) or v(wy) = v(w,).

Since v : W(X) — H is an arbitrary homomorphism, then w; = ws
is an identity of the algebra H. But Var(H) = ©, which means
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that there are no non-trivial identities in Var(H). So, we have a
contradiction and the condition Var(H) = O implies duality of the
given categories.

Now we show that if Var(H) C © then there is no duality. Let
w; = wy be some non-trivial identity of the algebra H. Take Y =
{yo} and let s1(yo) = w1, s2(yo) = wy. For any v : W(X) — H we
have

v(w) = v(ws), vsi(yo) = vsa(yo), 51(¥)(yo) = 52(v)(yo).

Since the set Y contains only one element yo, then s1(v) = s53(v).
Since v is arbitrary homomorphism, then §; = s, and there is no
duality of the categories. O

Definition 2.2.34. A map of affine spaces o : Hom(W (X)), H) —
Hom(W(Y), H) is called regular (polynomial) if it coincides with
some s : Hom(W (X),H) — Hom(W(Y), H).

Proceed now to the category Ko(H) of algebraic sets. Its ob-
jects have the form (X, A), where A is an algebraic set in the space
Hom(W(X), H).

Let us call s : W(Y) — W(X) admissible with respect to alge-
braic sets A C Hom(W(X),H) and B C Hom(W(Y),H)ifvr € A
implies 5(v) = vs € B. Given admissible s : W(Y) — W(X), a
morphism [s] : (X, A) — (Y, B) is defined by

$1(4) = {u| 1 = 3(v) = vs, v € A},

Definition 2.2.35. A map o : A — B of algebraic sets is called
reqular if there exists [s] : A — B, such that a(v) = $(v), for all
veA.

Morphisms of Kg(H) are regular maps of algebraic sets. So,
morphisms of the category Kg(H) of algebraic sets are defined via
regular maps of affine spaces.

The category Ko (H) is the full subcategory of the category Sety,
whose objects have the form (X, A), where A is an arbitrary subset
in the space Hom(W (X), H) while morphisms coincide with mor-
phisms of Kg(H).

Let us define the category Co(H). Its objects are coordinate al-
gebras and have the form W/T', where W is an abject of the category
0% and T is an H-closed congruence in W. Morphisms of Cg(H)
are the homomorphisms of algebras in the variety ©.

Our next aim is to relate the categories of algebraic sets Kg(H)
and of coordinate algebras Co(H ).
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Let Ty and T; be congruences in W(Y') and W (X), respectively.
A homomorphism s : W(Y) — W(X) is admissible with respect to
congruences Ty and T if for w = w' € Ty we have s(w) = s(w') € Tj.

Suppose that A = (T1)%, B = (13)}; and consider s : W(Y') —
W(X).

Lemma 2.2.36. A homomorphism s : W(Y) — W(X) is admis-
sible with respect to congruences if and only if s is admissible with
respect to algebraic sets.

Proof. Assume that vs € B for every v € A and that wTy w'.
We need to check that s(w)T{s(w'). We have T{' = A" and T} =
B'. Moreover, A" = (1,4 Ker(v). Check that, for all v € A,
(s(w),s(w’)) € Ker(v) or, in other words, vs(w) = vs(w'). By
definition, 77’ = B" = [,z Ker(n). Hence, wTyw' means that
p(w) = p(w'). In particular, this is true for p = wvs, and then
vs(w) = vs(w').

Conversely, assume that w 73 w’ implies s(w) T} s(w'). Given v €
A, check that vs € B i.e., vs(w) = vs(w') whenever wTy w'. The
latter condition implies s(w) T} s(w’). So, if v € A, then vs(w) =
vs(w'), that is vs € B. O

Lemma 2.2.37. Every morphism [s]: A — B induces a homo-
morphism 5: W(Y)/By — W(X)/AYy. Conversely, every homo-
morphism o: W(Y) /By, — W(X)/AY gives rise to a morphism
[s]: A — B.

Proof. Suppose we have a morphism [s]: A — B, where A = T] and
B = T}. The homomorphisms s: W(Y) — W (X) and o¢: W(X) —
W(X)/T{" define soo: W(Y) — W(X)/Ty. By Lemma 2.2.36, the
congruence T3 lies in Ker(sop). Hence, the homomorphism o =
5. W(Y)/Ty — W(X)/Ty is defined. It remains to observe that
TV = B and T/ = A'.

Conversely, suppose a homomorphism o: W(Y) /Ty — W (X)/T}
is given. We have a commutative diagram

W(Y) — W(X)

W(Y)/T! —2v W (X)/TV.

Assume that wTyw’. This means that oy(w) = o(w’). Then
oo1(w) = ooy (w') and ops(w) = ogs(w’), whence s(w)T}'s(w'). By
Lemma 2.2.36 we have a morphism s: A — B. [

Corollary 2.2.38. If s; and sy are admissible with respect to A and
B and [s1] = [s9] : A — B, then 5, = 3.
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Proof. Follows from the construction of 5 in Lemma 2.2.37. See also
?? (Part II). O

The correspondence [s| — 5§ and (X, A) — W(X) /A, determines
the contravariant functor F from Kg(H) to Co(H). The correspon-
dence § — [s] and W/T — (X, T};) gives rise to the contravariant
functor 7' : Co(H) — Ko(H). Lemma 2.2.37 and Corollary 2.2.38
yield that any regular map o = [s] : A — B induces the homo-
morphism §: W(Y)/Bjy — W(X)/A} in a unique way. Hence, the
pair of functors F and F’ determines the duality of the categories
Ko(H) and Co(H). We shall state this important fact as a theorem.

Theorem 2.2.39 ([P1-7L],[DMR2]). The category of algebraic sets
Ko(H) is dually isomorphic to the category of coordinate algebras
Co(H).

Proof. Let [s1],[s2] : A — B be given. Suppose that [s1] = [sa]. We
have to check that F([s1]) = F([sz]). The latter means that 57 = 53,
which follows from Corollary 2.2.38. [

Corollary 2.2.40. The category of algebraic sets Ko(H) is dually
equivalent to the category of residually H algebras.

Proof. By Proposition 2.2.32 every residually H-algebra is isomor-
phic to a coordinate algebra.
O

Remark 2.2.41. Theorem 2.2.39 1is completely parallel to Theo-
rem 2.1.17 from the classical geometry. The general regular maps
are converted for the variety Com — K to usual polynomial maps be-

tween algebraic sets. Theorem 2.1.17 is a particular case of Theorem
2.2.59.

Recall that a subcategory £ of a category K is a skeleton of I
if the inclusion functor is an equivalence, and no two objects of £
are isomorphic. Two categories are equivalent if and only if their
skeletons are isomorphic.

The skeleton of the category Ke(H) is denoted by Ke(H). The

objects of [?@(H ) are called algebraic varieties over H.

2.2.6 Geometrically equivalent algebras

Suppose we have algebras H; and Hs from the same variety ©. We
want to compare their abilities with respect to solving systems of
equations. This point of view hints the following definition.
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Definition 2.2.42. Algebras Hy and Hsy in © are called geometri-
cally equivalent if for every finite X and every system of equations
T in the free algebra W(X), the equality

T}, =,
takes place.

This condition is equivalent to the following one: T3 = T if and
only if Tf; =T, i.e., any congruence T"in W (X)) is H;-closed if and
only if it is Hs-closed. Hence, the corresponding coordinate algebras
coincide, and

Proposition 2.2.43. If the algebras Hy and Hy in © are geomet-
rically equivalent, then the categories of algebraic sets Ko(Hy) and
Keo(Hs) are isomorphic. O

So, the geometrical equivalence of algebras H; and H, is a suf-
ficient condition which provides isomorphism of the categories of
algebraic sets Kg(H;) and Kg(Hs). Necessary and sufficient condi-
tions for isomorphism of Kg(H;) and Ke(H2) will be considered in
Section 2.2.7.

For the classical case © = Com — K geometrical equivalence of
algebras looks as follows. Two extensions L; and Ly of the field K
are geometrically equivalent if for every finite X and every ideal T
in the polynomial algebra K[X] the equality

1o
TL1 — + Lo

takes place.

If Ly and Ly are arbitrary algebraically closed extensions of K,
then they are geometrically equivalent. Note that finite extensions
Ly and L, of K are geometrically equivalent if and only if they are
isomorphic.

Theorem 2.2.44. If the field K 1is algebraically closed, then all its
extensions are geometrically equivalent. If every two extensions of
K are geometrically equivalent, then K 1is algebraically closed.

Proof. If K is an algebraically closed field, then Hilbert’s Nullstel-
lensatz implies

TII/I1 :Rad(T):{tEK[:cl,,xn] |t‘9 GT,SEN}:T£27

for every ideal T in K[X]. Hence, every two extensions of the alge-
braically closed field are geometrically equivalent.

Conversely, suppose that every two extensions of K are geomet-
rically equivalent. Let L be the algebraic closure of K. Then K
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and L are geometrically equivalent. Hence T}, = T = Rad(T). In
view of Remark 2.1.8, T}t = Rad(T) implies that if V(J) = @ for
an ideal J € K|xy,...,2,), then J = Kz, 29,...,2,]. Hence, the
field K is algebraically closed since over a non-algebraically closed
field K there exists a non-constant polynomial without roots in K.

O

In the general case geometrical equivalence of algebras heavily
depends on the ground field K.

A field K is called formally real if —1 is not a sum of squares in
K. The class of such fields coincides with the class of fields that
admit an ordering. A formally real field which has no formally real
algebraic extensions is called a real closed field. From Nullstellensatz
for real closed fields follows that two real extensions of a real closed
field are geometrically equivalent. However,

Theorem 2.2.45 ([Berzins-GeomEquiv]). Two real closed exten-
sions L1 and Ly of a field K are geometrically equivalent if and only
if they induce equal orders on K. U

Example 2.2.46. Let K = Q(a), o* = 2. There exist two different
embeddings of K into the field of real numbers R:

Q(Oé) - R, a= \/57
Q(Ck) - R? Q= _\/57

Let us check that these extensions L; and Ly are not geometrically
equivalent. Indeed, take the ideal T' = (2? — ) in K[z]. In the first
extension the polynomial 22 — o has two roots, and so T 7, =1 In
the second extension it has no roots, and so 77, = (1). This yields
that these extensions are not geometrically equivalent and hence,
the condition from Theorem 2.2.45 is necessary.

The problem of geometric equivalence for arbitrary fields is diffi-
cult (see [Berzins-GeomEquiv] for discussions).

Geometric equivalence relation behaves well with respect to Carte-
sian products of algebras. Assume that there is a nullary operation
0 among the ground operations of the variety © which singles out
of every G € © a one-element subalgebra.

Proposition 2.2.47. Suppose that algebras H, and H.,, o € I are
geometrically equivalent. Then the Cartesian products Hy =[], Ha
and Hy, =[], H, are also geometrically equivalent. Conversely, if
[I, Ho and 1], H., are geometrically equivalent, then H, and H],
a € I are geometrically equivalent too.



2.2. UNIVERSAL ALGEBRAIC GEOMETRY 75

Proof. We shall prove that Tp; = Ty, . Check, first, that

(][ Ho — Ker)(G) = ()(Ha — Ker)(G),

where (H — Ker)(G) = (,.qc_y Ker(v). Let 7, 7 stand for the
left and right hand congruences, respectively. Assume that g;75g9
for 1,92 € G. Thus, gf = g5 for all @« € [ and v: G — H,. Let
us take pu: G — [[, Ho and verify that ¢ = ¢5. This equality
means that ¢g)'(a) = ¢4 (a) for every o € I. We use the projections
To: 1, Ho = H, and denote pm, = v,. Then g (o) = g7* = g5* =
g5 (a), i.e. g = gy and, further, g;71¢s.

Conversely, let g17195. Given o € I and v: G — H,, define p
by the rule: ¢"(a) = ¢¥, and ¢*(8) is the zero if § # a. Then
p: G = [, Ha and g = g5. But then gi'(a) = g = g5(a) = g5.
Therefore, g17m2gs.

Hence,
HH — Ker)(GQ) = ﬂ(H — Ker)(GQ) =
:ﬂ(H;—Ker = HH' Ker)(G).
If G = W/T, then Ty = Ty, by Proposition 2.2.27. O

Corollary 2.2.48. For every algebra H € © and every set I, the
algebras H and H' are geometrically equivalent. O

Our next goal is to introduce a logical criterion for geometrically
equivalent algebras. Recall, (see Subsection 1.1.6), that a quasi-
identity in © has the form

wy = wp A Aw, = W, — wy = wy,
where w;, w}, w,w’ belong to W(X) with finite X.
We consider also more general quasi-identities of the form
/\ w=w) = wy = wy,
(w,w")eT

or, for short,
T — wy = wy,

where the set T is not necessarily finite.

Definition 2.2.49. A quasi-identity is called infinitary if the set T
15 infinite, and finitary in the opposite case.
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Recall that, a quasivariety (see Subsection 1.1.6), is a class of
algebras defined by finitary quasi-identities. A class ¢Var(H) is the
minimal quasivariety containing the algebra H. All algebras from
qVar(H) have the same quasi-identities as H.

Observe that

Proposition 2.2.50. wy = w(, € T}; if and only if the quasi-identity
T — wy = wy, holds in the algebra H.

/

Proof. By definition, wy = w{, € T if and only if (=7 V (wy = wy))
holds true for every p: W(X) — H.
[l

This remark provides one more point of view on H-closed con-
gruences and, thus, on general Hilbert Nullstellensatz. It implies

Proposition 2.2.51. Algebras Hy and Hy in © are geometrically
equivalent, if and only if each quasi-identity T — wo = wy (finitary
or infinitary), which holds in Hy is a quasi-identity of the algebra
H,, and vice versa. 0

Hence,

Proposition 2.2.52. If the algebras H, and Hy are geometrically
equivalent, then they generate the same quasivariety

qVar(Hy) = q¢Var(Hs).

In particular, varieties generated by geometrically equivalent algebras
H, and Hy coincide

Var(H,) = Var(Hs). O

Corollary 2.2.53. If two groups H, and Hy are geometrically equiv-
alent and one of them is torsion-free, then the second one is also
torsion-free. Il

Warning 2.2.54. For an arbitrary variety © the set of equations
can be not reduced to a finite set, and the converse statement to
Proposition 2.2.51 is expected to be false. Indeed,

Theorem 2.2.55 ([MR]). There exists the variety of algebras O,
algebra Hy € © and an ultrapower Hy of Hy, such that the algebras
H, and Hy are not geometrically equivalent. O

Algebras Hy and H, are called elemetarily equivalent if they sat-
isfy the same first-order sentences (see Section 3.1.1). By theorem of
Los’s ( [Marker], [Lo]), an algebra and its ultrapower have the same
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elementary theory and, hence, the same quasi-identities. Thus, The-
orem 2.2.55 yields an example of non-geometrically equivalent alge-
bras which generate the same quasivariety (cf., Theorem 2.2.108).
Moreover, counter-examples to converse of Proposition 2.2.51 exist
among finitely generated groups:

Theorem 2.2.56 ([MR]). There exists a group Hy and a finitely
generated group Ho, such that qVarH, = qVarHsy, but H, and Hs
are not geometrically equivalent. Il

Compare now the notions of elementary equivalence and geomet-
ric equivalence of algebras. Elementarily equivalent algebras H; and
H, satisfy the same sentences. On the other hand, if H; and Hs are
geometrically equivalent, then they have the same (infinitary in gen-
eral) quasi-identities. Since infinitary quasi-identities are not a part
of first-order formulas, these two notions should be distinct. This is
the case, indeed.

In one direction, Theorem 2.2.55 provides an example of elemen-
tary equivalent algebras which are not geometrically equivalent.

In the other one, an example of non-elementary equivalent geo-
metrically equivalent algebras can be found in the classical variety
© = Com — K. Let K be an algebraically closed field and L be
its non-algebraically closed extension. Then L and K are geometri-
cally equivalent (see Theorem 2.2.44), while they are not elementary
equivalent.

Let f(z) = ap + aqz - - - + 2™ be a polynomial with the coeffi-
cients in L and without roots in L. Take a polynomial over K

O(T, Y0, -+ Yn) = Yo + T + -+ ypa”

and consider a formula

Yo - - yn3z((2, Yo, - -, yn) = 0).

This formula holds in K and does not hold in L.

Warning 2.2.54 is not relevant if the algebras H; and H, are
geometrically Noetherian (see Definition 2.2.78). This is the case,
when every infinite set of equations 1" can be replaced by a finite set
Ty. Proposition 2.2.51 immediately implies the following.

Proposition 2.2.57. Geometrically Noetherian algebras Hy and Ho
are geometrically equivalent if and only if

qVar(Hy) = q¢Var(Hs). O

Since coincidence of elementary theories of algebras implies coin-
cidence of their quasi-identities, we have
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Corollary 2.2.58. If two geometrically Noetherian algebras Hy and
Hy are elementary equivalent, then they are geometrically equivalent.

O
In particular

Corollary 2.2.59. Two extensions Ly and Ly of a field K are ge-
ometrically equivalent if and only if they satisfy the same quasi-
identities. If extensions Ly and Lo of a field K are elementary
equivalent, then they are geometrically equivalent. ([l

Geometric equivalence of algebras is tightly connected with pre-
varities of algebras.

For every class of algebras X define a local operator L as follows:
H e LX if every finitely generated subalgebra Hy of H belongs to
X.

Definition 2.2.60. A prevariety of algebras X is called locally closed
if it is closed under the local operator L.

If H is an algebra then the class LSC(H) is the locally closed
prevariety generated by H. Here, S and C are the standard clo-
sure operators on classes of algebras, used in the characterization of
prevarieties (see Section 1.1.6).

Proposition 2.2.61 ([PPT]). Two algebras Hy and Hy are geo-
metrically equivalent if and only if the corresponding locally closed
prevarities coincide:

LSC(H,) = LSC(H,). O

We shall add that according to Proposition 2.2.30 finitely gen-
erated algebras in the prevariety SC(H) are coordinate algebras of
algebraic sets over H.

For any class X the locally closed prevariety LSC(X) is contained
in the quasivariety, generated by X [PPT],[MR].

The class LSC(X) is not a quasivariety and, moreover, not an
axiomatized class (see [MR],[Mall]). In this sense, the relation of
geometric equivalence of algebras is not an axiomatizable relation.
This relation is axiomatizable in terms of infinitary quasi-identities.

Classification of algebras with respect to geometric equivalence is
a difficult but challenging problem. For example, geometric equiva-
lence of the abelian groups looks as follows:

Theorem 2.2.62. Two abelian groups Hy and Hy are geometrically
equivalent if and only if the following two conditions hold
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1. VarH; = VarH,.

2. For every prime p and the corresponding Sylow subgroups (Hy),
and (Ha),,
Var(Hy), = Var(Hs),.

Since for abelian groups H; and H, the coincidence of exponents
is equivalent to VarH; = VarHs, this theorem can be reformulated
in terms of exponents.

Proof. Let, first, H; and H, be finitely generated abelian groups.
Any finitely generated abelian group A is isomorphic to Z" & Ag,
where Ay = A o ®- DA, and A k; is a primary Sylow subgroup.

Necessity of the first condltlon 1n Theorem 2.2.62 follows from
Proposition 2.2.51. Let us check that the exponents of the Sylow
subgroups (H;), and (Hs), coincide. Since (H;), and (Hs), are ge-
ometrically equivalent, they have the same quasi-identities. Denote
by n1, ne,- -+, ng the exponents of the Sylow subgroups. Then the
quasi-identity

t=1A AT =1y =1

holds in H;. Since H; and H, are geometrically equivalent, this
quasi-identity holds also in Hs, which implies necessity of the second
condition.

Conversely, one has to prove that under conditions 1-2 the groups
H, and H, are geometrically equivalent. Use again the presentation
of a finitely generated abelian group A as Z™ ® A o O---DdA pkns

where A k; is a primary Sylow subgroup. The torswn free parts of

H; and H2 have the form Z™ and Z°. Thus, they are geometrically
equivalent by Proposition 2.2.48.

Let us check that condition 2 implies geometric equivalence of
torsion parts. Suppose that the exponent of a finite abelian group
Ay equals to the exponent of a finite abelian group A, and equals p".
Both groups are directs sums of cyclic ones. Embed cyclic groups
of Ay into a group A of order p”, n > 0. In the same manner take
a group A} isomorphic to A, containing all cyclic subgroups of A,.
Then, since p" is the exponent of both A; and Ay, we have

(A1 — Ker)(G) = (A4} — Ker)(G);

and
(A2 = Ker)(G) = (A — Ker)(G);
for the arbitrary GG. Hence,

(A1 — Ker)(G) = (Ay — Ker)(G),
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and A; and A, are geometrically equivalent.

Applying this observation to Sylow subgroups of the same expo-
nent (A;), and (As), we get their geometrical equivalence. Hence, if
the exponents of the Sylow subgroups coincide, then by Proposition
2.2.47 the torsion parts of two finitely generated abelian groups are
geometrically equivalent. Then H; and Hs are geometrically equiv-
alent as a direct sums of the geometrically equivalent groups. O]

The proof for arbitrary abelian groups is similar. In order to avoid
technical details we refer to the paper [Vino|, where the following
general result is proved.

Theorem 2.2.63. Let py, po, ps3, ... be an enumeration of the set of
all primes. With a quasivariety of abelian groups X associate an
infinite sequence (o, 1, o, ...), defined as follows: oy = 1 if X
contains the infinite cyclic group, and cg = 0 otherwise; for n > 0,
an, = m if X contains the cyclic group of order pI, but not the cyclic
group of order p%m“), and o, = 1 if X contains the cyclic group of
order pI* for all m. Two quasivarieties are equal if and only if their
associated sequences are identical. Il

Let us compare conditions providing geometric equivalence of
abelian groups with the ones making abelian groups elementary
equivalent. The classical theorem of W.Szmielew [Sz], see also [EK],
[EKF], [Hod], classifies abelian groups up to elementary equivalence.
Namely, distinguish the following kinds of abelian groups:

o Z(p*) denotes the cyclic group of order pF,

e Z(p™) denotes the locally cyclic (i.e., every finite set of ele-
ments generates a cyclic group) p-group. This group can be
represented as the direct limit of the groups Z/p"Z.

® 7y denotes the localisation of the integers Z at the prime p,
i.e., the additive group of all rational numbers with denomina-
tor not divisible by p.

e (Q denotes the additive group of all rational numbers.
Then,

Theorem 2.2.64 ([Sz]). Any abelian group A is elementarily equiv-
alent to a group of the form

@p[@nz(pn)(apm) D Z((f)p) D Z(pOO)(Wp)] o) (@(5)7

where o,y By, Vp, 0 are finite or countable. O



2.2. UNIVERSAL ALGEBRAIC GEOMETRY 81

Groups defined in Theorem 2.2.64 are called the Szmielew groups.
So, the elementary equivalence of abelian groups can be recognized
by comparison with an appropriate Szmielew group. This observa-
tion gives rise to the Szmielew invariants: Exp(p,n, A), U(p,n, A),
D(p,n,A), Tf(p,n,A), where Exp originates from ”exponent”, U
from "Ulm”, D from "divisible”, and T'f from ”torsion free” (see
[Ek], [Hod] for the precise definitions). Each of them is responsible
for the elementary equivalence of the abelian group in question with
the appropriate Szmielew’s group.

Geometric equivalence of abelian groups is recognized using a
part of Szmielew invariants and is a much weaker condition than
elementary equivalence. This distinction between geometric and el-
ementary equivalence modeled on abelian groups allows us to visu-
alize what is the part of quasi-identities inside the whole elementary
theory of an abelian group.

For the varieties of nilpotent and solvable groups the situation
with elementary equivalence and geometric equivalence is much more
complicated. The elementary classification of nilpotent groups is
surveyed in [MS1][MS2]. In full generality this problem for finitely
generated nilpotent groups is open. Despite that, there exists an
advanced theory on this subject, which is especially developed for
free finitely generated groups (see [MS2], [Be|, [MR1]-[MR3], [Og],
[Mys1], [Mys2], etc.). Geometric equivalence of nilpotent groups is
studied in [Ts2], [T's2], [BG]. Elementary equivalence of free solvable
groups is considered in [RSS], see also [Ch1],[Ch].

2.2.7 Geometric equivalence and correct isomorphism

Definition 2.2.65. Let Ko(Hy) and Ko(Hs) be categories of alge-
braic sets. An isomorphism ¢ of these categories is called correct if

it induces an isomorphism of the lattices of algebraic sets Alvg, (W)
and Alvg,(W).

We view the existence of this strong version of isomorphism of
categories of algebraic sets as the sameness of equational geometries
over the algebras H; and Hs.

For every algebra H € ©, consider a (contravariant) functor Cly :
0" — Set. If W = W (X) is an object of ©°, then Cly (W) is the set
of all H-closed congruences T"in W. If, further, s : W(Y) — W (X) is
a morphism of ©°, then the mapping of sets Cly(s) : Cly(W (X)) —
Clyg(W(Y)) is defined by the rule: if T is an H-closed congruence in
W(X), then Clg(s)(T) = s~'T. It is always an H-closed congruence
in W(Y). Here, w(s'T)w’ if wsTw's.
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Let ¢ be an automorphism of ©°. Consider the commutative
diagram

- Q0

@0 P
PoSet
Commutativity of this diagram means that there exists an iso-

morphism of functors Cly, and Cly, - ¢. Denote this isomorphism
by a(p).

Definition 2.2.66. Let H, and Hs be algebras in ©. Algebras Hy
and Hy are called geometrically similar iof

1. There exists an automorphism o : O — OV, such that:

2. The functors Cly, and Cly,p are isomorphic through the iso-
morphism «o(p) depending on .

Given variety © and the category ©°, consider a function 3 which
assigns to every congruence 7" in Wj a binary relation 8 = Sw, w,(T)
in Hom (W, Ws) defined as follows: s18ss holds for sq,s9 : Wi —
Wy if and only if w**Tw*? for every w € Wj.

The isomorphism condition yields that given an automorphism
@ there exists a function

Oé(go) : ClHl — Cle 4
with the following properties:

1. To every W = W(X) € Ob ©° it corresponds the bijection
a()w : Clg, (W) = Cla,(9(W))

2. The function a(y) is compatible (in the sense of natural trans-
formation of functors) with the automorphism ¢.

The last condition means that

¢<5W1,W2 (T)) = BQO(WI)"P(WQ) (O‘(SO)WQ (T)) .

Here Wy, Wy are objects in ©9, T is an H;-closed congruence in W,
and for every relation p in Hom/(Wy, W3) the relation ¢(p) is defined
by the rule: sjp(p)s, holds for s, s, : p(W1) — o(Ws) if there are
s1, 82 1 Wi — Wy such that ¢(s1) = s}, ¢(s2) = s, and s1pss.

We say that the automorphism ¢ determines similarity of alge-
bras. Properties of this ¢ determine properties of similarity.

For the identical ¢ geometrical equivalence and geometrical sim-
ilarity coincides, since in this case a(y) yields the equality Cly, =
Cly,.
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Theorem 2.2.67 ([Pl-VarAlg-AlgVar-Categ]). Categories Ko(H1)
and Kgo(Hs) are correctly isomorphic if and only if the algebras Hy
and Hy are geometrically similar.

Proof. Part 11, 777 O

Thus, geometric similarity of algebras provides coincidence of the
geometries over these algebras.

However, we know that there exists an example of isomorphic cat-
egories of algebraic sets Kg(H;) and Kg(Hs) with non-geometrically
equivalent algebras H; and Hy (see Example 2.2.46).

The following theorem reveals the role of an inner automorphism
with respect to geometrical equivalence and geometrical similarity
of algebras:

Theorem 2.2.68 ([P1-St],[Pl-VarAlg-AlgVar-Categ|). Algebras H;
and Hy are geometrically equivalent if and only if:

1. They are geometrically similar.

2. The automorphism ¢ of the category ©° is inner.

Proof. Part 11, 777 O]

Corollary 2.2.69. If every automorphism of the category ©° is in-
ner, then geometrically similar algebras are geometrically equivalent
and vice versa.

Our next aim is to find out how Theorems 2.2.67 and 2.2.68 look
for specific varieties.

1. Variety © = Grp. Every automorphism ¢ of ©° is inner
(see [Pl-VarAlg]). Let Var(H,) = Var(Hy) = Grp. The categories
Keo(Hy) and Kg(H2) are correctly isomorphic if and only if the
algebras H; and H, are geometrically equivalent .

Let algebra H belong to © = Com— P, or Ass— P or Lie— P and
o € Aut(P). Define a new algebra H?. In H? the multiplication on
a scalar o is defined through the multiplication in H by the rule:

Aoa=\-a, ANeP acH.
2. Variety © = Com — P. Let © = Com — P with P infinite.

Theorem 2.2.70 ([BPP|,[PL-St],[PI-IJAC]). Let H, and Hy be al-
gebras from © = Com— P. The categories Ko(H,) and Ko(Hs) are
correctly isomorphic if and only if for some o € Aut(P) the algebras
HY and Hs are geometrically equivalent.

m Proof Perenesti v
Logichesk.Chast’
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3. Variety © = Ass— P. Let © = Ass— P, and H € ©. Denote
by H* the algebra with the multiplication * defined as follows: axb =
b-a. The algebra H* is called opposite to H.

Theorem 2.2.71 ([P1-St],[KBL]|, [PI-IJAC],[Ber2]). Let H, and H,
be algebras from © = Ass — P such that Var(Hy) = Var(Hy) =
©. The categories Ko(Hy) and Ko(Hs) are correctly isomorphic
if and only if for some o € Aut(P) the algebras Hf and Hy are
geometrically equivalent, where (H{)* is opposite to either Hy or to
Hr.

4. Variety © = Lee — P. Let © = Lee — P with P infinite.

Theorem 2.2.72 ([MPP],[P11], [P1-St]). Let H, and Hs be algebras
from © = Lee — P such that Var(H,) = Var(Hy) = ©. The
categories Ko(H,) and Ko(Hs) are correctly isomorphic if and only
if for some o € Aut(P) the algebras (HY) and Hy are geometrically
equivalent.

5. Variety © = Mod— K. Let © = Mod— K, where K is a ring,
not necessarily commutative, but with /BN property. This means
that if KX and KY are free K-modules with the finite X and Y,
then they are isomorphic if and only their cardinalities coincide, i.e.,
| X| = |Y|. In particular, K can be a group algebra PG of the group
G or the universal enveloping algebra U(L) of the Lie algebra L over
the field P.

For a given K-module H take its annihilator U in K. Consider
an ideal V' such that there is an isomorphism 7 : K/U — K/V.
If V' coincides with U, then 7 is an automorphism of K/U. The
K-module H we can consider as a K/U-module and, using 7, as
a K/V-module. This K/V-module can be lifted to a K-module.
Denote it by H7. The ideal V is the annihilator of H™.

Theorem 2.2.73 ([PI-AG-Mod], [PI-IJAC]). The categories Ko (H;)
and Ko (Hs) are correctly isomorphic if and only if for some T the
modules H] and Hy are geometrically equivalent.

The similar results are valid for the varieties of semigroups, in-
verse semigroups, for Grp! variety, where F is a finitely generated
free group, playing the role of constants, and for some other vari-
eties.

2.2.8 Noetherian properties

Notherianity plays a crucial role in many problems related to uni-
versal algebraic geometry. To the contrary with the case of classi-
cal algebraic geometry, where Hillbert’s basis theorem provides the
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Noetherianity "for free”, there is no reason to think that in arbi-
trary variety © and H in © the topological space Hom(W (X), H)
is Noetherian. So, as soon as Hom(W (X), H) possesses a kind of
the Noetherianity conditions, there are solid grounds to look for a
rich geometric theory.

Definition 2.2.74. A commutative ring R is Noetherian if it sat-
1sfies the ascending chain condition on ideals, i.e., given a chain of
1deals:

JC S C T C T ©

there exists a positive integer n such that: J, = Joo1 = .. ..

Equivalently, a ring R is Noetherian if all its ideals admit a finite
basts.

If a ring R is not commutative, then replacing ideals in Definition
2.2.74 by left- (right-) side ideals we come up with the notions of left
(right) Noetherian rings. Usually, a non-commutative ring is called
Noetherian, if it satisfies ascending chain condition with respect to
left- and right-side ideals.

Definition 2.2.75. An algebra H € © is Noetherian if it satisfies
the ascending chain condition on congruences.

Hilbert basis theorem (see Theorem 2.1.3) states that if R is
a Noetherian ring then the polynomial ring R[zi,...,x,] is also
Noetherian. In particular, K[xq,...,z,], where K is a field, is
Noetherian. Hence, every its ideal is finitely generated.

Definition 2.1.11 of Noetherian topological spaces admits a useful
reformulation.

Definition 2.2.76. A topological space X is Noetherian if every as-
cending chain of open subsets of X has a maximal element. Equiva-
lently, the space X is Noetherian if every descending chain of closed
subsets have a minimal element.

It is well-known that,

Proposition 2.2.77. Let X be a Noetherian topological space. Ev-
ery non-empty closed subset Y of X can be represented as a finite
unton Y =Y, UYoU---UY;, where each Y; is irreducible. IfY; ¢ Y;
for i # j then this decomposition is unique up to a permutation of
components. FEach Y; is called an irreducible component of Y. A
Noetherian topological space X has only a finite number of distinct
wrreducible components X1, Xa, ..., X,. O
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If a finitely generated free algebra W (X) € © is Noetherian with
respect to H-closed congruences, then the affine space Hom(W (X)), H)
equipped with Zariski topology is Noetherian.

Definition 2.2.78. An algebra H € O is called geometrically Noethe-
rian if for every finite set X and every system of equations T in
W(X), there exists a finite subsystem Ty C T, such that

Ty = (To)u-
In this case we say that T" and Ty are equivalent systems of equa-
tions. So, if the algebra is geometrically Noetherian, then any sys-
tem of equations is equivalent to a finite subsystem.

Remark 2.2.79. In many papers devoted to universal algebraic
geometry geometrically Noetherian algebras are called equationally
Noetherian algebras. These terms are synonyms.

Proposition 2.2.80. An algebra H € © is geometrically Noetherian
if and only if for every free algebra W(X) € © the ascending chain
condition for H-closed congruences holds. 0

Proof. Let H € © be geometrically Noetherian. Suppose that U,,
a € [ is an ascending chain of H-closed congruences. Take U =

Uaer Ua- ]

Proposition 2.2.81. An algebra H € O is geometrically Noethe-
rian if and only if for every free algebra W(X) € © the lattices
Clyg(W) of H-closed congruences and Alvg (W) of algebraic sets
satisfy ascending and descending chain conditions, respectively.

Proof. Because of duality, it is enough to prove the fact for the lattice
of algebraic sets Alvg (W). Let H € © be geometrically Noetherian.
Suppose that

LL.CA C...CACA

is a descending chain of algebraic sets A; = T in Hom(W (X), H).
It corresponds the ascending chain of H-closed congruences

TcTyc...cT'cC...,

where T!" = Al. Take T' = |J, T!". There exists a finite Ty C T" such
that 7" = T{/. Since Ty C T', then T 2 Ay = T}, for some k. We
have

A DA=(NA=T =T;2 A

Thus, A = A, and an ascending chain of algebraic sets satisfies the
ascending chain condition.
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Conversely, let algebraic sets in Hom (W (X, )H) satisfy descend-
ing chain condition. Then H-closed congruences satisfy ascending
chain conditions. Denote the set of all H-closed congruences by M.
Then any subset of M has a maximal element.

Denote by M, the subset of all H-closed congruences T" such that
T # Ty for every finite Ty. Suppose My is not empty. Let T be a
maximal element in M. Take any finite S outside M,. Denote
Ty=TUS. Then T/ =T |JS". Since T =T # TY for any finite
Ty and S is finite, then T} = T'|JS” belongs to My. Contradiction
with maximality of 7' . Hence M, is empty.

O

Proposition 2.2.81 implies,

Proposition 2.2.82. The Zariski topology in Hom(W (X), H) is
Noetherian if and only if H is geometrically Noetherian. 0

In view of Proposition 2.2.77, the latter means that the following
theorem holds.

Theorem 2.2.83. Let H be a geometrically Noetherian algebra.
Then any algebraic set A in Hom(W (X), H) is a finite union of
irreducible algebraic sets Ay,..., Ay, 1.e., A= A U...UA,. If
A; & Aj fori # j, then this decomposition is unique up to a permu-
tation of components. [

Thus, for geometrically Noetherian algebras most of the problems
can be reduced to the case of coordinate algebras corresponding to
irreducible components.

Definition 2.2.84. An algebra G is called fully residually H (or H
discriminates G ) if for every finite set of elements Gy in G, there
exists a homomorphism ¢ : G — H such that the restriction ¢ to
Gy is injective.

See [DMR1]-[DMR4], for fully residual properties of algebras.

Proposition 2.2.85 ([DMR1], [DMR2]). Let T' be a congruence in
W(X). Algebra W(X)/T € © is a coordinate algebra of an irre-
ducible algebraic set A in Hom(W (X), H) if and only if W(X)/T
18 a fully residually H algebra. O

The class of geometrically Noetherian algebras is rather wide.

Definition 2.2.86. We call a variety © geometrically Noetherian
if every finitely generated free algebra W(X) in © is geometrically
Noetherian.
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If © is a Noetherian variety then every algebra H € © is geomet-
rically Noetherian.

Example 2.2.87.

1) A classical variety Com — K is geometrically Noetherian (The-
orem 2.1.6).

2) The variety I, of all nilpotent groups of the nilpotency class ¢
is geometrically Noetherian ( Example 2.2.89).

3) Every variety consisting of locally finite groups is geometrically
Noetherian.

4) A variety of the form 91.0, where © is a locally finite variety,
is geometrically Noetherian.

5) Finitely-dimensional associative and Lie algebras are geomet-

rically Noetherian.
n

Perepisat’???Ostavit’ ???  Warning 2.2.88. One should be careful with the choice of the va-
riety © in the definition of geometrically Noetherian algebras. If we
want to know wether a system of equations T with the coefficients
from the given algebra G € © is equivalent to a finite subsystem
Ty C T, then we should consider the variety ©F of G-algebras in-
stead of the variety ©. If we consider coefficient-free equations, then
we work inside the variety ©. For example:

Example 2.2.89. Let © = 91, be the variety all nilpotent groups
of the nilpotency class c¢. Then every group G in © is geometrically
Noetherian (cf. Example 2.2.87). Indeed, the free finitely generated
nilpotent group W (X) satisfies the ascending chain condition for
subgroups (see [Ku2]). In particular, it satisfies this condition for G-
closed normal subgroups. Then, by Proposition 2.2.80 the group G is
geometrically Noetherian in 9., regardless G is finitely or infinitely
generated.

Now choose an infinitely generated nilpotent group G € O, and
consider the variety O of G-groups. Any free G-group in ©¢ has the
form of free product W(X) = G « Wy(X), where Wy(X) is the free
finitely generated group from ©. Then there is no reason for W (X)
to be Noetherian with respect to G-closed normal subgroups. Corre-
spondingly, there is no reason for GG to be geometrically Noetherian
in the variety ©¢. This observation is confirmed by the example
in [GuR], where an infinitely generated nilpotent group G of class
2 which is not geometrically Noetherian in the variety O, is con-
structed.
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Note that if G-algebra H is geometrically Noetherian in the va-
riety ©F, i.e., in the variety of G-algebras, then H is geometrically
Noetherian in ©. For ©® = Grp the following converse statement
holds:

Proposition 2.2.90 ([MR]). Let H be a G-group from ©%. If G is
finitely generated and H is geometrically Noetherian in © then H is
geometrically Noetherian in ©F. 0J

Another main source for obtaining geometrically Noetherian al-
gebras is linearity. The following theorem plays an exceptional role.
Let © = Grp be the variety of groups, G an arbitrary group.

Theorem 2.2.91 ([Gu],[Br]). Let G be a linear group over a com-
mutative Noetherian ring with unity. Then G is geometrically Noethe-
rian (in the variety Grp®, and, thus, in Grp). O

Corollary 2.2.92. Free groups, polycyclic groups [Au], finitely gen-
erated metabelian groups [Rel], finitely generated nilpotent groups,
free nilpotent or free metabelian groups [W], are geometrically Noethe-
rian. 0

However, there are lots of non-linear geometrically Noetherian
groups.

Example 2.2.93. The following groups G are geometrically Noethe-
rian in Grp®:

abelian groups [BMR],

free solvable groups [GuR],

rigid groups [Ro2],

torsion free hyperbolic groups [Se7].

The class of geometrically Noetherian G-algebras is closed under
taking subalgebras, finite direct products, direct powers, utrapowers
(see [BMR],[DMR2], [P1-7L] for details).

Moreover, the class of geometrically Noetherian G-groups is closed
under free products:

Theorem 2.2.94 ([Se9]). Let A, B be geometrically Noetherian
groups. Then the free product G = Ax B is geometrically Noetherian
in Grp©. O

This theorem provides additional possibilities for constructing
geometrically Noetherian groups.

There are several ways to construct non-geometrically Noetherian
algebras. In particular:
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Example 2.2.95 ([BMRo]). The wreath product G of any non-
abelian group and any infinite group is not a geometrically Noethe-
rian group in Grp®.

Example 2.2.96 ([BMR]). Let BS,,,, be a Baumslag-Solitar group:
BSpn =<a,t|t'a™t =a" >, (m,n > 0).

The group BS,,,, is geometrically Noetherian if and only if m =
l,orn=1,or m=n.

For the details of these and other examples see [BMR], [BMRo],
IMR], [GS], [LP], etc.

The general account of properties of geometrically Noetherian al-
gebras is formulated in [DMR2] in terms of the so-called Unification
Theorems.

It turns out that the notion of geometrical Noetherianity is re-
dundant for many purposes. Our next aim is to weaken it preserving
most of geometrical applications.

First of all reformulate Definition 2.2.78. It is equivalent to the
following one.

Definition 2.2.97. An algebra H € © is geometrically Noetherian
if for every free algebra W(X) and every set of equations T in W (X)
there exists a finite subset Ty in T, such that every (wq,w}) € Ty
belongs to (1),

In terms of quasi-identities this means that an algebra H € ©
is geometrically Noetherian if and only if for every W (X) and 7" in
W (X) there exists a finite subset T, C T such that the quasi-identity

( /\ (wzw’))%wozwg

(w,w")eT

holds in H if and only if the quasi-identity

< /\ (wzw’))—)wozw’o

(w,w")€eTy

holds in H. Here T} is independent from (wg, wy)).
In case when Tj depends on (wy, wy) we call H weakly geometri-
cally Noetherian. Thus,

Definition 2.2.98. An algebra H € O is called weakly geometrically
Noetherian if for every free algebra W(X), every set of equations T
in W(X) and for every pair (wo, w() € Ty there exists a finite subset
Ty in T, depending, generally, on (wo,wy), such that (wg,w;) €
(T
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Remark 2.2.99. In many papers devoted to universal algebraic ge-
ometry (see [MR], [DMR3], and others) weakly geometrically Noethe-
rian algebras are called (q),-compact algebras. These terms are syn-
onyms.

The class of weakly geometrically Noetherian algebras possesses
many important properties. The next proposition follows from Def-
inition 2.2.98:

Proposition 2.2.100. The algebra H € © 1is weakly geometrically
Noetherian if every infinitary quasi-identity in H is reduced in H to
a finite quasi-identity. U

Moreover,

Proposition 2.2.101. The algebra H is weakly geometrically Noethe-
rian if and only if the union of any directed system of H-closed con-
gruences is also an H-closed congruence for every W (X). U

Proof. Let the algebra H be logically Noetherian and 7" a union of
some directed system of H-closed congruences T,, o € [. T is a
congruence. We need to check that it is H-closed.

Take T%; and let it contain the pair (w, w’). Find a finite subset Tj
in 7" with (w,w’) € Ty We have T, with Ty C T,,. Then (w,w’) €
Ty Tl =T, CT. Thus, (w,w') €T, T =TY}.

To prove the opposite, assume the condition of directed systems
of H-closed congruences.

Take an infinite set 7" in W. Consider in T all possible finite
subsets T,. All T, constitute a directed system of H-closed con-
gruences. Let T} be the union of all congruences of this system. T C
T, C T} Since T} is H-closed, then Ty = Ty;. If (w,w’) € T}y = Th,
then (w,w’) € T, for some . This means that the algebra H is
logically Noetherian. 0

Here the set of congruences is directed with respect to the embed-
ding relation. It is clear that geometrical Noetherianity of algebras
implies their logical Noetherianity. Show that the opposite is not
true for the case of groups. Consider a free group F' = F(X), where
X is finite and consider all invariant subgroups U in F'. Denote by
H the discrete direct product (Example 1.2.26) of all F(X)/U. We
have injections F'(X)/U — H. Therefore, all invariant subgroups
in F(X) are H-closed. From this it follows that the group H is
not geometrically Noetherian. However, it is logically Noetherian
by Proposition 2.2.101.
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Theorem 2.2.102 ([MR]). The equality LSC(H) = qVar(H) holds
if and only if the algebra H s weakly geometrically Noetherian.
OJ

Remark 2.2.103. In fact, Theorem 2.2.102 solves the following

Malcev-type problem: for which groups H the class of finitely gen-

erated groups from the prevariety pVar(H) coincides with the class

of finitely generated groups from the quasivariety q¢Var(H). Mal-

cev showed [Mall] that for a given class of groups X the prevari-

ety pVar(X) is an axiomatizable class if and only if pVar(X) =

qVar(X). So, he asked what are the classes X such that pVar(X) =

qVar(X) (see [Gor], [MR] for the solution and details). It remains

to note Theorem B1 of [MR] which states that the class of finitely

generated groups from the prevariety pVar(H) coincides with the

class of finitely generated groups from the quasivariety qVar(H) if
and only if H is weakly geometrically Noetherian, that is if LSC(H) =
qVar(H).

According to definitions, inside the class of weakly geometrically
Noetherian algebras the geometric equivalence of algebras means the
coincidence of their quasi-identities:

Theorem 2.2.104. Weakly geometrically Noetherian algebras H
and Hy are geometrically equivalent, if and only if they have the
same quasi-identities, that is

qVar(H,) = qVar(Hs). O
Moreover,

Theorem 2.2.105 ([MR]). Let H be a weakly geometrically Noethe-
rian algebra. Then any two algebras from qVar(H) are geometri-
cally equivalent. If any two algebras from qVar(H) are geometrically
equivalent then H is weakly geometrically Noetherian. ([l

The class of weakly geometrically Noetherian algebras is rather
wide and includes, in particular, all geometrically Noetherian alge-
bras. Hence, linear groups and all G-groups from the example 2.2.93
are weakly geometrically Noetherian. In fact,

Theorem 2.2.106 ([MR],[DMR3]). If H is a weakly geometrically
Noetherian algebra then every algebra in qVar(H) is weakly geomet-
rically Noetherian. 0

At the same time, there are groups and algebras which are not
weakly geometrically Noetherian [MR], [GS], [LP], [BG], [BMRo].

For instance:
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Example 2.2.107 ([MR]). A nilpotent group G of class 2 given by
the presentation (in the variety of class < 2 nilpotent groups)

G = <ai7bi7 1 €N | [aiaaj] = ]-) [b’ub]] = ]-7 [ai7bj] = ]-72 7é j>7

is not weakly geometrically Noetherian. Indeed, the infinitary quasi-
identity

vavy(\ (e, a] =1 Nfe.b] = 1) = [e,9] = 1)

ieN jeEN

holds in G, but for any finite subsets I and J of N the following
quasi-identity

‘v’xVy(/\([x,ai] =1 /\[vaj] =1) = [,y =1)

iel jed

does not hold in G. To see this take an element = = a,,, such that
m ¢ I UJ. All z of such kind commute with a;, ¢ € I and b;,
j € J, but not central in G. The constructed group G is infinitely
generated.

There are also examples of finitely generated not weakly geomet-
rically Noetherian groups ([MR],[BMRo]). Moreover,

Theorem 2.2.108. Let the finitely generated group H; € © be not
weakly geometrically Noetherian. Then there exists a group Ho such
that

qVar(Hy) = qVar(Hy),
but Hy and Hy are not geometrically equivalent. O

Let the algebra H; € © be not weakly geometrically Noetherian.

At this point we stop a sketchy exposition of the basics of univer-
sal algebraic geometry. Our aim is to provide the reader with the
facts, which reveal the passages from classical algebraic geometry to
the universal one and hint the ways to extending universal algebraic
geometry to logical geometry.

2.2.9 A table: classical and universal geometry

This self-explaining table visualizes relations between the parallel
notions in classical and universal geometry.
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Classical AG Universal AG
Variety
Com — K ©
Free algebra
K[X], [X|=n W(X), [X[=n
Elements of the free algebra
flz1, ..., z,) € K[X] w(xy, ..., x,) € W(X)
Equations
flz1,...,2,) =0 w=w
Ground field Algebra in ©
K H
Affine space
K" = Hom(K[X], K) H"= Hom(W(X),H)
Points
w=(ay,...,a,) w=(ay,...,a,)
p € Hom(K[X], K) we Hom(W(X), H)
Solutions
flay,...,a,) =0 w(ay,...,a,) =w (ay,..., a,)
or
u(f) =0 p(w) = p(w’)
{ is a solution of f i is a solution of w; = w;
& fe Ker(u) & (w;,w;) € Ker(p)
Galois correspondence
ideal T’ congruence T’
algebraic set A algebraic set A
Galois closed objects
radical ideal 7(A) closed congruence A’
algebraic set V(A) algebraic set T},
Topology
Zariski topology Zariski topology for

geometrically stable algebras

Coordinate algebras

coordinate ring coordinate algebra
K[X]/1(A) W(X)/Ay
Category of algebraic sets
A(K) Ko(H)
Morphisms

polynomial (regular) maps
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One can extend this table substantially, considering geometrically
noetherian algebras and noetherian affine spaces.

2.2.10 Short bibliographical guide

The material included in Section 2 is a short introduction to univer-
sal algebraic geometry. Its choice is stipulated by the forthcoming
needs of logical geometry. So, a lot of important staff remains un-
touched. In particular, we did not consider the notions of Krull
dimension, domains, limit groups, algebraically closed algebras and
many others. The themes dealing with irreducible components, sep-
aration and discrimination are only outlined. The deep questions
related to geometries over specific algebras require a special atten-
tion and left also beyond the scopes of this section.

In order to make life of the interested reader easier we conclude
with citations, which can help to navigate in the area of univer-
sal algebraic geometry until a special book on this subject will be
published.

General principles and problems of universal algebraic geometry
are illuminated and surveyed in [BMR], [BPP], [Danl], [DMR1],
[DMR2], [DMR3], [DMR4],[DMR5], [KMR], [Ko], [MPP1], [MR],
INP], [Pil], [Pi2], [PI-AG], [PI-St], [PI-7L], [PI-IJAC], [Pl-VarAlg],
[Pl-VarAlg-AlgVar-Categ|, [P11], [P12], [P15], [Pl6], [P17], [PZ1]-
[PZ3], [Sc]. All main notions of Section 2.2 can be found in one
of these papers.

There is a huge list of works devoted to solving equations over
free groups and, therefore, to algebraic geometry over a free group.
This area was pioneered by the works [Ap], [Ly],[CE], [Stol],[Br],[Gu]
followed by the seminal papers [Mal, [Razbl], [Razb2]. The mod-
ern geometry of free and hyperbolic groups grounds on algebraic-
geometric-logic ideas proposed by V.Remeslennikov and E.Rips. The
achieved results are exposed in [BGM], [CK3], [CR], [CG], [GriKu],
[Grol], [Gro2], [Gui], [KhM-1]- [KhM-6], [Pa], [PS], [RS], [Sel]-
[Se6],[SeT], [Se8], [Se9], etc. This list is fairly incomplete.

Algebraic geometry over arbitrary G-groups is thoroughly de-
picted in the series of papers [BMRO] [BMR], [MR], [KMR]. Various
concrete results are contained also in [BMRo], [Berzins-GeomEquiv],
[BG], [GS], [MResS], [MS], [P13], [P1-7L], [PPT], [Tsl],[Ts2], etc.

The algebraic geometry over free metabelian groups gives rise to
a very consistent theory [Ch], [Re2], [Re3], [RemRol], [RemRo2],
[RemS1], [RemS2], [RemTi|, [Rol]. Geometry over solvable groups
is treated in [GuR], [MR], [Rol].
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Universal algebraic geometry specified to varieties of non-commu-
tative and non-associative algebras yield non-commutative and non-
associative geometries which can be of utmost importance from the
viewpoint of applications. To the contrary with the case of free
groups, solutions of equations over free non-commutative algebras
are much less understood. For the results see [CS], [Danl], [Dan2],
[DKR1]- [DKR3], [DR], [KLP],[LP], [MPP], [RemS3], [RoSh].

The algebraic geometry over partially commutative groups is
studied in [CK1] — [CK3], [GuT], see also [MS], [Sh1]-[Sh3] for other
algebraic structures.

We should emphasize once again that this bibliography does not
pretend to be complete.



Chapter 3

Basics of Algebraic Logic
and Model Theory

Algebraic logic goes throughout the book as a basic tool which makes
all necessary considerations with logic and model theory as alge-
braic as possible. In this chapter we focus our attention on two
logically-algebraic structures: Boolean algebras and polyadic alge-
bras. Boolean algebras were introduced already in Section 1.1.3.
Now we view Boolean algebras as an algebraic counter-part of the
propositional calculus. In more appropriate terms Boolean algebras
serve as an algebraization of the propositional calculus. Polyadic
algebras are less known objects than Boolean algebras. These alge-
bras naturally arise under the process of algebraization of first-order
calculus.

For the aims of logical geometry we will need a multi-sorted vari-
ant of polyadic algebras specialized in a given variety of algebras.
We call these algebras Halmos algebras. They will be defined in
Chapter ?77?.

There are many detailed sources related to different parts of al-
gebraic logic and model theory. We refer to the books [BarnesMack],
[CKeis|, [Halm], [HalGiv], [Hamilton], [HilbAcker], [Hod], [Pl-Datab],
[Marker], [Mendelson|, [Vereshchagin| for the proofs and comple-
mentary information.

3.1 Logical calculus. Syntax and semantics

3.1.1 Syntax of a logical calculus

We shall start with a formal syntactic description of a logical calcu-
lus.

97

Il Chapter 4
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Definition 3.1.1. A logical calculus is a tuple € = (IL,F, A, D) con-
sisting of

e a language L;

e a setF of finite words, constructed using the language 1L, called
formulas;

e a set A of particular formulas, called axioms;

e a finite set D of “derivation rules” which enable us to derive
new formulas from azxioms and other formulas.

Each language assumes some stock of variables, which serve as an
alphabet, and a number of rules which allow one to construct words
from a given alphabet. Formalizing all this, under a language . we
mean the following.

Definition 3.1.2. A language 1L is given by specifying the following
data.

1. A set of variables X = {x1,x9,...,2y,,...}. This set can be
finite or infinite. The generic situation is an infinite X.

IS

. A set F of function symbols f given together with their arities
ny 2 0.

3. A set R of relation symbols r given together with their arities

n,. > 1. Relation symbols r € 'R are also called predicate sym-
bols.

4. A set C of constant symbols. These symbols are treated as func-
tion symbols of zero arity.

5. The symbols of logical connectives —, V.

6. The symbol of existential quantifier 3.

» o

7. The punctuation symbols ”(”, 7)”, 7,”.

The sets F, R, C together with purely logical symbols =, V and
3 produce the signature of a logical calculus. The logical part of a
signature is often suppressed in notation.

For some languages the sets F, R, C may be empty. One can
consider a language without quantifiers. This is the case for the
propositional calculus, where the language consists of only variables
x1, %, ..., the connectives -, V and the punctuation symbols.

Remark 3.1.3. There is a lot of flexibility hidden in Definition 3.1.2.
For example:
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We include in the language the connectives — and V. The con-
nectives \, —, <> can be produced using —, V. Namely,

(ug Aug) is an abbreviation for (=(—uy V —ug)),
(up — ug) is an abbreviation for (—uy V ug),
(uy <> ug) is an abbreviation for ((u; — uz) A (ug — uy)).

One can consider a language with the other connectives, for
example, with = and —. Then A, V, <> can be defined using —
and —.

There is only the existential quantifier in the language. The
universal quantifier ¥V can be defined in terms of the existential
quantifier 3 and the connective —. Namely,

(Vz;u)  is an abbreviation for (—(3z;(—u))).

Now we need to define the set of formulas F of a logical calculus €.

Definition 3.1.4. Terms in a language I are defined inductively:

1.
2.
3.

/.

variables are terms;
constant symbols of I are terms;

if t, ... ty, are terms and f is a function symbol of arity ny,
then f(ti,... tn,) is a term;

there are no other terms.

Definition 3.1.5. An atomic formula is a formula of the form

T(tl, .

,tn,.), where r is a relation symbol of arity n, and ty, ... tp,

are terms.

Definition 3.1.6. Formulas in a language 1L are defined inductively:

1.

2.
3.
/.

atomic formulas are formulas;
if up and us are formulas, then —uy, (uy V us) are formulas;
if u is a formula, then 3x;u is a formula, where x; is a variable;

there are no other formulas.

We assume unique readability of formulas using/not using punc-
tuation symbols. We also assume familiarity with the concept of a
free variable, that is one not bound by quantifiers. Bound variables
are exactly variables which are not free in a formula. A sentence is a
formula without free variables, that is each occurrence of a variable
lies in the scope of some quantifier.
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Our goal is only first-order logic which means that no predicate
or function symbols can serve as variables, i.e., quantifiers over pred-
icates are not permitted. Besides, all formulas are finite and only
finitely many quantifiers appear in each formula.

We do not pretend to consider the whole world of the first-order
logical calculi. Our aim is to have a clear picture of algebraization
of a propositional calculus and predicate calculus. We confine our-
selves with the Hilbert-style deductive systems which means that
there is a bunch of schemes of axioms and few deductive laws. All-
together they allow one to build syntactical consequences from some
premises.

Definition 3.1.7. A formula u is derivable from a set of formulas
T if and only if there exists a finite sequence of formulas

Uy, ULy ..., Uy = U,

whose last term u, is u, such that ug either belongs to T or is an
axiom, and every formula u;, 1 < i < n, is either an axiom, or an
element of T, or the result of applying a derivation rule to some of
preceding formulas in the sequence.

If u is derivable from T, we will write T' F u. If u is derivable
from axioms we will write - u. In the latter case we say that u is a
theorem of the logical calculus.

Definition 3.1.8. A set of formulas T is syntactically consistent if
for any formula u, if T'F u, then —u is not derivable from T.

A set of sentences T is called a theory. The sentences of T play
a role of axioms of the theory. Thus, T' F u means that u is a
theorem of the theory T'. Theories are often assumed to be closed
under consequences from axioms. A logical calculus is syntactically
consistent if there is no formula u such that both u and —u are
theorems.

Let us mention some well-known theories.

Example 3.1.9.

1. The theory of semigroups. Let L = {X,-,= -, A, — V} be
a language, where X is a set of variables, ”-” is a binary function
symbol and ”=""is a binary relation symbol of equality. Axioms
of the theory of semigroups look as follows:

_»

L1 Vay 2y = 21, (veflexivity of 7=");

1.2 Vo Vg (71 = 29 — 72 = 1), (symmetry of "=");
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1.3 VYoV ((xl =Ty ATy = x3) = X1 = xg), (transitivity
Of 7 :’7);

14 \V/ZE1VIQVI3 Tog = T3 — (Il cTog = X1 - T3 VAN To X1 — T3+ (L’l),
(substitutivity of 7=");

1.5 \V/ZE1VQ,’2VCL’3 €Iy - (IQ . [Eg) = ([El . 172) - 3.

2. The theory of inverse semigroups. Let now L = {X, 7! =
,=, A\, —, YV} be the same language as before, where ”~!” is an
additional unary function symbol. The theory of inverse semi-
groups consists of axioms 1.1-1.5 above and the following sen-
tences (see, for example, [Klun], [PZ3]):

2.1 V$1Vx2 (fEl . 1'2)_1 = x2—l ' :Ul_la
2.2 Vo, (271)7! = a4,

2.3 Vo, zy - a7 -1 = 24,
2.4 Vo Vas iCl_l A [172_1 - Ty = l*2_1 - Tg - xl_l Xy,

3. The theory of groups. Let L = {X,-,7!,1,= =, A, —=,V}.
The theory of groups consists of sentences 1.1-1.5 above and
the sentences:

3.1 V.I'l (.ﬁEl'l:.Z'l/\l'iL'l:l’l),
32Vry (v -7t =1A27 -2 =1).

3.1.2 Semantics of a logical calculus

Suppose we are given with some logical calculus. This means that
we have some infinite set of finite words consisting of symbols of
different kind. These are purely formal expressions which we intend
to endow with some meaning. With this end one has to choose a set
where all these words will be interpreted as expressions constructed
on the base of elements of this set with the help of rules written in our
logical calculus. So, we need to formalize a notion of interpretation
of a logical calculus.

Definition 3.1.10. An interpretation M = (A, ¢) is a pair consist-
ing of a non-empty set A, called the domain of the interpretation
(variables x; € X are thought of as ranging over A), and a realiza-
tion p which assigns:

e to each function symbol f (of arity ns) an ns-ary operation f
on A (i.e., a function f™: A" — A);

e to each relation symbol r (of arity n,) an n.-ary relation r™ on

A (i.e., a subset of A" );
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e to each constant symbol c some fized element ™ of A.

As a rule we omit superscript M and write simply f instead of
™ ete.

An interpretation M = (A, ¢) gives rise to the notion of a model
of the logical calculus. Grounding more on algebra than on model
theory we consider a model as a triple Ml = (A, R, ¢) where A is an
algebra in some variety ©, R is a set of symbols of relations and ¢
is a realization which makes symbols r € R into relations in A".
In this triple realization function symbols from F are hidden in the
signature of operations related to the variety ©. We use the same
notation for an interpretation and for the associated model.

Now we shall define what means for a formula u(xy,...,z,) to
be valid on a tuple @ = (ay,...,a,) € A" under the interpreta-
tion M. In other words one has to define the value of the formula
u(zy, ..., x,) at the point @ = (aq, ..., a,).

First, we interpret a term ¢ built using variables from zy, ..., z,
as a function t : A™ — A such that:

1. if t is a variable x;, then t(a) = a;;
2. if t is a constant symbol ¢, then t(a) = ¢;

3. if t is the term f(t1,...,t,,), where f is a function symbol and
ti,..., tn, arve terms, then t(a) = f(t1(a),...,t,(a)).

To define the value of a formula u(x, ..., z,) on atuple (a1, ..., a,)
we should specify a function

u: A" — 2, (3.1)

where 2 is a two-element set {0,1}. The element 1 is treated as
"truth”, while 0 means "false”. Define this function inductively and
start from atomic formulas.

Let r(t1,...,t,.) be an atomic formula. We say that r(a) = 1
if and only if the tuple (¢1(a),...,t,.(a@)) belongs to the relation
™ C A, and say that r(a) = 0 otherwise.

Let now u(xy,...,z,) and v(zy,...,x,) be arbitrary formulas,
then
L. —u(ay,...,a,) =1ifu(ay,...,a,) =0.

2. (uvo)(ay,...,a,) =1lifu(ay,...,a,) =lorv(ay,...,a,) = 1.

3. Jzu(aq, ..., a,) = 1if there is a tuple (by,...,b,) € A" such
that a; = b; for all j #1¢, 1 <j <n, and u(by,...,b,) = 1.
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Ifu(ay,...,a,) =1 wesay that the formula u(zy, ..., x,) is satis-
fied on the tuple (ay, ..., a,). If for every tuple (ay,...,a,) € A" we
have u(ay,...,a,) = 1, then the formula u(zy, ..., z,) is true under
the interpretation M, or, what is the same, the formula u(z1, ..., z,)
is satisfied on the model corresponding to M. The corresponding no-
tation is M = w.

Pick up now a set of formulas 7. An interpretation M = (A, ¢)
gives rise to a model for T if every formula u € T is true under M.
Suppose we are given with a language IL and a set of sentences 1" in
L, i.e., a theory T is given.

Definition 3.1.11. A formula u is a semantical consequence of T,
that is T' = u, if M = u for every model M of T

One would like to have a coincidence of syntactical and seman-
tical derivability for the class of first-order calculi. The following
(Godel’s) theorems state:

Theorem 3.1.12. Let T be a theory, u be a formula in a language.
Then
T+ uif and only if T = u. O

Theorem 3.1.13. A theory T has a model if and only if T is
consistent. 0

The next theorem is well-known as the compactness theorem.

Theorem 3.1.14. If every finite subset of T is satisfiable then the
set T is also satisfiable. O

This means that if every finite subset of 7" has a model, then T
has a model.

Suppose now we have a model M = (A, R, ). The set of all
sentences 1" valid on M is called the theory (the elementary theory)
of M. Usually one speaks just on the elementary theory of an algebra

A.

3.1.3 Algebraization of a logical calculus

There are several ways to define an algebraization of a logical calcu-
lus, see, for example, discussions in [BP], [ANS], [FJP]. One of the
key points of these studies is to find out which logical calculi can be
algebraizable and in which sense.

Our goal is more utilitarian with the main destination to con-
struct algebraizations of first-order calculi which will be most ap-
propriate for the aims of logical geometry.
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Intuitively, a process of algebraization of logical calculus means
that we want to replace the study of a logical calculus by the study
of a special algebra associated with this calculus. Moreover, syntac-
tical and semantical properties of the calculus can be reformulated
in terms of purely algebraic properties of the corresponding alge-
bra. This idea was formalized by Tarski, who proved that Boolean
algebras serve as the algebraization of propositional calculus [Tal,
[Tal]. Tarski’s method works also for first-order calculi (see [Halm],
[HMT], [Pl-Datab], etc.) and we will use it in what follows.

Let a logical calculus € = (L, F, A, D) be given. Define a relation
7 on the set of formulas F by urv if and only if

F(u—v)A (v —u),

where u,v € F. In other words, two formulas v and v are claimed
equivalent if each of them is derivable from the other. It is easy to
see that 7 is an equivalence relation on F.
Analogously, if T" is a theory then define a relation 7 by urpv if
and only if
TE(u—=v)A((v—u).

Denote by £ the absolutely free algebra constructed over atomic
formulas of IL in the signature of operations —, V, dx, where zx is a
variable. Then,

Proposition 3.1.15. 7 is a congruence of the algebra £. 0J
For the proof see Subsection 3.3.8.

Definition 3.1.16. The quotient algebra £/ is called the Lindenbaum-
Tarski algebra of the logical calculus €.

The described procedure is called the Lindebaum-Tarski alge-
braization process, the congruence 7 is the Lindenbaum-Tarski con-
gruence. Identities and structure of the Lindenbaum-Tarski alge-
bra depend heavily on axioms and derivation rules of the logical
calculus and can be quite complicated. However, in any case the
Lindenbaum-Tarski algebra £/7 is a model of the initial logical cal-
culus.

Example 3.1.17. The Lindenbaum-Tarski algebra of a proposi-
tional calculus is a free Boolean algebra (see Subsection 3.2.3).

Note that the Lindebaum-Tarski algebraization process in the
form of Definition 3.1.16 has some disadvantages since the resulting
algebra can have an unclear structure and identities. One of the
ways to bypass this difficulty is to extend the signature -, Vv, dJx
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by additional operations. This is the case of algebraizations of first-
order calculi and the reason for appearing in parallel polyadic, cylin-
dric and other algebras that provide different algebraizations of a
first-order calculus (see Subsection 3.3 for details).

From the geometric point of view the most important case of the
algebraization process is Lindenbaum-Tarski algebras specialized in
some variety of algebras ©. Suppose that the language of a theory
T contains the equality predicate = and, for simplicity, this is the
only relational symbol. Fix a set of variables X = {x1,...,z,}.
Formulas of the form w = w’, where w and w’ are terms, define
a variety of algebras ©. Denote by W(X) the free algebra in the
variety ©. Then w and w’ belong to W(X). Let Mx be the set of all
formulas w = w', w,w’ € W(X), and £x the absolutely free algebra
over the generators from My in the signature -, Vv, dx, x € X.
The Lindenbaum-Tarski algebra specialized in © is the algebra

£X/TT-

3.2 Propositional calculus and Boolean algebras

Propositional calculus plays an exceptional role among logical cal-
culi. We will show that Boolean algebras are exactly the algebraic
structures associated with the propositional calculus.

3.2.1 Propositional calculus. Syntax and semantics

A propositional calculus is a tuple € = (L, F, A| D), where

IL: The language IL consists of an infinite set of variables X =
{1, xq,...}, the logical connectives = and V, and the punctu-
ation symbols.

[F: The set of formulas is constructed according to Definition 3.1.6
except for the item 3.

Since the language of a propositional calculus does not include
quantifiers, all its formulas are sentences called propositions.

A: The set of axioms consists of the following ones:

1. ;1 V= 24

2. x1 = 21 V To;

3. 21V X9 — 2oV Iy

4. (1 = x2) = (23 V 21) = (23 = T2)),
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where x1, 9, x3 are propositional variables.

There are many ways to choose the sets of axioms and deriva-
tion rules for a propositional calculus. The obtained propositional
calculus should satisfy the conditions of consistency and complete-
ness. A theory T is complete if for every sentence u either u or its
negation —u belongs to T'. The chosen set of axioms A goes back to
[HilbAcker] (see also [HalGiv]). One can describe the propositional
calculus using other logical connectives, axioms and derivation rules
(for details and examples see [BarnesMack], [HilbAcker], [Hamilton],
[Mendelson], etc.)

D: The set of derivation rules for this choice of axioms consists of
two rules: substitution rule and modus ponens.

e The substitution rule allows to replace all occurrences of a
given variable x in a sentence u by an arbitrary sentence v.
We use the following notation: if u; and uy are sentences
and z is a variable, then the sentence u;[x/us] is the sen-
tence obtained from wu; by replacing each occurrence of x
in u; by us. For example,

(1 — 1V xo)[z1 /U] = u — uV xs.

e The modus ponens rule states that the sentences u; and
(up — wug) imply ug. In this rule u; plays the role of a
premise and usy is a conclusion.

The substitution is not necessary if we consider axiom schemata
instead of axioms, which means that axioms may be built on the
base of arbitrary formulas. For example, if we replace in the axioms
above propositional variables x1, x9, x3 by arbitrary sentences uy,us,
and uz, then we obtain a schemata of axioms for the propositional
calculus.

It is also useful to view a substitution as a function s : X — F,
which can be extended in a unique way up to s : F — F. This s
preserves logical connectives and parentheses. The substitution rule
says that the set of sentences [ is closed under substitutions.

The syntax of the propositional calculus possesses the necessary

property.
Theorem 3.2.1. The propositional calculus is syntactically consis-
tent. U

According to the definition of the function 3.1, each sentence of
the propositional calculus has the value 0 or 1. If the truth value of
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a formula u is true, then the truth value of its negation is false and
vice versa. The truth value of a disjunction u V v is true if and only
if the truth value of at least one of u and v is true; otherwise, the
truth value of u V v is false. These rules determine the truth value
of any sentence.

The procedure described above, yielding an interpretation of a
propositional calculus in 2 = {0,1}, can be defined more alge-
braically through the evaluation map. Denote by £,(X) the set
of all sentences of a propositional calculus.

Definition 3.2.2. A value map
fsp(X) : ’QP(X) - {07 1}

associates with each sentence one of the two numbers 0 (false) and
1 (true) in such a way that

Je,00(ur V ug) = max(fe,x)(ur), fe,x)(u2)),

and
fe,(mur) =1 — fo x)(u1),

where uy, us are arbitrary elements of £,(X).

Each value map can be defined using the map from the set of
propositional variables X to the set {0,1}. We will see that every
map of such kind can be extended in a unique way up to the value
homomorphism of Boolean algebras.

A sentence is called a tautology if its truth value is identically 1
regardless of an interpretation of variables from X. All axioms of a
propositional calculus are tautologies. The modus ponens rule can
be written as a tautology

(u1 A (u1 — ’LLQ)) — U9,

where uy, us are sentences.
Theorems 3.1.12-3.1.14 have their counter-parts for the particu-
lar case of a propositional calculus. For instance,

Theorem 3.2.3. A formula u of a propositional calculus is a theo-
rem if and only if u is a tautology. OJ

Theorem 3.2.4. The set of sentences T' is consistent if and only if
T is satisfiable. O

Theorem 3.2.5. If every finite subset of T is satisfiable then the
set T is also satisfiable. O
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3.2.2 Boolean algebras

Boolean algebras were already introduced in Subsection 1.1.3. In
order to make exposition self-contained we repeat here some material
from this section. Let us start with yet another system of axioms for
a Boolean algebra. Here the notation V, A and — is used instead of
+, -,7, respectively. Once again recall that we freely switch between
the notation V, A, = and the compact notation +, -, ~.

The following definition is equivalent to Definition 1.1.8.

Definition 3.2.6. A Boolean algebra is a set B considered together
with two binary operations V, A and one unary operation —. These
operations satisfy the following rules:

1. by Vby =by Vby, by Aby = by Aby (commutative laws);

2. (b1 V bg) V b3 == bl V (b2 V bg), (b1 A bg) VAN b3 == bl VAN (b2 A bg)
(associative laws);

3. b1V (by Abg) = by, by A (b1 Vbg) = by (absorption laws);

4. b1 VAN (bg V bg) == (bl A bg) V (bl A bg), bl V (bg N bg) = (bl V bg) A
(by V b3) (distributive laws);

5. (b1 V (mb1)) Aby = by, (b1 A (—b1)) V by = bo,
where by, by, bs are elements of B.
We can single out elements 0 = by A (—by) and 1 = by V (—by). So,
by VO=0by, b AN1=0by,

bl\/1:1, bl/\O:O.

The operation V can be expressed in terms of the operations A and
-, and the operation A can be expressed in terms of V and —. Thus,
the system of axioms above can be written in the signature of just
two operations: V and — or A and —.

Define a — b to be the formula —a V b, a,b € B. Then 7 — 7
can be viewed as a new operation on the Boolean algebra derived
from the old ones. Since a Vb= —-a — b and a Ab = —(a — —b),
any Boolean algebra can be considered also in the signature (-, —)
with the corresponding system of axioms.

Recall that every Boolean algebra is a lattice. The order relation
< is defined on a Boolean algebra as follows: b; < by if by A by = by
(or, equivalently, if by V by = by).

A subset I of a Boolean algebra B is an ideal if for every ai,as € I
and b € B we have a1 Vas € I and a; Ab € I. One can check that [ is
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an ideal of B if and only if I is closed with respect to the operation
V and a; € I implies that ay € I for any as < ay.

The concept of a filter of a Boolean algebra is dual to the concept
of an ideal. Namely, a subset F' of a Boolean algebra B is a filter
of B if it is closed with respect to the operation A and a Vb € F
whenever a € F' and b € B. Note that F is a filter of B if and only
if F'is closed with respect to the operation A and a; € F implies
that ay € F' for any ag > a;.

As a rule, speaking about ideals and filters we mean proper ones.
A proper ideal does not contain the unit, and a proper filter does
not contain the zero. If I is an ideal, then the set F' = —I consisting
of all —a,a € I, is a filter. Similarly, a filter I’ corresponds to the
ideal I = —F. An ideal of a Boolean algebra is called mazimal if it is
not included in a greater ideal distinct from B. Along with maximal
ideals, we consider maximal filters, these are known as ultrafilters.
We have the following

Proposition 3.2.7. A proper Boolean ideal U of a Boolean algebra
H is maximal if and only if either a € U ora € U for everya € H.
A proper Boolean filter F' of a Boolean algebra H is mazimal if and
only if either a € F or a € F for everya € H.

Proof. Let U be a maximal ideal and suppose that both a and a
are outside U. Then take U; to be the ideal generated by U and
a. Since U is maximal, Uy = H. Then a € U;. Moreover, since
U, = H there exist u € U and h € H such that u 4+ ah = 1. Hence
a = au + aah = au. Thus, a < u, and a € U. Contradiction.

Suppose that for an ideal U either a or a lies in U for any a € H.
Suppose U lies in a bigger proper ideal U;. Take a € U; \ U. Then
a € U. Thus, a € U;. Hence, both a and a lie in Uy, which means
that U; = H. Contradiction.

The proof for filters follows by duality. O

Recall that an algebra is simple if it has no proper non-zero ideals,
and semisimple if the intersection of all its maximal ideals is zero-
element set. An ideal I of a Boolean algebra B is maximal if and
only if B/I is a simple algebra.

Structure of Boolean algebras is described by the following theo-
rems.

Theorem 3.2.8. Every simple Boolean algebra is isomorphic to the
two-element algebra 2. U

Theorem 3.2.9. Every Boolean algebra is semisimple. 0
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The latter theorem is, in fact, equivalent to Theorem 1.1.12 stat-
ing that every Boolean algebra is isomorphic to a subalgebra of a
power Boolean algebra.

Now we repeat with the proof the important Proposition 1.1.27.

Proposition 3.2.10. A subset F' of a Boolean algebra B is a filter
if and only if the following conditions hold:

1. ifay € F and ay — ay € F, then as € F,
2.1€F.

Proof. Let F be a filter. Then, obviously, 1 € F. Now let a € F' and
a—beF. Wehave ab=a(a+0b) € F, and then b=ab+b € F.
Conversely, assume that F' fulfills the two conditions. To check
that F is a filter, we first show that a +b € F if a € F' and b € A.
Since
a—(a+b)=a+a+b=1+b=1cF,

it follows that a + b € ' whenever a € F.
Furthermore, assume that a;,as € F. Then

Ao = (a1 + dl)ag = ajag9 + dlag =
a1a9 + a1 + a9 = a1 + ags — ajag € F.
Since a, € F, also a; + as € F. Hence, ajas € F. O

The next proposition describes the ideal and the filter generated
by a subset T' of a Boolean algebra B.

Proposition 3.2.11. The ideal generated by T' consists of the ele-
ments of the form

(a1+"'+(ln)b, a; €T, be B.
The filter generated by T consists of the elements of the form
(ap---a,)+0b, a; €T, beB.

Proof. 1t is sufficient to note that the indicated collections of ele-
ments make up an ideal and a filter, respectively. O

Now we are able to relate filters with the concept of derivability
in Boolean algebras.

Definition 3.2.12. An element a € B is derivable from T if there
is a sequence of elements (named a derivation),

o, A1, - .., 0n = @,
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where ag € T or ag = 1 and, for any a;,0 < i < n, either a; € T
or a; = 1, or there are elements a;, and a, with k,s < © such that
as = ap — a;.

Proposition 3.2.13. The filter generated by T coincides with the
set of all elements derivable from T.

Proof. The proposition follows immediately from Proposition 3.2.11.
O

In particular, according to Proposition 3.2.13 an element b be-
longs to the filter generated by the elements a and (a — b). In this
sense, the element b is a consequence of a and (a — b).

Since Boolean algebras are defined by identities, one can speak
about the variety of all Boolean algebras.

Proposition 3.2.14. The variety of Boolean algebras is generated
by the algebra 2 and it does not contain proper non-zero subvarieties.

Proof. Let X be the variety of all Boolean algebras, then Var(2) C
X. Now, let B be an algebra from X, then B = 2° for some set S
(see Theorem 1.1.12). So, by construction, the algebra B satisfies all
identities of the algebra 2. Hence, X C Var(2). Thus, X = Var(2).
Assume now that X contains a proper subvariety X; and let B = 29
be an algebra from X;. The algebra B contains the two-element
subalgebra isomorphic to 2. So, 2 is in X;. But the algebra 2
generates the whole variety X. Hence, X = X; and X does not
contain proper non-zero subvarieties. ]

Every variety possesses free algebras. Construct now a free al-
gebra in the variety of Boolean algebras. Let J be a set and P(J)
be the power set of J. Since P(J) = Fun(J,2) = 27, we will
consider elements of P(J) as functions—strings g : J — 2. Let
Fun(2’,2) = 22’ be the Boolean algebra of all functions from 27
to 2.

Let X be the set of all functions z, from Fun(2/,2) such that
zo(g9) = g(a), where o € J, g € Fun(J,2). Each z, can be viewed
as a variable, accepting the value g(«), for every g € Fun(J,2).

Theorem 3.2.15. The subalgebra F(X) of Fun(2”/,2) generated
by X is the free Boolean algebra over X. 0

The proof is based on a characterization of elements from F(X)
as finite support functions on Fun(2”,2) and on Theorem 1.1.12
(for more details see, for example, [Si], [Pl-Datab]). In particular,
F(X) = 2% if and only if .J is finite. It consists of 22" Boolean
functions, where n = |J|.
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In the propositional calculus the concept of a value map fe, plays
an important role. Now we define similar notion for Boolean alge-
bras.

Definition 3.2.16. A value homomorphism of a Boolean algebra B
is @ homomorphism from B to the Boolean algebra 2.

Definition 3.2.17. An element of a Boolean algebra B is called a
tautology if it is true (mapped to 1) under every value homomor-
phism. An element is called a contradiction if it is false (mapped to
0) under every value homomorphism.

Take the free Boolean algebra F(X) with the free generating
set X. The set X plays the role of propositional variables. Every
map X — 2 can be extended in a unique way up to the value
homomorphism of the Boolean algebras

Valyop : F(X) — 2.

Later on we will specify the homomorphism of such kind for the
logic of predicates and for the multi-sorted logic which is one of the
main objects of this book.

3.2.3 Algebraization of the propositional calculus

Now we will show that Boolean algebras appear as a result of alge-
braization of the propositional calculus. With this end, we apply the
Lindenbaum-Tarski algebraization process to the case of a proposi-
tional calculus.

For the sake of convenience consider the propositional calculus
with respect to the signature (=, V). Choose the scheme of axioms
from Section 3.2, and plug in =z V x5 for x1 — x5 in it.

Let £,(X) be the set of all formulas of the propositional calculus
viewed as the absolutely free algebra over X with respect to the
operations (=, V).

Relying on £,(X), one can obtain the free Boolean algebra F(X).
To do that, rewrite a system of identities defining a Boolean al-
gebra in the signature (—,V). Let p be the verbal congruence in
£,(X) corresponding to the chosen set of identities. Then the al-
gebra £,(X)/p is the free algebra F(X) in the variety of Boolean
algebras (see Proposition 1.1.42).

Denote by 7 the Lindenbaum-Tarski equivalence on the set of
formulas £,(X). Given u,v € £,(X), define urv if and only if

F(u—v)A(v—u).
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Proposition 3.2.18. 7 is a congruence on £,(X).

Proof. Follows from the axioms of a propositional calculus (Subsec-
tion 3.2.1). Indeed, one has to check that

1. (UlTU1) A (UQT’UQ) F (Ul V UQ)T(Ul V U2)7
2. urv b (—u)7T(—w).

L. (ug = v1) A (vg = ug) F (ug — v1). Hence F uy — (vg V v9).
Symmetrically, = us — (vy V v1). Thus, F (u; V uz) — (v V vs).
Starting from F (v; — u1) we obtain in a similar way F (v; V vg) —
(ug V ug), that is (u17vq) A (ugTva) F (ug V ug)T(v1 V 02),.

2. wrv means that = (-u VvV v) A (—v V u), while (—u)7(—w) is
F (—v Vu) A (—u Vo), which is the same according to commutative
law. O

Sentences u and v are called tautologically equivalent if and only if
they have the same truth values under any interpretation. Straight-
forward check yields that urv if and only if u and v are tautologically
equivalent.

Proposition 3.2.19. The Lindenbaum-Tarski algebra £,(X)/T is
a free Boolean algebra.

Proof. Check, first, that p C 7. It is enough to show that £,(X)/7
is a Boolean algebra. Thus, we have to verify that the identities of
a Boolean algebra are fulfilled in £,(X)/7. Denote the class of a
formula u by [u],;. The elements of £,(X)/7 are equivalence classes
with the operations

[ul, V [v], = [uVvl, =lul, =[]

These operations satisfy Boolean identities (1 —5) from Definition
3.2.6. For example, we have

[u], V [v], = [uVl, [v]:VIu,=IVul.

Since v V v and v V u have the same truth values, v Vv and v V u
are tautologically equivalent. This means that (u V v)7(v V u) and

[ul; V [v]> = [v]; V [u],.

The identity (1) is fulfilled in £,(X)/7.

The same routine check can be done for other identities. One can
use the list of tautological equivalences in [Hi.

Since p is the smallest congruence such that the corresponding
quotient algebra is Boolean, we have p C 7.
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Check the opposite, 7 C p. Let u and v be elements in £,(X)
and urv. Take the natural homomorphism p : £,(X) — £,(X)/p.
Since utv, (u — v) V (v — u) is a tautology and

(u—=v)A(v—u) =1,

in £,(X)/p. Then

(u" — ") A (vH = ut) = 1.
However, this equality is possible in a Boolean algebra if and only
if O
Recall that if T"is a set of formulas in £,(X) then the Lindenbaum-
Tarski equivalence 71 is defined as: urrv if and only if

TH(u—v)A(v—u).

The next theorem shows that every theory T" can be modeled as a
Boolean algebra defined by generators and defining relations.

Theorem 3.2.20. Every Boolean algebra is the Lindenbaum—Tarski
algebra of a collection of formulas T'.

Proof. Suppose B is a Boolean algebra. Then it is isomorphic to F /I
where F = F(X) is the free Boolean algebra and [ is an ideal in F.
We pass to the filter F' = —I and denote by 7' the full inverse image
of F'in £,(X) with respect to the epimorphism p: £,(X) — F. It
is easy to see that the algebra £,(X)/7r is isomorphic to F/I. [

3.3 Predicate calculus and polyadic algebras

In this section we recall what the predicate calculus is and define
polyadic algebras which serve as an algebraization of the predicate
calculus.

3.3.1 Predicate calculus. Syntax and semantics

The predicate calculus can be viewed as a purely logical first-order
theory, which is not associated with a specific algebraic system. In
particular, this means that the set of function symbols is empty. On
the other hand, one can say that the predicate calculus constitutes
the logical core of any first-order theory.

Before going over the definition of the predicate calculus we shall
make some preparations and recall some well-known definitions,
which are related to any first-order theory.
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A consecutive part of a formula in a first-order language which
is itself a formula is called a subformula. The scope of quantifiers V
and d is defined as a subformula which starts from these quantifiers.
An occurrence of the variable z in the formula u is free, if x does
not belong to the scope of the quantifiers Vo and Jx. All other
occurrences x in u are called bound.

A variable z is called a parameter of a formula u if there exists
a free occurrence of x in u. As for propositional calculus, denote by
ulz/t] the result of replacing all occurrences of x in u by t. Let two
variables x and y be given. A substitution of y instead of = in a
formula u is called proper if after replacing all free occurrences of x
in v by occurrences of y, the variable y will not become bound for w.
If ¢ is a term, then the substitution of ¢ instead of x is called proper
if it is proper for every variable occurring in ¢t. More precisely, if
u = u(xy,...,T...,x,) is an atomic formula, then a substitution
of t for z; results in ulx;/t)] = w(zy,...,t,...,2,).

The predicate calculus is a tuple € = (L, F, A, D), where
LL: The language IL consists of an infinite set of variables X =
{1, x9,23,...}, the set of relation (predicate) symbols R =

{ri*,ry?,ry® ...}, the logical connectives = and V, the symbol
of existential quantifier 94 and punctuation symbols.

F: The set of formulas is constructed according to Definition 3.1.6.

A: The set of axioms consists of the following ones:

1V r — 2,

Ty — TV X,

1V X9 — X9V 27,

(r1 = 22) = ((x3 V 1) — (23 = x2)),
Vau(x) — ul[z/t], where u[z/t] is proper,
ulz/t] — Jzu(z), where ulz/t] is proper,

Va(u — v) — (u — VYav), where x is not a parameter of u,

e LA

V(v — u) — (Jv — u), where x is not a parameter of w.

Here x1, x9, x3 are variables, ¢ is a term, v and v are formulas,
Vzu is an abbreviation for —(3z(—u)).

Axioms (1)-(4) are related to a propositional part of the predi-
cate calculus. For the sake of uniformity they are the same as in
Section 3.2.1, and chosen according to [HilbAcker]. They can be
replaced by any other set of axioms for the propositional calculus.
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Axioms (5) — (8) provide, in fact, a scheme of axioms. As for the
propositional calculus, there are many ways to choose a scheme of
axioms and a set of derivation rules for the predicate calculus.

D: The set of derivation rules for this set of axioms consists of:

e The substitution rule allows one to replace all occurrences
of a given variable z in a formula v by a term ¢ in case the
substitution u[z/t] is proper (see [Vereshchagin] for the detailed
and clear exposition; below we follow this source).

For logical connectives a proper substitution works as follows.

1. A substitution of ¢ for x in —u is proper if it is proper for
the formula u itself:

(mw)[z/t] = =(ulz/1]).

2. A substitution of ¢ for z in u A v is proper if it is proper
for each of u and v:

(u Av)z/t] = u[z/t] Nvlz/t].

3. The similar rule for u V v:

(u Av)z/t] = u[z/t] V vz/t].

For quantified formulas the rules for proper substitutions are
more complicated and use some conditions.

4. Let u = Vzv (the case u = Jxv is treated in a similar way).
A substitution of ¢ for y in w is proper if there are no free
occurrences of y in u (that is either y is a parameter for v
or y = x). Thus,

uly/t] = u.

5. Let u be as above. A substitution of ¢ for y in u is proper
if ¢ is bound for u but x does not occur in ¢ and the sub-
stitution of ¢ for y in v is proper. Thus,

uly/t] = (Vav)ly/t] = Va(vly/t]).

e The modus ponens rule, as before, states that the derivable
formulas w; and (u; — ug) imply us.

e The generalization rule says that u implies Vru.
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Remark 3.3.1. If we treat a substitution as a function s : F — TF,
then items (1)-(3) say that s induces an endomorphism of the corre-
sponding Boolean algebras. The relations between s and quantifiers
are ruled by (4)-(5), which will result in axioms of the Halmos alge-
bras (see Definition 3.5.17).

The following logical equivalences and implications of first-order
formulas are well known (see, for example, [Hi]) and can be deduced
from the axioms and derivation rules.

Proposition 3.3.2.

~

. (Fzu) <> (Ve—u),
. 2(Vzu) + (3x—w),

. Va(u Av) > Vau A Vo,

2
3
4. Jz(u Vo) + Jzu VvV Iz,
5. dxdyu < JyJzru,

6. VaxVyu < VyVzu,

7.

JyVru — Vedyu,

If the variable x is not free for the formula u, then
8. u <> dru,
9. u <> Vzru,

10. Vz(u V v) <> u V Vzv,

11. Fz(u Av) <> u A Jzw. O

We finish an excerpt from the syntax of the predicate calculus to
the following well-known observation (see, [Vereshchagin|): one can
exclude axioms (7) and (8) from the set of axioms of the predicate
calculus, replacing the generalization law by the derivation laws of
P.Bernays. Suppose that the variable = does not occur freely in the
formula u. Then

1. u — v implies u — Vzv.
2. v — u implies dzv — w.

As for semantics of the predicate calculus one can repeat the
reasoning from Section 3.1.2. In particular, Theorems 3.1.12-3.1.14
hold true. In view of Theorem 3.1.12 we can freely use - for the
syntactical /semantical derivability of formulas.
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3.3.2 Quantifiers on Boolean algebras
Let B be a Boolean algebra.

Definition 3.3.3. An existential quantifier on a Boolean algebra B
1s a map 3: B — B subject to the conditions:

1. 30 =0,
2. b < 3b,
3. 3(by A Iby) = Fby A Tbs,
where by, by are elements of B, 0 is the zero element of B.

Remark 3.3.4. The map 4 : B — B can be also considered as a
unary operation on the algebra B.

The universal quantifier V is defined dually:
Vb = —(3(-b)).

Hence,
b = =(V(-b)).

The universal quantifier can be characterized asamapV : B — B
having dual, with respect to 3 properties:

1. Vl=1,
2. b > Vb,
3. V(b1 V Vby) = Vb, \V Vb,

Proposition 3.3.5. Let a, b be elements of a Boolean algebra B.
The quantifiers ¥V and 3 possess the following properties:

1.31=1;v0=0.

2. 3(Ja) = Ja, V(Va) = Va, i.e., the maps 3 and V are idempotent:
P =3 V=V

3. If a < b, then da < 3b and Va < Vb, i.e., the maps 3 and V are
monotone.

I(aVb) = Fa Vv 3Ib, i.e., 3 is distributive over V.
V(a Ab) =Va AVb, i.e., V is distributive over A.
3(~(30)) = ~(3).

3(Va) = Va; V(Ja) = Ja.

RSN
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8. I(a A'Vb) = Ja A Vb.

Proof. 1. Since b < 3b for every b € B, we have 1 < J1. Hence
41 =1.
2. Indeed:

Fa=3(Fa) =3I1A3a)=31A3a=1A3a=Ta.
3. Let ¢ <b. Then a < 3b and a = a A 3b. Hence
da =3(aA3Fb) =Fa AT

and Ja < Jb.
4. Since 3 is monotone, we have Ja < 3(aVb) and b < I(a Vb).
Thus, Ja vV 3b < 3(a V b). Furthermore,

aVb<dav3b, 3F(aVd)<3I(3aVIb).

Applying once again 3 we get the reverse inequality J(a V b) <
Ja Vv 3b. Thus, 3(a V b) = Ja Vv 3b.
6. We have =(3a) A 3a = 0. Thus,

0 =30 = 3(—(3a) A Ja) = 3(—(3a)) A Ja.

Note that in a Boolean algebra if a A b = 0 then b < —a. Hence,
3(=(3a)) < —(3a). On the other hand, since 3 is monotone, we have
=(Ja) <3(=(3a)). So, I(~(Fa)) = ~(Ja).

7. By the definition of the universal quantifier: 3(Va) = 3(=(3(—a))).
Using property (6) we get

3(~(3(-a))) = ~(3(a)) = Va,

Thus, 3(Va) = Va.

8. Using the definition of the existential quantifier and property
(7), we have 3(a A VD) = 3(a A 3(Vb)) = Ja A 3(Vb) = Ja A Vb.

The corresponding statements (1)—(3), (5), (7) for the universal
quantifier can be obtained by the duality. O]

3.3.3 Examples of quantifiers on Boolean algebras

In this section we give examples of quantifiers on various Boolean
algebras (cf. [HalGiv], [Pl-Datab]).

Example 3.3.6. The identity map on any Boolean algebra is a
quantifier (in this case the existential and the universal quantifiers
coincide).
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Example 3.3.7. Let B be a Boolean algebra, b € B. Then the map
3 defined as follows:

J0=0, db=1, forall b#£0,
is an existential quantifier.

The next example follows the exposition in [HalGiv].

Example 3.3.8. Let A be a set and B = P(A) the Boolean algebra
of all subsets of A. Consider the Boolean algebra B of all functions
from A to B. So, if a € A and f € BA, then f(a) is a subset of A.
Define the map 3 : B4 — B4 as follows:

(30 = {J fla),
a; €A
for all a € A. The set {J, .4 f(a;) is the union of the values of f for
all a; € A. So, 3f is a constant function. The map 3 : B4 — B4
defined in such a way satisfies the conditions from Definition 3.3.3.

This example admits a geometrical interpretation. The Boolean
algebra B4 is isomorphic to the Boolean algebra of all subsets of
A x A. This isomorphism assigns to each f € B4 the subset A; in
Ax A:

Ar={(a1,a2) | a2 € f(a1)}.

So, the set corresponding to the function 3f is

JA; = {(a1,a5) | as € (3f)(a1) = | flan)},

a;EA
We can also describe this set as follows:
JA; = {(a1,az) | thereis a; € A such that ay € f(a;)}.

Remark 3.3.9. Let us, at the moment, come back to the algebra
BA. If we associate with a function f € B4 the statement “as
belongs to f(aq)”, then the function 3f correspond to the statement
“there is a; € A such that ay belongs to f(a;)”.

Let us illustrate all above by some pictures. Suppose that A is
the set of real numbers. Then A x A is the Cartesian plane. Let f;
be the function from B defined by:

(1,4}, ifa =2,
) {3}, ifa=4,
fila) = {1,3,5}, ifa =71,
&, otherwise.
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Then the constant function 3f; is defined for every a € A as follows:

(3f1)<a) - {17 3,4, 5}

On the plane we have the following situation:
Al

>

4
3
2
1

1 2 3 4 5 6 7 A

In this case,

Ap ={(2,1),(2,4),(4,3),(7,1),(7,3),(7,5)},

and the set 3Ay, consists of all points (ay, az), such that the second
coordinate ay is one of 1, 3, 4, or 5. So, the set 3A;, is the union of
four horizontal lines:

Ay

14
15

A4
T

(V]

H=

1 2 3 4 5 6 7 A
Let us give one more similar example. Define f; to be the following
function from B4:
[ {deAl1<d <2}, ifa=2,
fala) = { &, otherwise.

Then the constant function dfs is defined for every a € A by the
rule:

(Ffe)(a) ={d' € A|1<d <2}
On the plane we have:

Af2 :{(27(1,) | 1 Salg?’}v



122CHAPTER 3. BASICS OF ALGEBRAIC LOGIC AND MODEL THEORY

Ay

Ay,

NN W

1 2 3 A

By definition the set 3Ay, consists of all points (as, as) such that
a; € Aand az € J, ¢4 f(a;). In this case

U fla) ={d' |1<d <3}

T =

Example 3.3.10. Let A; and Ay be two (not necessarily different)
sets. Let B = P(A; x Ay) be the Boolean algebra of all subsets of
the set A; x As. Let

A ={(ay,a3) | a1 € Ay,a5 € Ay}
be an element of the algebra B. Define two maps:
dry:B— Band dxy: B— B
as follows:
dx1A = {(a1,as) | thereis a] € A; such that (af,as) € A},
JxeA = {(a1,as) | thereis a, € Ay such that (a1, a5) € A}.

These maps are existential quantifiers on the Boolean algebra B.
Let us check that the map dz; is an existential quantifier. The
proof for dx, is similar.
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Proposition 3.3.11. The map dx, defined above is an existential
quantifier on the Boolean algebra B = P(A; X Aj).

Proof. The zero element of the algebra B is the empty set @. So,
212 = {(a1,az) | there is a} € A; such that (a},as) € T}.
Thus,
Ell’lg = .

From the definition of Jx; it follows that, if a point (a1, as) belongs
to the set A, then this point belongs to the set dz1A. So,

A Q 3[131/1
for any element A € B. It remains to check that
Ell'l(A N ElfL’lA/) = Ell'lA N Ell'lA/,

for every A, A’ € B. Note that if some point (a1, as) belongs to the
set dx1 A, then the point (a, as) lies in Jz1 A for every a] € A;. Let
a point (ag, as) belong to the set 3x1(A N Iz A’). This means that
there exists a point (a},as) in A N3z A’. The point (a},as) lies in
A C Jz1A. So, the set Jz1 A contains the point (aq,as). The point
(a},ay) lies also in 3z A’, then the point (aq,as) belongs to Jzq A’
Thus,
(al, CLQ) S 3.1‘114 N 3.7)114,.

Now, let (ay, asz) lie in Jzy AN dx A’. Since (aq, ag) is in Iz A, then
there is a point (a}, a2) in A, and this point also belongs to 3z, A’
So, (a},as) lies in AN 3Jx A" C (AN 3z A’). Hence,

(a1,as) € Fx1 (AN 3 AY).

Thus,
E|.’L'1 (A N E|.’L'1A/) == E|.1’1A N E|.CE1A/.

The proposition is proved. [

Let us illustrate this example on the plane. Take a set of points

A:

Ayl

®
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Recall that the set dx; A consists of all points (a1, as) € Ay x Ay
such that the point (af,as) belongs to A for some a} € A;. This
means that a point (aq, as) lies in 3x; A if and only if the horizontal
line passing through the point (a;,ay) has an intersection with the
set A.

Aot

ast — .(a17a2)

\
\

J./ |

So, the set dz1 A is the cylinder:

Aot

THNGIINES

For similar reasons we get that the set dx,A is the following one:

A2 E|$QA
-
i

=

[

Ay
Note that for the given set A, the universal quantifiers Vz; A and
VoA produce empty sets. Indeed, by definition

VxlA = —|<E|xl<—u4)>.

The set —A is the set-theoretical complement of A. So, the set
dx1(—A) is the whole plane A; x Ay and —(3z1(—A)) is the empty
set. Recall that A C dz;A. So, if the set A is "unbounded” then the
set dr1 A is also "unbounded”. For instance, let A be the following
set:
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Ayf

=

Ay
Then the sets 41 A and dx,A are the whole plane A; x As.

Ayl

El.’L’lA

VAVTRRAVAVRARA VAR

Let us consider the universal quantifiers Vx1A and Vr,A for this
particular set A. The set = A is the following one:

Al oA ]
JIp

A

///W

/ 7

The set Jx1(—A) is:
Ayl

M Jdx,(—A)

31’1 (_|A)

I 77 T

A
Finally, the set Va1 A = =(3z1(—A)) is the cylinder:
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Ay

/1]

-
[I] e [1]]]

A

One can show that the set VaoA is empty, since Vr A consists of the

points (a, b) €

A such that all (¢, ) also belong to A. Thus, Vz A is

the largest cylinder in the direction of z among those lying in A.
We use Example 3.3.10 in order to illustrate on the plane the

definition and

some properties of quantifiers.

The pictures above depict first two conditions of Definition 3.3.3:
Jo =@ and A C dz;A, i = 1, 2. For instance, for ¢ = 1:

)

G TIIES

A

The third condition of Definition 3.3.3 is 3(by A 3bs) = Iby A Ibs.
Take, for example, sets A and A" as follows:

Ay

¢S

and exhibit the equality Jz1(A N 3z A") = ;AN Jz1 A’. Indeed,

3.%‘114/ 18
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1]

NI

Ay
Then AN Jx A’ is the following set
Ayf
ﬂh'!A
Ay

and dzx; (AN Jz A') is

Ayl

/

[ /]

/// 31’1(Aﬂ31’114,)

s

On the other hand, the set 3z, A N 3z, A" looks as follows

Ayl

4

E'ZlflA,

Ell’lA

Ay

Hence, the set A N 3z A’ coincides with Jx; AN Jx A'.

127
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Let us illustrate properties (4), (6), (7) and (8) of quantifiers
(Proposition 3.3.5). It is easy to see the other properties using the
previous pictures.

Property (4): Jx1(AUA’) = AUz AL Let A, A’ be the
sets as before. Then Jx;(AU A’) and Jz1 A U Jz1 A’ give rise to the
following picture:

Aot

Tz (AU A
Ell’lA U Ell’lAl

A

Property (6): 3x1(—=(Jz1A)) = (321 A). Let A be a set

Aot

Then the sets =(3z1A) and Iz (—(3x1A)) coincide

A

Property (7a): 3x,(Vx1A) = V1 A. Let A be a set
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Ayf

=

Ay
It was shown before (page 125) that the set Va1 A is the following

one:

Ayl

-
[T oma [ 1T T

A
The set 3z1(Vz1A) produces the same pictulre.

Property (7b): Yxi(3z1A) = Jx1A. For the same set A the set
dz1 A is the whole algebra P(A; x Ay). Then V1 = 1 implies that
both Vz1(3x1A) and Iz, A coincide with P(A; x As).

Property (8): Jx1(AN (Va1 A")) = dr;ANVe AL Let A, A be
the following sets.

Ayl

&

A
Then Vz1 A" = P(A; x As) and AN(Vx A') ~a So, Jz1(AN(Vz,1A"))

is the following one:

Ayl

I

A/

=

/ / / 31 (AN (Vo A))
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This is exactly the intersection of P(A; X As) and the cylinder 3z A.
Other configurations of the sets A and A" are left as an exercise.

3.3.4 Quantifier algebras

Now we continue the way:

Boolean algebras = Monadic algebras =

= Quanti fier algebras = Polyadic algebras,

which leads to an algebraization of the predicate calculus. First,
we dwell on concepts of monadic and, especially, quantifier algebras
which are situated between Boolean algebras and polyadic algebras.

Definition 3.3.12. A monadic algebra is a pair (B,3), where B is
a Boolean algebra and 3 is a quantifier on B.

In other words, a monadic algebra is a Boolean algebra with
a single additional operation d. Examples from Subsection 3.3.2
of Boolean algebras equipped with quantifiers provide examples of
monadic algebras. For more details and for properties of monadic
algebras see [Halm|, [HalGiv].

Definition 3.3.13. Let X be a set. A Boolean algebra B is a quan-
tifier X -algebra if a quantifier 3(Y): B — B is defined for every
subset Y C X, and the following conditions hold:

1. 3(@) = Ip, the identity function on B,
2. X1 UXe) = 3(X1)IAXs), where Xy, Xy are subsets of X.

If we restrict ourselves to finite non-trivial subsets Y of X, then a
Boolean algebra B is a quantifier X -algebra if a quantifier dz: B —
B is defined for every variable x € X, and

dxdy = dydz,

for every z,y € X. Indeed, condition (2) from Definition 3.3.13
implies commutativity of quantifiers, and, conversely, one can define

AY) =y ... Jyk, where Y = {y1,...,u}.

Remark 3.3.14. The quantifier algebras defined here are a version
of diagonal-free cylindric algebras of Tarski (see [HMT]).

The next example generalizes Example 3.3.10.
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Example 3.3.15. Let D be the Cartesian product of the sets D, a €
I. Consider the Boolean algebra P(D) of all subsets of D. Let J be
a subset of I. Define the quantifier 3(J) as follows: for any subset
A C D, an element a belongs to the set 3(J)A if and only if there is
an element o’ € A such that a(a) = d/(«) for all « outside J. Cor-
respondingly, b € V(J)A means that every a such that b(a) = a(«)
outside J belongs to A.

Correspondingly, a € V(J)A means that a € A and every a’ such
that a(a) = a/(«) outside J, also belongs to A.

In order to check that 3(.J) is, indeed, a quantifier we need to
verify that it satisfies conditions (1)—(3) from the definition of an
existential quantifier. Since conditions (1)-(2) are clear, only the
third condition should be verified. Clearly, A C B implies 3(J)A C
3(J)B, and 3(J)* = 3(J). Therefore,

IJ)NANI)B) € I(J)ANI(J)B.

To prove the converse, assume that a € 3(J)AN3I(J)B. Let be A
and a(a) = b(a) outside J. Since a € 3(J)B, we conclude that

b e 3(J)3(J)B) = 3(J)B.

Hence, b€ AN3(J)B, and a € 3(J)(AN3(J)B).

The Boolean algebra P (D) considered together with quantifiers
3(J) satisfies conditions (1)—(2) from Definition 3.3.13 (see [Pl-Datab]).
Thus, P(D) is a quantifier /-algebra.

3.3.5 Polyadic algebras

Quantifier algebras do not yet represent the predicate calculus. The
main obstruction is as follows: in terms of Boolean operations and
quantifiers we cannot describe the transformations of individual vari-
ables. In other words, we have no way to convert, for example, a
sentence p(xy, Ta, x3) into p(xs, 1, x3).

This problem did not exist when we treated Boolean algebra as
an algebraization of propositional calculus. In this case any sub-
stitution of variables respects logical connectives and parentheses.
Hence, substitutions of variables in the propositions sentences are
realized by homomorphisms of Boolean algebras.

This is not true for quantifier algebras because interaction of the
variables substitutions with quantifiers in a predicate calculus is
subject to more complex rules (see Subsection 3.3.1).

There are various ways to solve this problem. One of them is to
consider quantifier algebras together with their endomorphisms and
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to impose additional axioms on these endomorphisms which imitate
the substitution rules for the predicate calculus. In other words the
idea is to postulate the laws of transformation of variables as the
axioms of the corresponding algebra.

Using this idea we come up with the notion of a polyadic algebra
introduced by P. Halmos [Halm]. Another important approach was
considered by A. Tarski who introduced cylindric algebras [HMT].
These algebras correspond to predicate calculus with equality.

Let X = {x,,a € I} be a (finite or infinite) set and S be the
semigroup of all transformations of X. We can consider I as a copy
of the set X.

Definition 3.3.16. A polyadic X -algebra B is a quantifier X -algebra
considered together with a representation of the semigroup S as a
semigroup of Boolean endomorphisms subject to the following con-
ditions:

1. the unit s;q of S acts trivially on B;

2. s13(J)a = s93(J)a, if s1,52 € S satisfy s1(x) = sqo(x) for all
re X\ J;

3. A(J)sa = s3(s7T)a, if s € S never maps two distinct elements
of X onto the same element of J, (i.e., if sx1 = sxy € J then

Tr = .172).

Here a € B, J C X, and s~1J is the full inverse image of J under
s.

Reformulating this definition of a polyadic algebra in terms of an
algebra having the signature of operations and a set of identities we
have:

Definition 3.3.17. A polyadic X-algebra B is an algebra in the
signature

Q={A, VvV, 7,0, 1, s5, 3(J)},
where 0 : X = X, J C X. The algebra B in the signature
{/\7 \/7 _‘7 07 1}

is a Boolean algebra and s,, 3(J) are unary operations, which in-
teract as follows:

1. s3,(aVb) =s,aV s.b,
2. 55(—a) = =(s,a),

3. (8587)a = Syra,
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4. Siqg = 1dp,

5. 3(J)0 =0,

6. a <3(J)a,

7. 3(J)(a AF(T)b) = 3(J)a A3(J)b,

8. (@) = Ip, the identity function on B,

9. A(J1 U Jo) = 3(J1)3(J2), where Jy, Jy are subsets of X,
10. s,3(J)a = s;3(J)a, if o,7 satisfy o(x) = 7(x) forx € X \ J,
11. A(J)s,a = s, (0 )a, if o is injective on o1 J,

foralla,be B; o,7: X — X; J, J1,Jo C X.

Identities (1)—(4) demonstrate that S = {s,}, 0 : X — X is the
semigroup of endomorphisms of the Boolean algebra B, identities
(5)—(7) came from the definition of a quantifier 3, (8)-(9) are ex-
tracted from the definition of a quantifier algebra, and, finally, (10)-
(11) control interaction of transformations with quantifiers.

This set of identities determines the variety of polyadic X-algebras.

Conditions (10)—(11) which look, at a first glance, complicated
play a special role. In fact, they are related to substitution rules
in a predicate calculus (cf. Subsection 3.3.1) and were invented by
P.Halmos after numerous experiments.

To make them transparent, suppose J consists of a single element
{x,}. Let 0 = 07 : X — X take z, to 75 and leave all other elements
of X unchanged. Since s, and s;4 coincide outside J = {z,}, the
corresponding s, acting on B possesses the property

s,3(J) = 3(J).

Quoting [Halm|, one can say that "this equation corresponds to
a familiar fact, that once a variable has been quantified, the replace-
ment of that variable by another one has no further effect”.
Note that ¢7'J = & for o and J as above. From condition (11)
it follows that
I(J)sy = So.

This equation corresponds to the fact, that "once a variable has been

replaced by another one, a quantification on the replaced variable has
no further effect” ([Halm]).

Remark 3.3.18. Since it is customary for Boolean algebras, we will
use + for V, - for A and a for —a in the case of polyadic algebras
without a special notice.
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The cardinal number of X is called the degree of the algebra B.
Each element of X is called a variable of B. If X is the empty set,
than S = &. So, Boolean algebras are polyadic algebras of degree
0. If X is one-element set, then there is only one transformation,
namely, the identity transformation. The polyadic algebras of degree
1 are monadic algebras (see [Halm]| for details).

Let b be an element of a polyadic X-algebra B.

Definition 3.3.19. An element b is independent of a subset J C X
if A(J)b =b.

Remark 3.3.20. The concept of independence corresponds to the
logical notion of bounded variables.

Definition 3.3.21. The set J is a support of b if b is independent
of JJ =X\ J.

It is easy to see that all supports of the given element b in B
constitute a filter in the power algebra P(X). If b € B has a finite
support, then it has a minimal finite support A(b). It is exactly
the set of elements x € X such that dxb # b. Now we define a
class of polyadic algebras which is most relevant to the aims of the
algebraization of the predicate calculus.

Definition 3.3.22. A polyadic X -algebra is called locally finite if
each of its elements has a finite support.

Since in a logical calculus the set of variables is assumed to be in-
finite while each formula depends only on finite number of variables,
the polyadic algebras in question should be locally finite polyadic
algebras of infinite degree.

In view of Definition 3.3.13 in locally finite polyadic algebras we
can restrict ourselves to the quantifiers of the form Jx, where z is a
variable in X.

3.3.6 Examples of polyadic algebras

Example 3.3.23. Polyadic power algebra P (D).

Let again D be the Cartesian product of the sets D,,a € I.
The Boolean power algebra P (D) of all subsets of D is a quantifier
I-algebra (see Example 3.3.15).

Let S be the semigroup of all transformations of the set /. First
of all, define the action of S on D as follows:

(as)(@) = a(sa),
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a €D, s e S, ael Now we specify the representation of the
semigroup S as a semigroup of Boolean endomorphisms of P (D).
For each s € S the corresponding endomorphism s € End(P(D)) is
defined as:

sA={ae€D | as € A},

where A C P(D). Then

Proposition 3.3.24. The quantifier algebra P(D) with the given
representation of the semigroup S is a polyadic algebra.

Proof. We shall check three conditions of Definition 3.3.16. Condi-
tion (1) is obvious.

Let us verify condition (2). Suppose that s; and s; agree outside
J, and choose A C D. We need to verify that

slﬂ(J)A = SQE'(J)A

Let a € s13(J)A, ie, as; = b € I(J)A. Take ¢ € A such that
b(a) = ¢(«) outside J. We have

bla) = asi(a) = a(s1a) = a(sear) = ass(a),

where o € J, J is the complement of J. So, c(a) = asy(a) outside
J, asy € I(J)A, and a € s23(J)A. The inverse inclusion holds for
the same reasons.

Applying condition (2) for the case J = I, we get two properties:
if A is empty then 3(I)A = &, and if A # & then I(1)A = D.

We move to condition (3). Let a € 3(J)sA, b€ sAwitha(a) =
b(a) outside J, so that bs = ¢ € A. For a out of s71J, s, does not
belong to J, and then

as(a) = a(sa) = b(sa) = c(a).

It follows that as € (s~ 'J)A and a € s3(s~'J)A. We notice that
the inclusion 3(J)sA C s3(s7'J)A does not presuppose any restric-
tions on s. The restriction mentioned in the condition will be used
to prove the converse conclusion.

Assume that a € s3(s7'J)A, ie., as € (s 'J)A, and select
b € A such that as(a) = b(a) outside s~'J. We construct an el-
ement ¢ as follows: c(a) = a(a) outside J, c(a) = b(s 'a) if
a € s(s7H) (s(s7'J) is a part of J, so s"'a makes sense here
by condition (3)); on the rest ¢ may be defined arbitrary. Now if
p € s 1J, then

cs(B) = c(sB) = b(s™"sB) = b(B),
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and
cs(B) = c(sp) = a(sp) = as(B) = b(B),

otherwise. Consequently, b = cs € A and ¢ € sA. Since a coincides
with ¢ outside J, we conclude that a € 3(J)sA. O

The polyadic algebra P(D), where D is the Cartesian product of
the sets Dy, o € I, can be treated as the algebra 2P = Fun(D, 2) of
characteristic functions on D. In the next example we replace the
Boolean algebra 2 by an arbitrary Boolean algebra B.

Example 3.3.25. Functional polyadic algebra.

Consider the set Fun(D, B) of all functions from the Cartesian
product D = [[ D, onto B, where B is a Boolean algebra, o €
I. For the sake of simplicity assume that B is a finite algebra or,
more generally, a complete Boolean algebra, i.e., an algebra which
contains supremum (arbitrary join) and infimum (arbitrary meet)
of any subset of elements from B.

The algebra Fun(D, B) is a Boolean algebra (cf. Example 1.1.10).
Define, first, the action of the semigroup S of all transformation of
the set I on Fun(D,B). Let f € Fun(D,B), s € S, a € D. The
action of S on Fun(D, B) is defined as follows:

(sf)(a) = f(as),

where as(a) = a(sa), for a € 1.
Now we define quantifiers on Fun(D, B). Let J be a subset of .
Let J, be the binary relation on D determined by the rule:

aJ.b < a(a) = b(a) whenever o € T\ J,

for all a,b € D. The quantifier 3(J)f is defined by

3(N)f(@) =\ {f®) akd}.

Since B is a complete Boolean algebra the latter formula makes
sense. One can check that 3(J) is indeed an existential quantifier
and that all axioms of a polyadic algebra are fulfilled for Fun(D, B).

In the case when B is an arbitrary Boolean algebra the algebra
Fun(D, B) is not necessarily a polyadic algebra. However, it con-
tains a maximal Boolean subalgebra which is invariant with respect
to the action of the semigroup S and with the action of 3(.J). Hence,
in general case the functional polyadic algebra is defined as follows.

Definition 3.3.26. A functional polyadic I-algebra is a Boolean
subalgebra Fun'(D, B) of Fun(D, B) such that
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1. sf € Fun/(D, B) whenever f € Fun'(D,B), s € S,
2. A(J) f exists and belongs to Fun'(D, B) whenever f € Fun/(D, B),
JClI.
3.3.7 (QAr-algebras

In this section we follow the approach of C.Pinter [Pi2], where a
transparent set of axioms for locally finite polyadic X-algebras is
introduced. Pinter defined a class of () Aj-algebras which is close to
polyadic algebras. We start from the definition of a QAj-algebra
and then list some properties of these algebras.

Definition 3.3.27 ([Pi2]). A QA;-algebra B of degree I is an al-
gebra in the signature

Q={A, VvV, =, 0, 1, s§, Ja}, o, \,k €1,
where B in the signature
{/\7 \/7 _\7 07 1}

is a Boolean algebra and s5, o are unary operations, which interact
as follows:

~

- s3(ma) = = (s30),

2. sk(aVb) = skaV sib,
3. sk =1dp,

4 (5) = (5%)

5. da(a V b) = Jaa vV Jab
6. a < Jdaa,

7. s53dk = Ik,

8. Irsy = s, K # A,

9. s53p = 3usy, p# KA\
forall a,b € B; pu,k, A\, € I.

In a polyadic algebra we use an extended notion for the operations
st and Ja. Instead of quantifying over a single variable, as in a QA-
algebra, in a polyadic algebra we may quantify over an arbitrary set
of variables. Similarly, the simultaneous substitution of arbitrarily
many variables is permitted.
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Remark 3.3.28. Fvery polyadic I-algebra is a QAr-algebra. A
polyadic algebra becomes a QQA-algebra after removing some of its
operations.

Lemma 3.3.29. Let B be an arbitrary QAr-algebra. Then the fol-
lowing statements hold for all a,b € B and all k, A\, € 1.

(i) 3k0 =0,
(ii) Jr(a A Jkb) = Fka A kD,
(i) Ir3IN = NIk,
)
)

(iv) sis

Kok — ok 3
)\N—SM,lf,u#Kl,
K gH

A°v

(v

Proof. We start with the following statements

V)

(a) a < bimplies sfa < s5b,
(b) a < b implies dka < kb,
¢) sha < Jka.

(d)

d) Jka is the least element of the set {b € range s | b > a},
if Kk # A

Since a < bmeans aVb = b, item (a) is an immediate consequence
of axiom (2) of Definition 3.3.27; (b) is an immediate consequence
of axiom (5) of Definition 3.3.27. Finally, (c) follows from (a) and
axioms (6-7) of the same definition.

The statement (d) is true, since by (7), Ja belongs to the range
s% and by (6), a < Jka. If b lies in range sy, then for some ¢ € B
we have b = s§c = drsic = Jkb. Thus, if b in range s} and b > a,
then by (2), 3k < Jkb =b.

It follows from axiom (4) and Theorems 4-5 from [Halm| (page
45), that 3k is a quantifier in the sense of polyadic algebras, and,
hence, it satisfies (i) and (ii).

Using axioms (7)-(9) from Definition 3.3.27 repeatedly, for any
1 # A\, Kk, we have

JAIk3INa = 3)\314823)\(1 = EI)EISZ‘/-@EIA@ =
sh3kINa = Trs)IAa = IxIAa.
Now by axiom (6) and by (b),
dAIka < IATkaTIha = kI \a.
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Symmetrically, k3 a < dAdka. Hence, dkdAa = dAdka, and
(iii) is proved.
Item (iv) follows from axioms (7) and (8). Indeed, if ;1 # &, then

KRR K K __ K __ ok
s\s, = siJks, = Jrs), = s,

Letting 1 = A in (iv) we have
sy\sy = sy.
We omit the proof of (v), referring to the original paper [Pi2]. [

Let B is a QA-algebra, and a € B.

Definition 3.3.30. The support Aa of a is the set of all k € I,
such that dka # a.

In view of axioms (7) and (8), the set Aa is also the set of all
k € I, such that sfa # a.

Definition 3.3.31. A QA;-algebra B is called locally finite if the
support Aa is finite for every a € B.

As was mentioned in Remark 3.3.28, every [-polyadic algebra is
a QAr-algebra. The converse is true for locally finite () A-algebras
of infinite degree.

Theorem 3.3.32. A locally finite QAr-algebra of infinite degree is
a locally finite polyadic I-algebra.

Proof. We preface the formal reasoning with a few general obser-
vations. Locally finite polyadic X-algebras possess a lot of good
properties. One of them is an ability to replace the operations of
the general type 3(J) and s,, where J is an arbitrary subset in X
and 7 is an arbitrary transformation of the set X, by "local” opera-
tions Ja and s§. Their prototype is the quantification along a single
variable and substitutions of a single variable by another one.

Now our aim is to equip an arbitrary () A;-algebra with the struc-
ture of a locally finite polyadic algebra.

Let B be a locally finite Q) Aj-algebra and let J C I. Define 3(J)a
by

A(J)a = Iky ... 3kna,

where {k1,...,k,} = JNAa. Since all 3x; commute and the product
of two commuting quantifiers is again a quantifier, 3(J) is unam-
biguously defined and is a quantifier.

A map o : I — [ is called replacement if o(k) = X and o(pu) = u
for every pu # k. This map is denoted (k/\).
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If J is finite, then for any o : I — I the restriction of ¢ to J can
be represented as a product of replacements (k;/\;). So, we define
the operation s, by

Sea = s\!...s\"a,

where all pairs (k;, A;) correspond to the restriction of o to Aa,
a € B. In view of (iv) and (v) from Lemma 3.3.29, this definition
does not depend on the order of replacements. One can show that
this definition is indeed unambiguous in the course of the choice of
replacements (see [Gal], [Halm] for the details).

Since 3(J) is a quantifier, axioms (5)-(7) from Definition 3.3.17
of a polyadic algebra are fulfilled. Axiom (7) of Definition 3.3.27
guarantees that (8) of Definition 3.3.17 holds.

Now let Ji, Jy be subsets of I. We shall check that 3(J; U Jy) =
3(J1)3(J2). Indeed,

A(J1 U Jy)a = Fag ... Jaya,

where {aq, ..., } = (J1UJ2)NAa, a € B. Rewriting {a, ..., ax} =
(J1 U Aa) N (Jo U Aa) and using permutable quantifiers Joy, t =
1,..., k, we have 3(Jy U Jy) = 3(J1)3(J2).

Straightforward check shows that axioms (1)-(4) of a polyadic al-
gebra, which regulate the action of s,, follow from the corresponding
axioms for the operations sf.

It remains to verify the technical axioms (10)-(11) of a polyadic
algebra (see Def. 3.3.17). The proof of these axioms is a bit long
although the meaning is clear and explained after the definition of
the polyadic algebra. In order not to overload the exposition with
technicalities we omit it here, and note for the reader that the formal
proof is contained in [Gal], Corollary 2 and Lemma 9.

The key point of the proof in [Gal] is Lemma 7 which enables
one to study the effect of a finite transformation ¢ on a finite set J
by examining the image of each element A separately. The method
is commonly used in mathematical logic; i.e., mapping the element
A first into another element g far from the scene of the action, and
then mapping p into o(\). O

3.3.8 Algebraization of the predicate calculus

Let an infinite set of variables X = {x,, « € I} be fixed. The set
of formulas, axioms and derivation rules of the predicate calculus
over X is given in Subsection 3.3.1. Denote the set of formulas by

£p(X).
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We view £p(X) as the absolutely free algebra over atomic formu-
las with respect to signature {V, —, Jx,}. Since atomic formulas
are just variables, £p(X) is the absolutely free algebra over X.

For the aims of applications it is convenient to treat £p(X) as
an algebra in the extended signature {V, A, =, Jx,, V,}.

As usual, denote by 7 the Lindenbaum-Tarski equivalence on the
set of formulas £p(X). So, urv if and only if

F(u—v)A(v—u).

It was mentioned in Proposition 3.1.15 that the equivalence 7 is
a congruence for every first-order theory. This fact is a key point
first used by Tarski ([Ta], [Tal]) to establish an algebraic relation
between propositional calculus and Boolean algebras (see also [FJP]
and references therein).

Let us check the implications:

1. (ulTvl) A (UQTUQ) F ('LL1 V UQ)T(Ul vV Ug),
2. urv F (—u)1(—w),
3. urv b (Fzqu)T(Izl0),

Items (1)-(2) have been checked in Proposition 3.2.18. Suppose
now urv, that is F (v — v) A (v — wu). So, F (u — v). Since
v implies Jz,v we have - (v — Jzr,v). By generalization rule
F Vzo(u — Jz,v). The latter implies Jz,u — Jz,v. Since we
have symmetrically F (v — ), the property urv b (Jx,u)7(3x0)
follows.

So, on the base of £p(X) one can construct the quotient algebra
L£p(X)/7 which can be viewed as the algebra of formulas.

The algebra £p(X)/7 possesses the following property.

Theorem 3.3.33. The algebra £p(X) /T is a locally finite X -polyadic
algebra.

Proof. Let us show that the algebra £p(X)/7 has a structure of
QQ Ax-algebra.
Proposition 3.2.19 implies that £p(X)/7 is a Boolean algebra.
We shall define the operations Jo and s§. Given a € I and
u € Lp(X), we set
dau = dz,u,

and

oy ulz, /x5, .if the substitution [z, /x,] is proper,
u, otherwise.
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Define the action of 3z, and s§ on the Boolean algebra £p(X)/7
by
Az, [ul, = [Fraul,,

siul, = [shulr,

where [ |, stands for the T-equivalence class. The first definition
is correct. Indeed, suppose uiTus. If uy — ug, then uy — Iz us
since us — Jr,us is an axiom (see axiom (6) on page 115). Then,
by the second rule of Bernays: dr,u; — Jr,us. By symmetry,
drouiTdzr,us. The second definition is also correct, since wqTus
implies su;7sus.

So, we shall check that axioms (1)—(9) from Definition 3.3.27 are
fulfilled on £p(X)/7.

The substitution rules (1)—(3) from Subsection 3.3.1 give rise to
axioms (1)—(4) from Definition 3.3.27. Axiom (5) is the logical equiv-
alence of formulas (4) in Proposition 3.3.2.

Now, we shall check that in £p(X)/7 we have u < Fz,u, ie.,
(u A Jzqu)Tu. But ((u A Jzqu) = u) A (v — (u A Jzau)) holds in
view of the axiom v — Jzu. Thus, axiom (6) holds true.

As it was said before, axiom (8) expresses the well-known in
the first-order logic fact that once a variable has been replaced by
another one, a quantification on the replaced variable has no further
effect. Analogously, axiom (9) means that the replacement of a
quantified variable by another one changes nothing. Both of these
substitution operations follow from rules (4) and (5) postulated in
Subsection 3.3.1. Thus, £5(X)/7 is a QAx-algebra.

By the definition of a first-order formula each u € £p(X) has a
finite support and as we have seen u € £p(X)/7 is a locally finite
QAx-algebra.

According to Theorem 3.3.32, £p(X) /7 is a locally finite polyadic
algebra. O

3.3.9 Ideals and filters of polyadic algebras

Let H, and H, be polyadic X-algebras with the acting semigroup
S. We will consider H; and Hs as Boolean algebras in the signature
{, +, 7, 0, 1}.

A homomorphism of polyadic algebras should respect all oper-
ations. Thus, a homomorphism g : H; — H, is a Boolean ho-
momorphism, which additionally is compatible with quantifiers and
transformations:

w(3(N)a) =3I Np(a), a€ H, JC X;
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p(sa) = su(a), a€ H, ses.

Let 0 be the congruence of H determined by this homomorphism.
Just as in the case of Boolean algebras, we consider the equivalence
classes of 0 and 1, respectively.

Definition 3.3.34. A subset U of a polyadic X -algebra H is called
a polyadic ideal if

e U is an ideal of the Boolean algebra H;

e JC X anda €U, then 3(J)a € U;

o ifacU and s € S, then sa € U.

Dually,

Definition 3.3.35. A subset F' of a polyadic X -algebra H is called
a polyadic filter if

e [ is a filter of the Boolean algebra H;
e if JC X anda € F, then¥(J)a € F;
eac FandseS, then sa € F.

Straightforward check shows that the d-equivalence class of 0 is
an ideal, and the class of 1 is a filter.

Moreover, polyadic ideals (correspondingly, filters) are in one-to-
one correspondence with congruences of polyadic algebras. Indeed,
every ideal U of H is also a Boolean ideal. It defines a Boolean
congruence 0: -

adb < ab+ab € U.

Let adb, a,b € H. We have
(sa)(sb) + (sa)(sb) = s(ab+ ab) € U

providing ab 4 ab € U. Thus, adb implies (sa)d(sb).
It remains to check that adb yields 3(J)ad3(J)b. Indeed,

(a3 +3I(N)a-3())b=3I(J)a-V(J)b+V(J)a - I(J)b.

Using the equality 3(aVb) = Ja - Vb (see Proposition 3.3.5), we
obtain

3T V()b +¥()a - 3 = 3(J)(a - V(I)B) + 3() (V()a - b)
Since V(J)b < b then a - V(J)b < a - b. The map 3 is monotonic, so
3()(a-Y(J)b) +3(I)(V(J)a - b) < 3(J)(ab) + 3(J)(ab).
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Thus, - -
3(J)(ab) + 3(J)(ab) = 3(J)(ab+ ab) € U

by properties of quantifiers (see Proposition 3.3.5).

So, all congruences on polyadic algebras and, correspondingly,
the kernels of homomorphisms are represented by the ideals U or
filters F = U.

Proposition 3.3.36. A subset U of a polyadic X -algebra H is a
polyadic ideal if and only if U is an ideal of the Boolean algebra H
and A(X)a € U for every a € U. A subset F' is a polyadic filter of
H if and only if F' is a Boolean filter of H and ¥(X)a € F whenever
ac€kF.

Proof. The latter assertion easily follows from the first one if we
take into account the connection between ideals and filters. We
shall prove the first statement.

If U is a polyadic ideal then by definition U is a Boolean ideal
and 3(X)a belongs to U for all a € U.

Now we assume that U is an ideal of the Boolean algebra H and
that 3(X)a € U for every a € U. If J C X, then

I(J)a < I(X)(3(J)a) = I(X U J)a = I(X)a.

So, U contains 3(J)a for every J C X.

Now we verify that sa € U, ifa € U and s € S. Since a < 3(X)a
and s is a Boolean homomorphism, then sa < s3(X)a. Furthermore,
according to axioms (1) and (2) from Definition 3.3.16,

s3(X)a = sy X)a = I(X)a,
since s = s;4 outside X. Hence, sa < 3(X)a and sa € U. O

Now we look for the rule which describes the polyadic filter F/(T")
generated by a set of elements 7" in H.

Let H be a polyadic X-algebra and T' be a subset in H. Let T}
be the set of elements of the form V(X )a, where a € T. Denote by
F,(T7) the Boolean filter in H over T3.

Proposition 3.3.37. F,(11) is a polyadic filter and it coincides with
the polyadic filter F(T).

Proof. Let us check that Fy(77) is a polyadic filter in H. Since
F,(T7) is a Boolean filter generated by Tj, by Proposition 3.2.11
every element of Fy,(7}) has the form

Y(X)a; ... ¥(X)ay + b,
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where a; € T, b € H. Now
V(X)(V(X)ay ... V(X)a, +b) =V (X)ay ... YV(X)a, + V(X)b.

So, Fy(T1) is closed under V(X) and is a polyadic filter by Proposi-
tion 3.3.36.

Show that F,(7y) = F(T'). Since ¥(X)a < a, the filter F;(T7)
contains T" and F(T) C Fy(T1). On the other hand, by Defini-
tion 3.3.35, 11 C F(T), thus Fy(T1) C F(T). O

Analogously, denote by T; the set of elements of the form 3(X)a,
where a € T, and by U,(T5) the Boolean filter in H over T,. Then
Uy(T3) is a polyadic ideal which coincides with the polyadic ideal
U(T) generated by T

Define an element a € H to be derivable from the set T if there
exists a sequence ag,aq,...,a;, ...a, = a such that ag € T, and
either a; € T, or a; = Y(J)ay, k < 1, J C X, or there exist a, a,
k,l <1 with a; = ax — a;.

A straightforward computation shows that F'(T') is exactly the set
of all elements of H derivable from 7. Hence, the problems of deriv-
ability in the predicate calculus are translated in the corresponding
polyadic algebra to the problems about the filters generated by some
set of elements.

A polyadic ideal U of a polyadic algebra H is said to be maximal if
U is distinct from H and is included in no other proper polyadic ideal
of this algebra. The ideal U is maximal if and only if the quotient
algebra H/U is simple. A polyadic filter F' of H is a mazimal filter
(an ultrafilter) if F' is distinct from H and is included in no other
proper polyadic filter of this algebra.

By Proposition 3.2.7, a Boolean ideal (filter) is maximal if it
contains either an element of the algebra H or its negation. The
conclusion of Proposition 3.2.7 remains true for polyadic ideals and
filters with the following modification. An element a of a polyadic
X-algebra is said to be closed if 3(X)a = a.

Proposition 3.3.38 ([Halm|). The set B of closed elements in a
polyadic algebra H is a Boolean subalgebra. The polyadic ideal U of

H is mazximal if and only if the Boolean ideal B (U is maximal in
H. O

So, the conclusion of Proposition 3.2.7 remains true for polyadic
ideals if we replace an arbitrary a € H by a closed a. The similar
result holds for the maximal filters.
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3.3.10 Some facts on structure of polyadic algebras

Definition 3.3.39. A polyadic algebra is called simple if it does not
have non-trivial polyadic ideals.

According to Theorem 3.2.8 there is only one simple Boolean
algebra, the two element algebra 2 = {0, 1}. This is not the case for
polyadic algebras.

Theorem 3.3.40 ([Halm|,[DM], [Pl-Datab]). A polyadic algebra H
1s simple if and only if H is isomorphic to a polyadic power algebra
P(D) or its subalgebra. O

Definition 3.3.41. A polyadic algebra is called semisimple if the
intersection of all its mazimal polyadic ideals is zero.

The next theorem is an analogue of Theorem 3.2.9 for Boolean
algebras [Halm].

Theorem 3.3.42. Fvery polyadic algebra is semisimple. 0

Theorem 3.3.42 and Theorem 3.3.40 describe the structure of an
arbitrary polyadic algebra. They provide a polyadic counter-part of
the P.M.Stone’s Boolean structural theorem 1.1.12.

3.3.11 Consistency and compactness in polyadic algebras

In accordance with the notion of consistency for first-order theories
we call a subset T of H consistent if it generates a proper polyadic
filter F/(T'). In other words 7" is consistent if for every a € H which is
derivable from T, the element a is not derivable, because otherwise
T contains zero and coincides with H. In view of duality, one can
state that 71" is consistent if it generates a proper polyadic ideal in
H.

This definition of consistency is none ether then an algebraic
counterpart of the syntactical consistency, which basically claims
that in a consistent theory no two contradictory statements are both
derivable.

A subset T of H is called complete if it generates either the whole
H or an ultrafilter F/(T') (or a maximal ideal U(7')). This notion is
an algebraic counterpart of the notion of a complete theory in logic.
If F(T) is the whole H, then the set T" and, respectively, the theory
T, is inconsistent. For consistent theories we have

Proposition 3.3.43. A consistent set T is complete if and only if
the quotient polyadic algebra H/U(T) is simple. O
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In view of Proposition 3.3.38, a consistent set T" is complete if and
only if for each closed a € H, either a or a belongs to F(T'). This
conclusion fully agrees with the well-known fact that in a first-order
theory for each sentence u, either u or its negation is checkable.

We finish this section with one more quote from P.Halmos:
We see thus that the celebrated Gaodel’s incompleteness theorem as-
serts that certain important polyadic logics are either incomplete or
inconsistent. In other words, if (H,U) is one of those logics, then
either the ideal U is very large (H = U), or else it is rather small
(non-maximal)”. Here H is a polyadic algebra and U is an ideal in
H.

”

3.3.12 Polyadic algebras with equality and cylindric alge-
bras

Up to now we dealt with predicate calculus without relation symbols.
Once we intend to apply algebraic logic to geometric and algebraic
problems, we need to build a version of the logical calculus with
an equality predicate. In particular, the logic with equalities is
indispensable for the study of solutions of systems of equations.
Thus, we are interested in algebraizations of the first-order logic
with equality predicate.

We use for the equality predicate the symbol =, which leaves
among the symbols of relations of a first-order logic. Note that we
can also use the equality symbol F( , ) instead of =, whenever this
notation is more convenient and underlines the binary nature of this
predicate. The equality predicate expresses a binary relation which
satisfies some set of axioms. We assume that in each interpretation
this symbol is interpreted as a coincidence of elements, which means
that we consider the so-called normal models.

Under equality in a first-order logic we mean a binary predicate
= which satisfies the following scheme of axioms:

1. Reflexivity: Vz(x = x), where x is a variable.
2. Substitution law:
(x=y) = (u(...,z,...) = ul...,y,...)),

where z,y are variables, and u(. .., y,...) is a formula obtained
by replacing any number of free occurrences of x in u with y,
such that all these remain free occurrences of y.

These axioms imply the well-known properties of the equality
predicate: symmetry and transitivity.
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Now we can add symbol = to the set of relations, axioms (1)-
(2) to the set of axioms from Subsection 3.3.1, and consider the
absolutely free algebra over elements of the form z; = z; in the
signature -, V, 4.

Thus, let X = {z,, o € I} be a set and £(X) be an ab-
solutely free algebra with free generators of the form z, = g,
Zo, s € X with operations V, —, 3z,. As before, one can define
the Lindenbaum-Tarski equivalence relation 7 on £(X) (see Subsec-
tion 3.1.3).

The quotient algebra £(X)/7 is a cylindric algebra (see [HMT]
for details and for the axiomatic definition of a cylindric algebra).

Shortly speaking, a cylindric X-algebra is a Boolean algebra
equipped with the commuting quantifiers of the form da, a € I
and with the special elements (equalities) of the form e(\, ). In
the Lindenbaum-Tarski algebraization process the distinguished el-
ements e(\, k) are taken to be the equivalence classes of the formulas
z, = xx. The elements e(\, k) satisfy the following axioms:

1. e(k,k) = 1.
2. e(A\, p) = 3k(e(N\, k) ANe(k,p)) if K # A\ usa € B.
3. Jk(e(k,A\) ANa) A Fr(e(k,\) Aa) =0if Kk # X\;a € B.

Now we return to polyadic algebras. One can define also the
equality predicate on a polyadic algebra.

Let H be a polyadic X-algebra and S be the semigroup of all
transformations of X. A predicate of a polyadic algebra is defined
as follows (cf. [Halm]).

Definition 3.3.44. An n-ary predicate of a polyadic X -algebra H
is a function P from X™ into H such that if (xay,...,%q4,) € X"
and s € S, then

SP(Zayy oy Za,) = P(8Tay, ..., STa,).

Definition 3.3.45. A binary predicate E is reflexive if E(xy,x)) =
1 for every x) € X.

Definition 3.3.46. A binary predicate E of H is substitutive if for
every T, xx € X and a € H

alExg ) < sha,

where s5 is a transformation on X such that sixy = x,, shx, = x,

for u # A.
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Definition 3.3.47. An equality for a polyadic algebra H is a reflez-
we and substitutive binary predicate of H.

Remark 3.3.48. We reserve a free use of the notation dx, = I«
and E(za,v5) = E(a,p), where z, z53 € X, a, B € I in the
appropriate places in the sequel.

Not every polyadic X-algebra can be equipped with an equality.
For examples of polyadic algebras with equality and without equality
see [Halm]. However, if a polyadic algebra has an equality then it is
unique.

Definition 3.3.49. A polyadic X -algebra with equality is a polyadic
X-algebra equipped with an equality predicate.

The equality in a polyadic algebra enjoys a number of useful
properties. The most known of them are

1. Symmetry: E(zq,25) = E(xs,2,).
2. Transitivity: E(xa,25) A E(zg,2,) < E(2q, ).

Let us quote some other properties of the equality in polyadic
algebras (for proofs see [Halm], [Pi2], [Pl-Datab]).

Proposition 3.3.50. Let B be a polyadic X -algebra with equality.
Then

i a A E(zg,xy) = sia N E(x,, xy).

. Jr E(ze, x)) = 1.

iii. sfa = Jz.(a N E(zg,xy)) if K # A

iv. E(z,,x)) = min{a | sa = 1}.

v. SSE(xg,xy)) = 1.

vi. siE(xy, x,) = E(xa,x,) if £ # A p.

Vil spE(z., v0) = E(z,, 7)) if £ # A, 1
vill. 3z, (E(xy, z4)) A E(zyg,x,) = E(zy, x,) if £ # A\ p,
where a € B, kK, A\, u,v € 1.

Any element of the form E(z,,x3) may be treated as an addi-
tional nullary operation on a polyadic algebra, and then the ho-
momorphisms of polyadic algebras with equality predicate must
be compatible with them. This means that if H and H' are two
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polyadic X-algebras with equality predicates £ and E’, respec-
tively, then a homomorphism p: H — H’ is subject to condition:
E(xy,x8)* = E'(x4,2p) for any x,,x3 € X. Similarly, subalgebras
must be closed with respect to these elements: if H' is a subalgebra
in H, then E(z,,xs) always must belong to H'.

Let us turn to examples.

Example 3.3.51. We begin with algebras of subsets of Cartesian
products, i.e., algebras of the form P(D), where D is the Cartesian
product of the sets D,, « runs the set I. As we know, P(D) is a
polyadic [-algebra.

The equality predicate E on P(D) is defined by the condition

E(Oé,ﬁ) = Daﬂu

where D,z is a diagonal, namely, the set of those a € D such that
a(a) = a(B) for all «r, B € I. The predicate E satisfies the condition
to be a predicate on a polyadic algebra and it is reflexive.

Let us check that it is substitutive. Indeed, if A is a subset of
D and a € AN D,p, then asf = a and a € szA, where s§ is a
transformation on [ such that s§8 = a, sGu = p for p # 5. Thus,
AN Dag C S%‘A.

So, E = D,z is an equality predicate on the algebra P(D).

Example 3.3.52. We have defined already the algebra of a first-
order calculus with equality predicate £(X)/7 (see page 147). One
can consider this algebra as a polyadic X-algebra. Then

E($m$5) = [xo& = 1‘5]7,
where [ |, is a 7-equivalence class.

It is intuitively clear that polyadic algebras with equality and
cylindric algebras express the same essence, and that there should
be a passage back and forth between them. This is indeed the
case, if we confine ourselves with the locally finite algebras over an
infinite X. The passage is explicit and gives rise to an appropriate
construction according to particular needs and, in a sense, according
to a particular taste. Throughout the book we use polyadic algebras
with equalities as an instrument which allows us to make algebraic
and logical geometry more transparent.

Pursuing this goal, in Part II we will generalize polyadic algebras
with equality up to multi-sorted Halmos algebras.

Remark 3.3.53. Two last examples give us semantical and syntac-
tical approaches.
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These approaches are connected to the value homomorphism

Val: £X)/T — P(D),
defined as follows:

Val([toa = 2]7) = Dag-

Since the algebra £(X) is generated by the elements of the form
To = xg, we can define the image of all elements from £(X)/.
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