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Abstract

We prove that for a given element P (X1, . . . , Xd) of the finitely generated free
Lie algebra Ld, the induced map P : gd → g is dominant for any Chevalley
algebra g, provided that K is of characteristic 6= 2, and P is not an identity in
sl(2,K). We prove that for the Engel monomials [[[X,Y ], Y ], . . . , Y ] and for their
linear combinations this map is surjective onto the set of non-central elements
of g provided that the ground field K is big enough.
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1. Introduction

For a given element P (X1, . . . , Xd) of the finitely generated free Lie algebra
Ld = L(X1, . . . , Xd) defined over a given field K, and a given Lie algebra g over
K, one can ask the following question:

Question 1.1. Is the equation P (X1, . . . , Xd) = A solvable a) for all A ∈ g,
or, at least, b) for a generic A ∈ g?

In the present paper we consider this question in a particular case of “clas-
sical” semisimple Lie algebras, i.e., quotients of Chevalley algebras modulo the
centre, see Section 2.2 for precise definitions. Our motivation is two-fold. The
primary inspiration came from widely discussed group-theoretic analogues of
Question 1.1:

Question 1.2. Let w(x1, . . . , xd) be an element of the finitely generated free
group Fd = F(x1, . . . , xd) (i.e., a word in xi and x−1

i ), and let a group G be
given. Is the equation w(x1, . . . , xd) = g solvable a) for all g ∈ G, or, at least,
b) for a generic g ∈ G?
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If G is a connected semisimple algebraic K-group, a theorem of Borel [5],
stating that the word map Gd → G is dominant whenever w 6= 1, gives a
positive answer to part b). One can, however, easily produce examples where
the word map is not surjective and so the answer to part a) is negative (see [5]
and references therein). Some particular words have been extensively studied,
and Question 1.2a has been answered in the affirmative. Say, if d = 2 and
w(x, y) = [x, y] (the commutator), the positive answer is known for wide classes
of groups ([19], [27], [31], [14], [39], [40], [25]).

The second motivating example is associative algebras, for which analogues
of Questions 1.1 and 1.2 have also been intensely investigated (see [24] and
references therein). Going over to infinitesimal analogues, one can first mention
that the equation [X,Y ] = A is solvable for all A in any classical split semisimple
Lie algebra g, under the assumption that the ground field K is sufficiently large
[9], [20].

Our first results (Section 3) concern the general case where we are given an
element P (X1, . . . , Xd) of the finitely generated free Lie algebra Ld defined over
a field K. Then for any Lie algebra g defined over K we can consider the induced
polynomial map P : gd → g. Assuming that K is an arbitrary field of charac-
teristic 6= 2, we prove that if P is not an identity in sl(2,K), then this map is
dominant for any Chevalley algebra g. Going over from dominance to surjectiv-
ity (Section 4), we prove that for the Engel monomials [[[X,Y ], Y ], . . . , Y ] and,
more generally, for their linear combinations, the image of the corresponding
map contains the set of noncentral elements of g provided that the ground field
K is big enough. We show that for Engel monomials of large degree this image
contains no nonzero central elements. We also discuss consequences of these
results for polynomial maps of associative matrix algebras as well as some other
possible generalizations (Section 5).

2. Preliminaries

Our notation is standard. In particular, Q and Fp denote the field of rational
numbers and the finite field of p elements, respectively. An denotes the n-
dimensional affine space. The cardinality of a set A is denoted by |A|. We use
the Zariski topology throughout, and Ā denotes the closure of A. The group of
automorphisms of any object X (group, algebra, variety) is denoted by Aut(X).
The orbit of an element h of a set H with respect to an action of a group W
is denoted by Wh, and WH ′ denotes the union of W -orbits of all elements
of H ′ ⊆ H. If R is a ring on which a group G acts, RG denotes the ring of
invariants. The reader is referred to [7] and [22] for all unexplained notions and
facts concerning Lie algebras.

2.1. Dominant maps
Recall that a K-morphism f : V → W of algebraic K-varieties (=reduced

K-schemes of finite type) is called dominant if its image f(V ) is Zariski dense
in W . We will mostly deal with the case where V and W are irreducible. In



3

such a case f(V ) contains a non-empty open set U (see, e.g., [28, Th. IV.3.7]).
If L/K is a field extension, then f is dominant if and only if the L-morphism
fL : VL →WL obtained by extension of scalars is dominant.

2.2. Chevalley and classical Lie algebras
Let R be a root system and let Π be a simple root system corresponding to

R. Further, let L(R,C) be a semisimple complex Lie algebra. Then there exists
a Chevalley basis {hα}α∈Π ∪ {eβ}β∈R of L(R,C) such that

1) [eα, e−α] = hα for every α ∈ Π;
2) hβ := [eβ , e−β ] ∈

∑
α∈Π Zhα for every β ∈ R;

3) [hβ , hγ ] = 0 for every β, γ ∈ R;
4) [hβ , eγ ] = qβ,γeγ for every β, γ ∈ R (note that qβ,γ = 0,±1,±2,±3);
5) [eβ , eγ ] = 0 if β + γ /∈ R;
6) [eβ , eγ ] = pβ,γeβ+γ if β + γ ∈ R (note that pβ,γ = ±1,±2,±3).
One can now define the corresponding Lie algebra over any prime field F

using the same basis and relations 1)–6) in the case F = Q or the same basis
and relations 1)–6) modulo p in the case F = Fp. Then one can define the Lie
algebra L(R,K) over any field K using the same basis and relations induced
by 1)–6). We will denote such an algebra by L(R,K) and call it a Chevalley
algebra. The Chevalley algebra L(R,K) decomposes into the sum

∑
i L(Ri,K)

where R = ∪iRi is the decomposition of the root system R into the disjoint
union of irreducible root subsystems. The Lie algebras L(Ri,K) are not simple
if the characteristic of K is not a “very good prime” [11]. However, if Ri 6=
A1,Br,Cr,F4 when char(K) = 2 and Ri 6= G2 when char(K) = 3, the algebra
L(Ri,K)/Zi is simple (here Zi is the centre of L(Ri,K)). Thus, if the Lie algebra
L(Ri,K) has no components pointed out above, the quotient L(R,K)/Z (where
Z is the centre of L(R,K)) is a semisimple Lie algebra.

Let L(R,K) be a Chevalley algebra over a field K which corresponds to an
irreducible reduced root system R. Denote by R+ (resp. R−) the set of positive
(resp. negative) roots and put

H =
∑
α∈Π

Khα, U
± =

∑
β∈R±

Keβ , U = U− + U+.

Then L(R,K) = H+U = H+U−+U+. The number r = dimH = |Π| is called
the rank of L(R,K).

Let now i : L(R,K) → End(V ) be a linear representation. Then one can
construct the corresponding Chevalley group G(R,K) ≤ GL(V ), which is gen-
erated by the so-called root subgroups xβ(t) (see [38], [4]), and a homomorphism
j : G(R,K)→ Aut(i(L(R,K))).

Suppose K is an algebraically closed field and i is a representation of L(R,K)
such that the group of weights of i coincides with the group generated by fun-
damental weights. Then G(R,K) is a simple, simply connected algebraic group,
i(L(R,K)) is the Lie algebra of G(R,K), and the homomorphism j defines the
adjoint action of G(R,K) on its Lie algebra i(L(R,K)) [4, 3.3].
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Below we will always consider the Chevalley group G(R,K) constructed
through a faithful representation i such that G(R,K) is simply connected. We
also identify the Lie algebra i(L(R,K)) with L(R,K). The group j(G(R,K)) ≤
Aut(L(R,K)) will be denoted by G. Note that G is the group generated by the
images j(xβ(t)) of the root subgroups which will also be denoted by xβ(t).

An element x ∈ L(R,K) is called semisimple (resp. nilpotent) if for a faithful
linear representation ρ : L(R,K) → End(V ) the operator ρ(x) is semisimple
(resp. nilpotent). Every x ∈ L(R,K) has the Jordan decomposition x = xs+xn
where xs is semisimple, xn is nilpotent, [xs, xn] = 0. Let K be an algebraically
closed field. Then:

a. Every element of the Lie algebra L(R,K) is G-conjugate to an element
x = xs + xn such that xs ∈ H, xn ∈ U+, [xs, xn] = 0.

b. [36, II.3.20] The G-orbit of an element x ∈ L(R,K) is closed if and only
if x is semisimple.

c. For every root β ∈ R there is a linear map β : H → K defined by the
formula [h, eβ ] = β(h)eβ. Suppose there is a regular element h ∈ H, i.e.,
β(h) 6= 0 for every β ∈ R. Then the set of all elements in L(R,K) which are
G-conjugate to elements from H is dense in L(R,K).

d. There is a G-equivariant dominant morphism π : L(R,K)→ Y where Y is
an affine variety and the map π̄ = π|H : H → Y satisfies the following condition:
π̄−1(π(h)) = Wh where W is the Weyl group, which acts naturally on H.

Proof. Put L = L(R,K), and let S = K[L] be the algebra of polynomial func-
tions on L (i.e., the symmetric algebra of the underlying vector space of L).
Since G is a simple algebraic group, R = SG is finitely generated (see, e.g., [35,
Cor. 2.4.10]), say, by f1, . . . , fk. Consider the map π : L → Ak given by the
formula π(x) = (f1(x), . . . , fk(x)). If x = xs + xn is the Jordan decomposition
then π(x) = π(xs). Indeed, the G-orbit Oxs

of xs is contained in the Zariski
closure Ox of the G-orbit of x (the fact that the semisimple part of an element
y of a semisimple group G is contained in the closure of the conjugacy class is
well known, see [36, II, 3.7]; for G-orbits of the Lie algebra of G the proof of the
corresponding part is almost the same, see, e.g., [23, Prop. 2.11]).

Since π is a regular map constant on the orbit Ox, it is constant on Ox.
Hence Y := Im π = Im π̄. Further, functions from R separate closed orbits in
L (see, e.g., [29, Chapter 1, § 1.2]). Hence π̄−1(π(h)) = H ∩Oh where Oh is the
orbit of h. Since H ∩Oh = Wh [36, 3.16], we are done.

Remark 2.1. If char(K) is not a torsion prime for G(R,K), then there is
an isomorphism π′ : L(R,K)/G ∼−→H/W , and the quotient H/W is isomorphic
to Ar [36], [34, 3.12]. Hence in this case Q ∼= H/W ∼= Ar. In general, the
natural morphism H/W → L(R,K)/G, induced by the inclusion H → L(R,K),
is dominant; it is an isomorphism if and only if R 6= Cr, r ≥ 1, char(K) = 2
[12].

2.3. Cartan subalgebras and regular elements
Let β ∈ R. We have (cf. [12, Lemma 2.3.2])
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β ≡ 0⇔ R = Cr, r ≥ 1, char(K) = 2, β is a long root (2.1)

(here C1 = A1, C2 = B2). Thus, if we are not in the case R = Cr, r ≥ 1,
char(K) = 2, the subalgebra H is a Cartan subalgebra, that is, a nilpotent
subalgebra coinciding with its normalizer. In the case R = Cr, r ≥ 1, char(K) =
2, the subalgebra H is a Cartan subalgebra of [L(R,K), L(R,K)] ∼= L(Dr,K)
(here L(D1,K) = K,L(D2,K) = sl(2,K)× sl(2,K)).

e. Suppose we are not in the case R = Cr, r ≥ 1, char(K) = 2. Then if
|K| ≥ |R+|, the subalgebra H contains a regular element. Moreover, if |K| >
m|R| for some m ∈ N, then for every subset S ⊂ K of size m there exists h ∈ H
such that β(h) /∈ S for every β ∈ R.

Proof. For infinite fields the statement is trivial. If K is a finite field, then
|H| = |K|r, and the hyperplane Hx,β of H defined by the equation [h, eβ ] = x,
x ∈ S, consists of |K|r−1 points. Thus,

|
⋃

x∈S,β∈R

Hx,β | ≤ |S| · |Hx,β | = m|R| · |K|r−1 < |H|,

and therefore we can take h ∈ H \ ∪x∈S,β∈RHx,β . The first statement can be
proved by the same arguments for S = {0} using the fact that 0 ∈ H0,β = H0,−β
for every β ∈ R.

2.4. Exceptional cases
The Chevalley algebra L(R,K) modulo the centre is not simple in the fol-

lowing cases (see, e.g., [21]):

R = A1,Br,Cr,F4 if char(K) = 2, R = G2 if char(K) = 3. (2.2)

Namely:
1) Let R = A1 and char(K) = 2. Then L(A1,K) ∼= sl(2,K) is a nilpotent

algebra satisfying the identity [[X,Y ], Z] ≡ 0.
2) Let R = B2 and char(K) = 2. Then L(B2,K) ∼= so(5,K) is a solvable

algebra satisfying the identity [[X,Y ], [Z, T ]] ≡ 0.
3) Let R = Br, r > 2 and char(K) = 2. Then L(Br,K) contains the nilpotent

ideal I generated by {eβ | β is a short root}, and L(Br,K)/I ∼= L(Dr,K)/Z ′

where Z ′ ≤ Z(L(Dr,K)).
4) Let R = F4 and char(K) = 2. Then L(F4,K) contains the ideal I

generated by {eβ | β is a short root}, and L(F4,K)/I ∼= L(D4,K)/Z ′ with
Z ′ ≤ Z(L(D4,K)) where Z(L(D4,K)) is the centre.

5) Let R = G2 and char(K) = 3. Then L(G2,K) contains the ideal I ∼=
sl(3,K) generated by {eβ | β is a short root}, and the algebra L(G2,K)/I is
isomorphic to sl(3,K)/Z(sl(3,K)).

6) Let R = Cr, r > 2 and char(K) = 2. Then L(Cr,K) contains the ideal I ∼=
L(Dr,K) generated by {eβ | β is a short root}, and the algebra L(Cr,K)/I is
abelian.
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The other Chevalley algebras L(R,K) corresponding to irreducible root
systems R are simple modulo the centre Z [37]. The simple algebras g =
L(R,K)/Z are classical. The classical semisimple Lie algebras and the corre-
sponding Chevalley algebras form a natural class to consider polynomial maps
P (X1, . . . , Xd) on their products. However, note that the algebras appearing
in “bad cases” 3)–5) are perfect, i.e., satisfy the condition [L(R,K), L(R,K)] =
L(R,K), and therefore we can also raise the question on dominance of polyno-
mial maps on such algebras.

2.5. Prescribed Gauss decomposition
We will use the following generalization of the classical Gauss decomposition.
f. Suppose we are not in the cases appearing in list (2.2). Fix an arbitrary

non-central element h ∈ H. Then for every non-central element l ∈ L(R,K)
there is g ∈ G such that g(l) ∈ h + U [16, Proposition 1] (actually we mostly
need below a particular case h = 0 treated in [9, Lemma II]).

3. Dominance of polynomial maps on Chevalley algebras

In this section K is an algebraically closed field.
3.1 We are interested in the following analogue of the Borel dominance the-

orem for semisimple Lie algebras:

Question 3.1. For a given element P (X1, . . . , Xd) of the free Lie K-algebra
Ld on the finite set {X1, . . . , Xd} over a given algebraically closed field K, and
a given semisimple Lie algebra g over K, is the map P (X1, . . . , Xd) : gd → g
dominant under the condition that P (X1, . . . , Xd) is not an identity on g?

We do not know the answer to this question. However, we can get it under
some additional assumption. Our main result is

Theorem 3.2. Let L(R,K) be a Chevalley algebra. If char(K) = 2, assume that
R does not contain irreducible components of type Cr, r ≥ 1 (here C1 = A1,C2 =
B2). Suppose P (X1, . . . , Xd) is not an identity of the Lie algebra sl(2,K). Then
the induced map P : L(R,K)d → L(R,K) is dominant.

Below we repeatedly use the following construction. Put I = P (L(R,K)d).
Then I is an irreducible affine variety which isG-invariant, and therefore π(I) ↪→
Y is an irreducible closed subset of an r-dimensional affine variety Y (see 2.2.d).
If π(I) = Y, then, by 2.2.d, the set I contains all elements which are G-conjugate
to elements of H (because π(x) = π(xs), Oxs ⊂ Ox and I is G-invariant). This
implies, by 2.2.c, that I = L(R,K). Thus,

P is dominant⇔ π(I) = Y. (MAIN).

Lemma 3.3. Let M ⊂ L(R,K) be an irreducible closed subset such that

(i) dimπ(P (Md)) = r − 1;
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(ii) π(P (Md)) 6= π(I).

Then P is dominant.

Proof. Since M is irreducible and dimπ(P (Md)) = r − 1, we conclude that
π(P (Md)) is an irreducible hypersurface in Y. The assertion of the lemma now
follows from (ii) and condition (MAIN).

We can now start the proof of Theorem 3.2. First of all, the statement is
obviously reduced to the case where R is irreducible. Indeed, if R is a disjoint
union of Ri, then g = L(R,K) is a direct sum of gi = L(Ri,K), and the image
Im P of the map P = P (X1, . . . , Xd) : gd → g is equal to ⊕iImPi where Pi is
the restriction of P to gi.

Note that P (X1, . . . , Xd) =
∑
i aiXi+

∑
(monomials from Ld of degree > 1)

where ai ∈ K. If ai 6= 0 for some i, the statement is trivial. Thus we may and
will assume ai = 0 for every i. First we prove the assertion of the theorem for
the case R = Ar by induction on r.

By condition (MAIN) it is enough to prove π(I) = Y, i.e., dimπ(I) = r.
Note that in the case char(K) = 2 the statement of the theorem fails for r = 1.
However, as we will see below, the equality π(I) = Y holds even in this case.
Thus we can prove that π(I) = Y by induction on the rank r starting at r = 1.

We identify L(Ar,K) with sl(r + 1,K), the algebra of (r + 1) × (r + 1)-
matrices with zero trace. We fix the chain of subalgebras L1 ⊂ L2 ⊂ · · · ⊂ Lr =
sl(r+1,K) where Li−1 = sl(i,K) is the subalgebra embedded in the i× i upper
left corner of the matrix algebra Li = sl(i + 1,K). We also fix, for each i, the
subalgebra Hi ⊂ Li of diagonal matrices in Li. Further, let Pi = P|Ld

i
.

Induction base: we prove that dimπ(Im P1) = 1. Note that according to
our assumption P1 6= 0.

Let first char(K) = 2. Then according to our assumption and case 1) of
Section 2.4, we have P1 =

∑
i,j aij [Xi, Xj ] where aij ∈ K. Let ai0,j0 6= 0. Set

P ′1(X1, . . . , Xd) = ai0,j0 [Xi0 , Xj0 ]. On putting Xi = 0 for all i 6= i0, j0, we see
that Im P1 ⊇ Im P ′1 = H1, and therefore dimπ(Im P1) = 1 (see 2.2.d). Note
that this case requires special consideration only because we cannot refer to
Lemma 3.3, as below.

Let us now assume char(K) 6= 2. As the map P is not identically zero, we
may apply Lemma 3.3 with M = 0. We obtain the dominance of P1 : Ld1 → L1

which implies dimπ(Im P1) = 1.
Inductive step: assume

dimπ(Im Pr−1) = r − 1 (3.1)

and prove that
dimπ(Im Pr) = r. (3.2)

We have Hr−1 = {x = diag(α1, . . . , αr, 0) ∈ Mr+1(K) | trx = 0}. (Here
Mr+1(K) is the algebra of (r + 1) × (r + 1)-matrices over K.) According to
2.2.d, we have

π(Im Pr−1) = π̄(Hr−1). (3.3)
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Suppose that
I ∩Hr 6= WHr−1. (3.4)

Then
π(I) ⊇ π̄(I ∩Hr) 6= π̄(Hr−1). (3.5)

Condition (3.1) is condition 1) from Lemma 3.3 with M = Lr−1. Conditions
(3.3) and (3.5) give us condition 2) from the same lemma. Note that the domi-
nance of P implies dimπ(I) = r. Hence we have to prove that condition (3.4)
holds.

We may assume that the transcendence degree of K is sufficiently large
because this does not have any influence on dominance of P . Then we may
also assume that there exist a subfield F ⊂ K and a division algebra Dr+1 ⊂
Mr+1(K) with centre F such that Dr+1 ⊗F K = Mr+1(K) [13], [5]. The
algebra Dr+1 is dense in Mr+1(K). Hence the set [Dr+1, Dr+1] is dense in
[Mr+1(K),Mr+1(K)] = sl(r+ 1,K). On the other hand, [Dr+1, Dr+1] ⊂ Dr+1.
Thus the set Sr+1 = Dr+1∩sl(r+1,K) is dense in sl(r+1,K), and therefore the
restriction of P to Sdr+1 is not the zero map. Then there exist s1, . . . , sd ∈ Sr+1

such that s = P (s1, . . . , sd) 6= 0. Since s1, . . . , sd ∈ Dr+1, we have s ∈ Dr+1.
As there are no nonzero nilpotent elements in division algebras, all elements of
Dr+1 are semisimple, so we may assume s ∈ Hr. Since s has no zero eigenvalues,
s /∈ WHr−1, and we get (3.4). Thus (3.2) is proven, and the assertion of the
theorem for R = Ar is established.

The general case is a consequence of the following observation [5]: every
irreducible root system R has a subsystem R′ which has the same rank as R and
decomposes into a disjoint union of irreducible subsystems R′ =

⋃
i R
′
i where

each R′i is a system of type Ari
. Hence L′ =

⊕
i L(Ari

,K) ⊂ L(R,K),
∑
i ri =

r. Thus dimπ(P (L′)) = r ⇒ π(I) = Y, and we get the statement from condition
(MAIN). Theorem 3.2 is proved.

Corollary 3.4. Let g be a classical semisimple Lie algebra. Suppose that a
polynomial P (X1, . . . , Xd) is not an identity of the Lie algebra sl(2,K). Then
the induced map P : gd → g is dominant.

Proof. Let R be the root system corresponding to g. If the Chevalley algebra
L(R,K) is semisimple, we have g = L(R,K), and there is nothing to prove. If
g = L(R,K)/Z, where Z is the centre, the assertion is an immediate consequence
of the following obvious observation: if the Lie polynomial P (X1, . . . , Xd) does
not contain terms of degree 1, then the map P : L(R,K)d → L(R,K) is trivial
on Z.

3.2 Theorem 3.2 reduces the problem of dominance to the class of maps
P which are identically zero on sl(2,K). The following theorem gives another
possibility to reduce the problem of dominance.

Theorem 3.5. Let L(R,K) be a Chevalley algebra corresponding to an irre-
ducible root system R, and suppose that R 6= Cr if char(K) = 2. Suppose that
the map P : L(R,K)d → L(R,K) is dominant for R = A2 and B2. Then P is
dominant for every L(R,K), r > 1.
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Proof. We prove the theorem by induction on r. Let first r = 2. The cases
R = A2,B2 are included in the hypothesis, and the case R = G2 is established
by the same argument as at the end of the proof of Theorem 3.2 because G2

contains A2.
Let now r > 2, and make the induction hypothesis:

the map P is dominant for every L(R,K) where 1 < rank R < r.
We proceed case by case.
1. R = Ar. The induction step is the same as in the proof of Theorem 3.2.
2. R = Cr (r ≥ 3) or Dr (r ≥ 4). Let Π = {α1, . . . , αr} be the simple

root system numerated as in Bourbaki [7]. Let Π1 = {α1, . . . , αr−1}, Π2 =
{α2, . . . , αr}. Then R1 = 〈Π1〉 = Ar−1, R2 = 〈Π2〉 = Cr−1 or Dr−1, respectively.
Let Hi = H ∩ L(Ri,K). There exists h ∈ H1 such that h /∈ WH2. Indeed,
let εi : H → K be the weights given by the formula εi(hαk

) = 2(εi,αk)
(αk,αk) . Then

ε1(H2) = 0, and therefore for every h′ ∈ WH2 we have εi(h′) = 0 for some i.
On the other hand, since R1 = Ar−1, we can find h ∈ H1 such that εi(h) 6= 0
for every i, and therefore h /∈ WH2. Note that h ∈ P (L(R1,K)d) because P
is dominant on L(R1,K) (see the proof of Theorem 3.2). Then h ∈ I. On the
other hand, π(h) /∈ π(P (L(R2,K)d)) because h /∈ WH2. Hence we can apply
Lemma 3.3 with M = L(R2,K).

3. R = Br,F4. Here we have Dr ⊂ R. (The respective embeddings are as
follows: so(2r) ⊂ so(2r + 1) is a natural inclusion, and D4 embeds into F4 as
the subsystem consisting of the long roots.)

Then H ⊂ P (L(Dr,K)), and therefore P is dominant on L(R,K).
4. R = Er. Consider the extended Dynkin diagram. We obtain a needed

subsystem of type A by removing one of its vertices. In each case the diagram
is a trident. We remove the 3-valent vertex in the case r = 6, and the tooth of
length 1 (the lower vertex α2 in the Bourbaki notation) in the cases r = 7, 8.
We obtain subsystems of types A2×A2×A2, A7, and A8, respectively. Then we
use the same argument as above.

3.3 To use the theorems proven above for practical purposes, the following
simple remarks may be useful.

Remark 3.6. If P (X1, . . . , Xd) ∈ Ld is a polynomial containing a monomial of
degree < 5, then the map P : L(R,K)d → L(R,K) (char(K) 6= 2) is dominant.

The reason is that such a polynomial cannot be an identity in sl(2,K).
Indeed, if it were an identity, so would be its homogeneous component of the
lowest degree (because any homogeneous component of any polynomial identity
of any algebra of any signature over any infinite field is an identity, see [33,
6.4.14]). On the other hand, any identity of the Lie algebra sl(2,K) (char(K) 6=
2), is an identity of gl(2,K) (because every matrix is a sum of a trace zero matrix
and a scalar matrix, and such an identity lifts to an identity of the associative
matrix algebra M2(K)). The latter one does not contain identities of degree less
than 4 (which is the smallest degree of the so-called standard identity satisfied
in M2), hence the same is true for gl(2) (see, e.g., [33, Remark 6.1.18] or [1,
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Exercise 2.8.1]). Moreover, a little subtler argument allows one to show that
sl(2,K) does not contain identities of degree 4 (see, e.g., [1, Section 5.6.2]).

Remark 3.7. Note that Razmyslov [30] found a finite basis for identities in
this algebra (assuming K to be of characteristic zero). Moreover, it turned out
that all such identities are consequence of the single identity [15]:

P = [[[Y,Z], [T,X]], X] + [[[Y,X], [Z,X]], T ],

and this result remains true for any infinite field K, char(K) 6= 2 [42].

Below we illustrate how one can apply Theorem 3.5 using one of the identities
appearing in Razmyslov’s basis (the reader willing to deduce this identity from
Filippov’s one mentioned above is referred to Section 2 of [15]).

Example 3.8. The polynomial [[[[Z, Y ], Y ], X], Y ]−[[[[Z, Y ], X], Y ], Y ] appears
in [30] as one of the elements of a finite basis of identities in sl(2,K) (char(K) =
0). Clearly, the polynomial

P (X,Y, Z) = [[[[[Z, Y ], Y ], X], Y ], [[[[Z, Y ], X], Y ], Y ]]

is also identically zero in sl(2,K). It turns out that the map P : L(R,K)3 →
L(R,K) is dominant. We check this using computations by MAGMA. In view
of Theorem 3.5, we have to check dominance only for R = A2,B2.

Consider the map π : L(R,K)→ Y defined in Section 2.2.d. Since char(K) =
0, we have Y ∼= H/W ∼= Ar, and π = (f1, f2, . . . , fr) where f1, f2, . . . , fr are
G-invariant homogeneous polynomials on L(R,K) which generate the invariant
algebra K[L(R,K)]G ∼= K[H]W . Moreover, deg f1 deg f2 · · · deg fr = |W | (see
Section 2.2.d). In our cases, r = 2 and we have deg f1 = 2, deg f2 = 3 for
R = A2 and deg f1 = 2, deg f2 = 4 for R = B2.

Let 0 6= D1 = P (A,B,C), D2 = P (A′, B′, C ′) ∈ I = ImP (L(R,K))3. Since
P is a homogeneous map with respect to X,Y, Z, the lines lj := KDj , j = 1, 2,
also lie in I, and the curves π(lj) in the affine space A2 with coordinates (x1, x2)
are defined by equations of the form xm1

1 /xm2
2 = cj , where m1 = deg f2, m2 =

deg f1, cj = const .
Put θ := fm1

1 /fm2
2 . We get θ(D1) 6= θ(D2)⇒ π(l1) 6= π(l2)⇒ I = A2.

Using MAGMA, in each of the cases R = A2 and R = B2, we find a pair of
triples (A,B,C), (A′, B′, C ′) such that θ(P (A,B,C)) 6= θ(P (A′, B′, C ′)). Thus,
P is a dominant map for every L(R,K), r > 1.

4. From dominance to surjectivity

For some polynomials P ∈ Ld we can say more than in the preceding section.
Namely, we present here several cases where the map P : gd → g is surjective.
We start with the following simple observation (parallel to Remark 3 in [5, §1]).
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Proposition 4.1. Let P1(X1, . . . , Xd1), P2(Y1, . . . , Yd2) be Lie polynomials. Let
g be a Lie algebra. Suppose that each of the maps Pi : gdi → g is dominant. Let
d = d1 + d2,

P (X1, . . . , Xd1 , Y1, . . . , Yd2) = P1(X1, . . . , Xd1) + P2(Y1, . . . , Yd2).

Then the map P : gd → g is surjective.

Proof. As the underlying variety of g is irreducible, the image of each of the
dominant morphisms Pi (i = 1, 2) contains a non-empty open subset Ui. It
remains to notice that U1 + U2 = g (see, e.g., [6, Chapter I, § 1, 1.3]).

Let us now prove surjectivity for some special maps, which are linear in one
variable.

Definition 4.2. We call Em(X,Y ) = [[. . . [︸ ︷︷ ︸
m times

X,Y ], Y ], . . . , Y ] ∈ L2 an Engel

polynomial of degree (m+ 1). We call
∑m
i=1 aiEi(X,Y ) ∈ L2, where ai ∈ K, a

generalized Engel polynomial.

Theorem 4.3. Let P (X,Y ) ∈ L2 be a generalized Engel polynomial of degree
(m+ 1), and let P : L(R,K)2 → L(R,K) be the corresponding map of Chevalley
algebras. If R does not contain irreducible components of types listed in (2.2) and
|K| > m|R|, then the image of P contains (L(R,K)\Z(L(R,K))∪{0}. Moreover,
if P is an Engel polynomial, then the same is true under the assumption |K| >
|R+|.

Proof. Since |K| > m|R|, for any chosen S ⊂ K of size m there is h ∈ H
such that β(h) /∈ S for all β ∈ R (see 2.3.e). Further, for every h ∈ H the
map Ph : L(R,K) → L(R,K), given by X 7→ P (X,h), is a semisimple linear
operator on L(R,K) which is diagonalizable in the Chevalley basis. Each hα is
its eigenvector with zero eigenvalue. Further, there is a degree m polynomial
f ∈ K[t] such that P (eβ , h) = f(β(h))eβ for every β ∈ R. (Explicitly, one
can take f =

∑m
i=1(−1)iaiti.) Define S as the set of roots of f in K. Then

f(β(h)) 6= 0 for every β ∈ R, and therefore Im(Ph) = U . Now the statement
follows from 2.5.f. If P is an Engel polynomial of degree (m+ 1), then one can
take f = xm, and therefore S = {0}, that is, h is a regular element. Once again,
we can use 2.5.f.

Corollary 4.4. Let P = P (X,Y ) ∈ L2 be a generalized Engel polynomial of
degree (m + 1), and let g be a simple classical Lie algebra corresponding to the
root system R. If |K| > m|R|, then the map P : g2 → g is surjective. Moreover,
if P is an Engel polynomial, the same is true under the assumption |K| > |R+|.

Remark 4.5. Corollary 4.4 generalizes Theorem 7 of [41] where Question 1.1a
was answered in the affirmative for the words in three variables P (X,Y, Z) of
the form [X,Y, . . . , Y, Z] and g = sl(n).

Our next result shows that one cannot hope to extend surjectivity to central
elements.
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Proposition 4.6. Let Pm(X,Y ) ∈ L2 be an Engel polynomial of degree m,
and let P : L(R,K)2 → L(R,K) be the corresponding map of Chevalley alge-
bras. Then for m big enough the image of P contains no nonzero elements of
Z(L(R,K)).

Proof. The scheme of the proof is as follows. We distinguish two cases. If X
and Y centralize the same element of a Cartan subalgebra of L(R,K), we prove
that Pm(X,Y ) = 0 for m big enough. Otherwise, we use a partial order on R
induced by height to show that P (X,Y ) cannot lie in H. Here is a detailed
argument.

We may assume K algebraically closed. Then, by “bringing to the Jordan
form”, we may assume Y = h+ y where h ∈ H, y ∈ U+, [h, y] = 0. Further, let
X = h′ + x, h′ ∈ H, x ∈ U . For brevity, for every n denote zn = Pn(X,Y ).

Case I. [h, x] = 0. Let us prove that zn = Pn(X, y) and [zn, h] = 0. We use
induction on n. For n = 1 we have z1 = [X,h+y] = [X,h]+[X, y]. Since [x, h] =
[h′, h] = 0, we have z1 = [X, y]. Further, [z1, h] = [[X, y], h] = [[h′, y], h] +
[[x, y], h]. Since [h′, h] = [x, h] = [y, h] = 0, each summand equals zero by the
Jacobi identity, so [z1, h] = 0. Assume zn−1 = Pn−1(X, y) and [zn−1, h] = 0. We
have zn = [zn−1, Y ] = [zn−1, h+y] = [zn−1, y] = [Pn−1(X, y), y] = Pn(X, y) and
[zn, h] = [[zn−1, y], h] = 0 by the Jacobi identity (because [zn−1, h] = [y, h] = 0).
Thus we have Pn(X,Y ) = [[X, y], y, . . . , y] which is zero for n big enough because
y is nilpotent.

Case II. [h, x] 6= 0. First suppose that y = 0, i.e., Y = h is semisimple. As
x 6= 0, we can write x =

∑
β∈R fβeβ , where fβ ∈ K. Since [h, x] 6= 0, there exists

β such that [h, eβ ] 6= 0. We now observe that if fβ 6= 0 then for every m the
term of Pm(X,Y ) containing eβ enters with nonzero coefficient, so Pm(X,Y )
belongs to U and thus does not belong to the centre. So assume y 6= 0 and write
y =

∑
β∈R+ pβeβ , where pβ ∈ K. Put

Rh = {β ∈ R | β(h) 6= 0}, R̂h = {β ∈ R | β(h) = 0},

Rx = {β ∈ R | fβ 6= 0}, Ry = {β ∈ R | pβ 6= 0}.

All these sets are non-empty, and Rh,x = Rh ∩ Rx 6= ∅. We have Ry ⊆ R+,
Ry ⊆ R̂h. Let ≺ be the (partial) order on R induced by height. Recall that by
definition α ≺ β if and only if β − α is a sum of positive roots. We fix some
minimal γ in Rh,x. Further, write Pn(X,Y ) = zn =

∑
β∈R dn,βeβ + hn where

hn ∈ H, dn,β ∈ K.
Claim: a) dn,γ 6= 0;
b) if dn,δ 6= 0 and δ 6= γ, then either δ ∈ R̂h or δ ⊀ γ.
Evidently, a) is enough to establish the assertion of the proposition.
Let us prove the claim by induction on n. Let first n = 1. We have

[h′, y] =
∑
β∈R̂h

aβeβ , [x, y] =
∑
β∈R

bβeβ + h1, [x, h] =
∑
β∈Rh

cβeβ , (4.1)

where h1 ∈ H, and we have d1,β = aβ + bβ or d1,β = bβ + cβ .
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a) We have aγ = 0, cγ 6= 0 because γ ∈ Rh,x ⊆ Rh. Let us prove that bγ = 0.
Assume to the contrary that bγ 6= 0. Then from the middle equality in (4.1) it
follows that there are roots α ∈ Rx and β ∈ Ry such that [eα, eβ ] = eγ (and so
γ = α+ β). Since [h, eβ ] = 0 and [h, eγ ] 6= 0, we have [h, eα] 6= 0. Hence α ∈ Rh
and therefore α ∈ Rh,x = Rh ∩ Rx. Since γ = α + β, we have the inequality
α ≺ γ because β is a positive root. This is a contradiction with the choice of
γ (recall that γ is a minimal root in Rh,x with respect to the partial order ≺).
Thus bγ = 0 and d1,γ = cγ 6= 0.

b) Suppose d1,δ 6= 0 and δ /∈ R̂h. Then δ ∈ Rh and d1,δ = bδ + cδ. If
cδ 6= 0, then δ ∈ Rx. Hence δ ∈ Rh,x and δ ⊀ γ because of the choice of γ.
If cδ = 0, then d1,δ = bδ 6= 0. Then eδ = [eα, eβ ] for some α ∈ Rx, β ∈ Ry.
Since δ ∈ Rh (and so [h, eδ] 6= 0) and β ∈ Ry ⊆ R̂h (and so [h, eβ ] = 0), we have
[h, eα] 6= 0 ⇒ α ∈ Rh ⇒ α ∈ Rh,x. Suppose that δ = α + β ≺ γ. Then α ≺ γ
which is again a contradiction with the choice of γ. Hence δ ⊀ γ.

Let us now assume a) dn−1,γ 6= 0; b) if dn−1,δ 6= 0 and δ 6= γ, then either
δ ∈ R̂h or δ ⊀ γ, and prove the same assertions for n. Consider

zn = [zn−1, h+ y] =
∑
β∈R

dn−1,β [eβ , h]︸ ︷︷ ︸
I

+
∑
β∈R

dn−1,β [eβ , y]︸ ︷︷ ︸
II

+ [hn−1, y]︸ ︷︷ ︸
III

.

The induction hypotheses imply that

zn =
∑
δ∈R̂h

qδeδ︸ ︷︷ ︸
♠

+sγeγ +
∑

δ∈Rh,δ⊀γ

sδeδ︸ ︷︷ ︸
♥

+hn,

where hn ∈ H and sγ 6= 0. Indeed, sum I has only terms of types ♥ and the
term sγeγ 6= 0. Further, sum II has terms of types ♠ and ♥ and elements of H.
Sum III has only terms of type ♠ because Ry ⊆ R̂h. Thus conditions a) and b)
hold for zn, and zn = P (X,Y ) /∈ Z(L(R,K)).

Remark 4.7. Suppose we are in one of the exceptional cases listed in (2.2).
Let us exclude abelian and solvable cases 1), 2) of Section 2.4. Also in case 6)
in Theorem 4.3 we may consider the Lie algebra [L(R,K), L(R,K)] instead of
L(R,K). In cases 3),4), 5) the algebra L(R,K) contains an ideal I (generated
by short roots) such that the quotient L̄ = L(R,K)/I is not on list (2.2), and
therefore the assertion of Theorem 4.3 on surjectivity of P holds for L̄.

Remark 4.8. In the group case the phenomenon of Proposition 4.6 can be
observed already for m = 1: some quasisimple groups contain central elements
that are not commutators, see [39], [14] for infinite groups and [3] for finite
groups.

Example 4.9. In the following example we show that non-Engel maps are not
necessarily surjective. Let

P = P (X,Y ) = [[[X,Y ], X], [X,Y ], Y ]] : sl(2,K)× sl(2,K)→ sl(2,K)
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where char(K) 6= 2 and K is an algebraically closed field. Let {e, f, h} be
the standard basis of sl(2): [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . First note
that P (X + mY, Y ) = P (X,Y + mX) = P (X,Y ). Therefore we may assume
that X = ae + bf , Y = cf + dh. A straightforward calculation then gives
P (X,Y ) = 4a2csh + 8a2dse + 8abdsf where s = 4bd2 − ac2. This implies that
in Im(P ) there are no elements of the form me or mf with m 6= 0.

5. Concluding remarks and possible generalizations

Remark 5.1. The method used in the proof of Theorem 3.2 (which goes back
to [13] and [5]) is applicable to the problem of dominance of polynomial maps on
associative matrix algebras (which is attributed to Kaplansky, see [24] and ref-
erences therein). More precisely, let P (X1, . . . , Xd) ∈ K 〈X1, . . . , Xd〉 be an as-
sociative, noncommutative polynomial (i.e., an element of the finitely generated
free associative algebra), and let P : Mn(K)d →Mn(K) denote the correspond-
ing map. Then the same inductive argument as in the proof of Theorem 3.2
shows that if P (X1, . . . , Xd) is not identically zero on M1(K)d then the map P
is dominant for all n. In the situation where P (X1, . . . , Xd) is identically zero on
Kd, one can consider the induction base n = 2 and prove that if the restriction
of P to M2(K)d is dominant then so is P . The assumption made above holds,
for instance, for any semi-homogeneous, non-central polynomial having at least
one 2×2-matrix with nonzero trace among its values [24, Theorem 1]. If, under
the same assumptions on P , Im(P ) lies in sl(n,K), then Im(P ) = sl(n,K).

Remark 5.2. It would be interesting to consider maps P with some fixed
Xi = Ai. Then one could find an approach to the dominance calculating the
differential map of P .

Remark 5.3. It would be interesting to consider a more general set-up when
we have a polynomial map P : Ld → Ls. In [17] some dominance results were
obtained for the multiple commutator map P : L×Ld → Ld given by the formula
P (X,X1, . . . , Xd) = ([X,X1], . . . , [X,Xd]).

Remark 5.4. In a similar spirit, one can consider generalized word maps
w : Gd → Gs on simple groups. Apart from [17], see also a discussion of a
particular case w = (w1, w2) : G2 → G2 in [8, Problem 1].

Remark 5.5. One could try to extend some of results of this paper to the case
where the ground field is replaced with some sufficiently good ring. One has
to be careful in view of [32]: there are rings R such that not every element of
sl(n,R) is a commutator.

Remark 5.6. It would be interesting to understand the situation with infinite-
dimensional simple Lie algebras (as well as with finite-dimensional algebras of
Cartan type in positive characteristics). The first question is whether every
element of such an algebra can be represented as a Lie product of two other
elements. Note that the question on the existence of a simple group not every
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element of which is a commutator remained open for a long time. First exam-
ples of such groups appeared in geometric context [2], where the groups under
consideration were infinitely generated; later on there were constructed finitely
generated groups with the same property [26]. These are counter-examples in
very strong sense: the so-called commutator width, defined as supremum of
the minimal number of commutators needed for a representation of a given ele-
ment as a product of commutators, may be arbitrarily large or even infinite [26,
Theorems 4 and 5].

Remark 5.7. Apparently, one cannot hope to extend dominance and surjectiv-
ity results to polynomial maps on algebras which are far from simple. Indeed,
in the group case the simplicity assumption is essential. As pointed out to us by
D. Calegari, if G is non-elementary word-hyperbolic group and w is a nontrivial
word, then one cannot hope to have a generic element of G in the image of the
word map induced by w (this can be deduced from [10]).

Remark 5.8. One can ask questions similar to Questions 1.1 and 1.2 for other
classes of algebras (beyond groups, Lie algebras and associative algebras). The
interested reader may refer to [18] for the case of values of commutators and
associators on alternative and Jordan algebras.
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