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1. Introduction

The Burnside problems explore consequences of information on cyclic subgroups
of a group (namely orders of elements). In this paper we explore consequences of
properties of two-generated subgroups. Another context of the Burnside problems is
the study of the identity ™ = 1, and of related Engel identities and their relations to
nilpotency. Here we focus on two variable identities which are related to solvability.

In particular, we shall formulate certain new Burnside-type problems where the
role of nilpotency is replaced by the solvability property, thus extending the club of
Burnside-type problems. In this context we use the recent results on Thompson-like
characterization of the solvable radical of finite groups and finite dimensional Lie
algebras [21] and Engel-like descriptions of finite solvable groups [7, 9] in terms
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of two-variable words. We also discuss some old problems from the perspective of
two generated subgroups and so-called one and a half generated subgroups (see
definitions below).

We start with a short historical background (see [30, 31, 33, 44, 48-50] and refer-
ences therein). The general Burnside problem asks: is a torsion group locally finite?
Golod constructed infinite finitely generated residually finite torsion groups, thus
giving a negative answer to the general Burnside problem. Another Burnside prob-
lem deals with the identity ™ = 1; namely, is every group of finite exponent locally
finite? A negative solution for the Burnside problem was obtained by Novikov—
Adian, and later by Olshanskii and Rips. Denote by B(r,n) the free group with r
generators in the Burnside variety ™ = 1. The restricted Burnside problem states
that the group B(r,n) has a unique maximal finite quotient. The final (positive)
solution of the restricted Burnside problem was obtained by Zelmanov and is mostly
based on studying infinite dimensional Lie algebras and Engel or Engel-like iden-
tities (Kostrikin, Kostrikin-Zelmanov). Thus, it took about 90 years to complete
the solution of the Burnside problems. These three Burnside problems have various
applications and give rise to numerous questions of Burnside type.

Engel’s theorem [28, Chap. II, Sec. 3] characterizes nilpotent Lie algebras in
the class of finite dimensional Lie algebras by identities in two variables: a finite
dimensional Lie algebra L is nilpotent if and only if it satisfies one of the identities
en(z,y) = [2,y,9,...,y] = 0.

In a similar way, Zorn’s theorem [27,51, Satz II1.6.3] characterizes nilpotent
groups in the class of finite groups:

Theorem 1.1. A finite group G is nilpotent if and only if it satisfies one of the
identities e, (x,y) = [, y,y,...,y] = 1.

Here and throughout this paper [z,y] = zyz~ty~L, [z, y,y] = [[z, ], y], etc.
Baer’s theorem [4] describes the nilpotent radical of a finite group G as the set
of all (left)-Engel elements:

Theorem 1.2. The nilpotent radical of a finite group G coincides with the collec-
tion of all Engel elements of G, i.e. the elements y € G such that for all x € G we
have e, (x,y) =1 for some n =n(x,y).

Engel’s and Zorn’s theorems provide a tool for recognition of the nilpotency
property for finite dimensional Lie algebras and finite groups in terms of explicit
sequences of monotonic (in the sense of profinite topology) words in two variables.
This explicit two-variable characterization gives rise to a number of well-known
applications (see, for instance, [2, 27, 41]).

Baer, Gruenberg and B. Plotkin paid attention to the following Burnside-type
problem:

Problem 1.3. Is a group G satisfying the identity e,(x,y) = 1 for some fized n
locally nilpotent? In other words, is every Engel group G locally nilpotent?
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Although this problem most likely has a negative solution (for sufficiently
large ), it remains open up to now.

The purpose of this paper is to formulate some analogous problems and results
with emphasis on the solvability property.

The paper is organized as follows. Section 2 deals with Engel-like sequences. In
Sec. 3, we pose Burnside-type questions related to sequences introduced in Sec. 2.
Section 4 is devoted to two-generated subgroups and the associated Thompson-type
problems. In Sec. 5, we consider Burnside-type problems for particular elements of a
group. In Sec. 6, we give a general approach to characterization of radicals in finite
groups. Finally, Sec. 7 deals with variations on the Baer—Suzuki theorem which
characterizes the nilpotent radical of a finite group in terms of two conjugates of
an element. We discuss characterizations of the solvable radical in terms of a larger
number of conjugates.

2. Engel-Like Sequences

In this section, we collect facts about explicit two-variable sequences which are
related to nilpotence or solvability of finite groups and finite dimensional Lie
algebras.

Let F, = F(x,y) be the free two generator group, W = W(x,y) the free two
generator Lie algebra.

Recall that an element g of a group G is called Engel element if for every a € G
there exists n = n(a, g) such that e,(a,9) = [a,9,9,...,9] = 1. An element g of a
Lie algebra L is called Engel if for every a € L there exists n = n(a,g) such that
en(a,g) = la,g,9,...,9] = 0. If every element of a group G (a Lie algebra L) is
Engel, then G (the Lie algebra L) is called unbounded Engel. If a group G (a Lie
algebra L) satisfies the identity e,(z,y) = 1 (respectively, e, (z,y) = 0), then the
group G (the Lie algebra L) is called Engel.

Definition 2.1 [5, 37]. We say that a sequence @ = uy, U2, Ug, ..., Un, ... of ele-
ments from Fj is correct if the following conditions hold:

(i) For every group G and elements a, g € G, we have u,,(a,1) = 1 and u,(1,9) =1
for all sufficiently large n.

(ii) if a, g are elements of G such that u,(a,g) = 1, then for every m > n we have
um(a,g) = 1.

Thus, if the identity w,(x,y) = 1 is satisfied in G, then for every m > n the
identity w,,(x,y) =1 also holds in G.
A similar definition can be given for sequences @ in Lie algebra Wy = Wa(x,y).

Definition 2.2. For every correct sequence @ in Fy(x,y) (respectively, in Wa(z, y)),
define the class of groups (respectively, Lie algebras) © = ©(u) by the rule: a group
(respectively, Lie algebra) G belongs to © if and only if there is n such that the
identity w,(z,y) =1 (respectively, u,(z,y) = 0) holds in G.
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Definition 2.3. For every group (respectively, Lie algebra) G, denote by G () the
subset of G defined by the rule: g € G(%) if and only if for every a € G there exists
n = n(a, g) such that u,(a, g) = 1 (respectively, 0). Elements of G(«) are viewed as
Engel elements with respect to the given correct sequence @. We call these elements
u-Engel-like or, for brevity, #-Engel elements.

Example 2.4.

(i) If €= ey, e9,e€3,..., where
ei(w,y) = [o,y) =ayz 'y~ en(e,y) = [en1(z, ),
then ©(€) is the class of all Engel groups. In the case of finite groups, the class
©(€) coincides with the class of finite nilpotent groups [51]. Clearly, é-Engel
elements of any group G are the usual Engel elements in G. If G is finite, the
set G(€) coincides with the nilpotent radical of G [4].
(ii) The correct sequence #, where

1

ul(x7 y) = x72y7 x’ A 7un(x5 y) = [munfl(x7 y)xilayunfl(xv y) yil]’ MR

determines the class ©(@).) In the case of finite groups, ©(u) coincides with
the class of finite solvable groups. Indeed we have:

Theorem 2.5 [6, 7]. Let ui(z,y) = v 2y ‘o, ups1(x,y) = [vun(z,y)z™t,
yun(x,y)y~1]. A finite group G is solvable if and only if for some n the identity
un(z,y) =1 holds in G.

(iii) The correct sequence §, where

Sl(xa y) =T,... 73n(xa y) = [snfl(xvy)iy; sn,l(x,y)], cee

determines the class ©(5). In the case of finite groups, ©(5) also coincides with
the class of finite solvable groups. Indeed:

Theorem 2.6 [9]. Let si(z,y) = z,...,80(2,y) = [sn—1(z,y) 7Y, sSn—1(z,9)].
A finite group G is solvable if and only if for some n the identity s,(z,y) = 1
holds in G.

(iv) The correct sequence W, where

wl(xvy) = [xvy]v s 7wn(xay) = [[wnflax]v [wnflvy]]a s

and [, | stands for the Lie bracket in a Lie algebra, determines the class
O(w) of finite dimensional solvable Lie algebras over an infinite field £,
char(k) # 2, 3,5 [24]. Indeed:

Theorem 2.7 [24]. Let wi(x,y) = [, y], wnt1(z,y) = [[wn(z, y), 2], [wa(x,y), y]]-
Then a finite dimensional Lie algebra L defined over an infinite field of zero char-
acteristic or positive characteristic greater than 5 is solvable if and only if for some
n the identity wy,(x,y) =0 holds in L.
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Theorems 2.5-2.7 provide characterizations of the solvability property for finite
groups and finite dimensional Lie algebras in terms of correct two-variable sequences
[ and the corresponding classes ©(1).

Remark 2.8. Evidently, the classical Burnside problems are associated with one-
k

variable sequence b = 5(36) =1,z,2%,...,2" ...
Remark 2.9. All sequences above can be put into profinite setting, and translated
to the language of implicit operations (see the works of Almeida [1] and others).

Let us now consider the descriptions of nilpotent and solvable radicals of finite
groups. For the nilpotent radical, a description is given by Baer’s theorem. For finite
dimensional Lie algebras, the following counterpart of Baer’s theorem holds.

Definition 2.10. We say that an element y € L is strictly Engel, if it is Engel and
for any x € L the element [z, y] is Engel.

Proposition 2.11 [5]. Let L be a finite dimensional Lie algebra over a field k with
char(k) = 0. The nilpotent radical N of L coincides with the set of all strictly Engel
elements in L.

Thus, both the nilpotency of a finite group and the description of elements of
the nilpotent radical of a group are ultimately related to Engel sequence and Engel
elements. The same is true for finite dimensional Lie algebras.

For the solvable radical of a finite dimensional Lie algebra we have the following
description in terms of sequences:

Theorem 2.12 [5]. (i) Let L be a finite dimensional Lie algebra over a field k of
characteristic zero. Define U by vi(x,y) = z, vnt1(2,y) = [va(z,v), [, y]]. Then
the solvable radical R of L coincides with the set of all U-Engel elements of L.

(ii) Let L be a finite dimensional Lie algebra over an algebraically closed field k of
characteristic zero. Then the solvable radical R of L coincides with the set of all
w-FEngel elements of L.

Here 0 is as in Example 2.4(iv) above.
The following natural problems arise.

Problem 2.13. Describe the class of sequences i@ such that O(@) is the class of
finite dimensional solvable Lie algebras.

A more concrete related problem is the following.

Problem 2.14. Let L be a finite dimensional Lie algebra of classical type defined
over an infinite field of zero characteristic or positive characteristic greater than 5.
Is it true that the radical R of L coincides with the set of all W-Engel elements (as
in Ezample 4) of L?

We can also ask for which Lie algebras L the set of elements y € L, such that
wp(z,y) = 0 holds in L for all x € L and for some n = n(x,y), is a locally solvable
ideal.
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The situation with a description of the solvable radical of a finite group in terms
of correct sequences is even more unclear.

Problem 2.15. Is there a correct sequence of words qn(x,y) with the following
properties:

(i) a finite group G is solvable if and only if for some n the identity q¢,(z,y) = 1
holds in G;

(ii) the radical R of a finite group G coincides with the set of g-Engel elements, i.e.
the set of y € G such that q,(z,y) =1 for all x € G and some n = n(z,y)?

Although (ii) implies (i), we state these problems separately since the ques-
tion (ii) seems much harder.

It turns out that the sequence of Theorem 2.5 as well as the sequence which
was studied in Theorem 2.6 are not quite suitable for Problem 2.15. We thus need
more sequences satisfying conditions (i) and (ii). To obtain such sequences, a deeper
understanding of their geometric nature is required.

Problem 2.15, if settled, would give an explicit characterization of the solvable
radical of a finite group.

3. Burnside-Type Problems Related to Engel-Like Sequences

Theorem 2.7 on finite dimensional Lie algebras leads to a similar question in the
infinite-dimensional case. Namely, the remarkable Kostrikin—Zelmanov theorem on
locally nilpotent Lie algebras [31, 49, 50] and Zelmanov’s theorem [48] give rise to
the following Burnside-type problems for Lie algebras.

Problem 3.1. Suppose that L is a Lie algebra over a field k, the w,’s are defined
by the formulas of Theorem 2.7, and there is n such that the identity wy(z,y) =0
holds in L. Is it true that L is locally solvable? If k is of characteristic 0, is it true
that L is solvable?

It would be of significant interest to consider similar problems for groups. Recall
that G is an Engel group if there is an integer n such that the Engel identity
en(x,y) = 1 holds in G. Suppose a sequence ¢, (z,y) is chosen as in Theorem 2.5,
ie. qu(z,y) = up(z,y), or as in Theorem 2.6, i.e. ¢,(z,y) = sp(z,y). We call G
a quasi-Engel group (with respect to the sequence ¢, (z,y) or just quasi-Engel) if
there is an integer n such that the identity ¢, (z,y) = 1 holds in G.

The following problems imitate the analogous problems for Engel groups.

Problem 3.2. Is every quasi-Engel group locally solvable?

Problem 3.3. Is every residually finite, quasi-Engel group locally solvable?

For the class of profinite groups the situation looks more promising in view
of [46].

Conjecture 3.4. Every profinite quasi-Engel group is locally solvable.
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It is quite natural to consider restricted versions of Problems 1.3 and 3.2, as
for the Burnside problem. Let E, be the Engel variety defined by the identity
v, = 1. Let F' = F}, , be the free group with k£ generators in the variety E,. One
can prove that the intersection of all co-nilpotent normal subgroups H, in F' is
also co-nilpotent. Hence there exists a group F,El x in Fy, such that every nilpotent
group G € E,, with k generators is a homomorphic image of F,g - This implies that
all locally nilpotent groups from FE, form a variety. In other words, the restricted
Engel problem has a positive solution. The situation with the restricted quasi-Engel
problem is unclear.

Problem 3.5. Let F' = Fj,,, be the free group with k generators in the variety of
all quasi-Engel groups with fixed n. Is it true that the intersection of all co-solvable
normal subgroups in F = Fy, ., is also co-solvable?

It would be of great interest to consider the restricted quasi-Engel problem for
profinite groups.

Remark 3.6. In case of an affirmative solution of Problem 2.15, the corresponding
sequence ¢, (x,y) should be chosen for the definition of quasi-Engel groups and for
the problems above.

Note that the problem of description of the locally solvable radical as the set
of quasi-Engel elements makes sense for wide classes of groups (such as Noetherian
groups and their extensions, cf. [4, 38, 39] for the Engel counterparts, [34] for
topological groups, etc).

4. Burnside-Type Problems Related to Thompson-Type
Properties: Two Generated Subgroups

Generally speaking, one can say that Burnside problems ask to what extent finite-
ness of cyclic subgroups determine finiteness of arbitrary finitely generated sub-
groups of a group. Another approach to global properties of groups relies on the
investigation of their two-generated subgroups. For example, a finite group G is
nilpotent if and only if every two-generated subgroup of G is nilpotent.

Thus one can replace the principal Problem 1.3 by the somewhat weaker.

Problem 4.1. Is every group with uniformly bounded class of nilpotency for the
two-generated subgroups locally nilpotent?

Remark 4.2. Note that Problem 1.3 and hence, Problem 4.1, have positive solu-
tions for n = 3, [26] and n = 4, [25]. They also have positive solutions for many
classes of groups (see [10, 23, 29, 35, 36, 45, 46], etc).

The result for two-generated subgroups with respect to the solvability property
is provided by a remarkable theorem of Thompson [11, 43]:

Theorem 4.3. A finite group G is solvable if and only if every two-generated
subgroup of G is solvable.
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The similar fact holds for finite dimensional Lie algebras [21]. We can look at
this fact from the perspective of Burnside-type problems:

Problem 4.4. Let L be a Lie algebra in which every two elements generate a
solvable subalgebra of derived length at most d. Does it follow that L is locally
solvable?

The Golod example [14, 15] shows that every 2-generated subgroup being solv-
able does not imply that G is solvable for G a finitely generated residually finite
group. So we ask:

Problem 4.5. Let G be a residually finite group, and suppose {(x,y) is solvable of
derived length at most d for every pair of elements x,y € G. Does it follow that G
is solvable of derived length at most f(d) for some function f?

This reduces to considering finite solvable groups. It is also natural to consider
the following variation, where we bound the number of generators of G.

Problem 4.6. Let G be a residually finite group generated by c elements, and
suppose (x,y) is solvable of derived length at most d for every pair of elements
x,y € G. Does it follow that G is solvable of derived length at most f(c,d) for some
function f7

Again this reduces to considering finite solvable groups. In fact, some of the
above questions may even be posed in greater generality, namely for arbitrary
groups. For example:

Problem 4.7. Construct a non-locally solvable group G which has a uniformly
bounded class of solvability for the two-generated subgroups.

Of course, a counterexample for Problem 4.1 would imply the answer to Problem
4.7 since every locally solvable Engel group should be locally nilpotent [36].

5. Burnside-Type Problems Related to Weak Engel-Type
Properties: One and a Half Generated Subgroups

We start with a recent Thompson-type characterization of the solvable radical of a
finite group, obtained in [21].

Definition 5.1. Let G be a group (Lie algebra). We say that y € G is a radical
element if for any @ € G the subgroup (subalgebra) generated by x and y is solvable.

Obviously, an element 3 € G is radical if and only if the (y¢*) is solvable for
all . Note that (ym) denotes the minimal normal subgroup containing y in the

group (x,y).

Theorem 5.2 [21]. Let G be a finite group. The solvable radical R of G coincides
with the collection of all radical elements in G.
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A similar characterization holds for finite dimensional Lie algebras over a field
k of zero characteristic. However, the fact is no longer true for prime characteristic
(as noted by Premet, see also [40, p. 27]).

Theorem 5.2 implies

Corollary 5.3. Let G be a finite group, let y € G, and let <yG> denote the minimal
normal subgroup of G containing y. Then <yG> is solvable if and only if the subgroup
<y<w>> is solvable for all x € G.

The proof of Theorem 5.2 relies on the so-called “one and a half generation”
of almost simple groups, proved by Guralnick and Kantor [20] using probabilistic
arguments (see the survey [42] for further background). Now we put the notion of
a radical element into a more general context which preserves the flavor of one and
a half generation.

In the previous section, we considered the properties of the whole group G
assuming certain properties of two-generated subgroups. Now we fix an element
g € G, assume that its behavior with respect to any element x € G is prescribed,
and we ask if the normal closure of g in G satisfies the same properties. This local-
global behavior is a kind of a Burnside-type problem.

Let X be a class of groups. Let G be a group.

Definition 5.4. An element y € G is called locally X-radical if (y{*)) belongs
to X for every z € G. An element y € G is called globally X-radical if <yG>
belongs to X.

So we have local and global properties. Obviously, if a class X is closed under
subgroups then a globally X-radical element is automatically locally radical.

The main problem is to study for which classes of groups the converse property
holds.

Let X be the class of locally nilpotent groups. In this case, we call the element
y above locally radical. Let y € <y<w>>. Then it is easy to see that y is an Engel
element.

So our main problem for an arbitrary group G with respect to the class of locally
nilpotent groups is as follows.

Does any locally radical element of a group G lie in a locally nilpotent normal
subgroup of G? That is, does it lie in the locally nilpotent radical of G?

In this form, the answer is negative due to Golod’s example. However, there are
many classes of groups with the property that any Engel element lies in the locally
nilpotent radical. For example, these are solvable groups, noetherian groups, linear
groups, PI-groups, etc. For these groups, a locally radical element is also globally
radical. Other local-global problems appear if the classes of nilpotency for locally
radical elements are uniformly bounded.

Now let X be the class of locally solvable groups. In this case, y is a locally
radical element (of a solvable type) if <y<x>> is locally solvable, and y is a globally
radical element if <yG> is locally solvable.
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We have here the problem:

Problem 5.5. (i) Determine for which groups every locally radical element is glob-
ally radical.

(ii) Determine for which groups every radical element is globally radical.

(iii) Determine for which groups every locally radical element is a radical
element.

Remark 5.6. Note that there exists a group G = (x,y) such that (z{)) is locally
solvable but G is not solvable [32]. Moreover, his construction gives examples of
groups G = (z, ) such that (z(%) is locally finite and even a p-group, but G is not
finite.

In infinite groups, there need not be a locally solvable radical, i.e. a maximal
locally solvable normal subgroup (see [8]). So item (ii) deserves to be distinguished
separately:

Question 5.7. Which groups G satisfy the condition that the subgroup (y%) is
locally solvable for any radical element y € G?

Below are several questions of this type for the case of residually finite groups
(cf. [21]).

We have a necessary condition for (y“) to be solvable. If (y“) is solvable of
derived length d, then (z,y) is solvable of derived length at most d + 1 for every
z €.

Question 5.8. Let G be a residually finite group and suppose y € G satisfies (x, y)
is solvable of derived length at most d (for some positive integer d independent of
x). Does it follow that (y“) is solvable of derived length at most f(d) for some
function f?

This question has a negative answer. The following example is due to an
unknown referee of the paper [21].

Let B, be the Burnside group of exponent p with np generators. Denote by
T',, its maximal finite homomorphic image. Clearly, there is an automorphism of T,
of order p which acts as a permutation which is a product of n p-cycles on the np
generators. Denote this automorphism by y,,. Take G,, to be the semidirect product
of I',, with (y,). Then the exponent of G,, is p?, and in particular, G,, is a p-group.

Take an arbitrary z € T, and consider the subgroup H = (z,y,) in G,.
Then H is generated by (y,) and Hy, where Hy is generated by p elements
{x,xy",a:yi, . 7$y571}.

Since the number of generators of Hy coincides with its exponent p, the order
of Hy is bounded by some function of p, independently of z. Correspondingly, the
order of H is bounded by a function of p. The group H is a finite p-group, and thus,
nilpotent. Hence, the derived length of H = (x,y,) is bounded by some function

f(p) for any x.
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Now consider the solvable groups I',, and take the direct product I' of all I',,.
Let G be a semidirect product of I' and the automorphism y, which acts on each
Iy as yn.

The group G is locally finite p-group, and locally solvable. Then (x, y) is solvable
for any z, and the derived length of (z,y) is bounded by f(p). However, the group
G is not solvable and (y) is not solvable as well.

Thus, we state the following questions:

Problem 5.9. Let G be a residually finite group and suppose y € G satisfies (x,y)
is solvable of derived length at most d (for some positive integer d independent of
x € G). Does it follow that (y©) is locally solvable?

Problem 5.10. Let G be a residually finite group generated by c elements. Fix
a positive integer d and an element y € G. Suppose that for all x € G, (x,y) is
solvable of derived length at most d. Does it follow that (y©) is solvable of derived
length at most f(c,d) for some function f?

Note that this reduces to solving the problem for finite groups. An affirmative
answer would give a characterization of the set of elements in a residually finite
group whose normal closure is solvable.

Some of the questions above may be posed even in greater generality, namely
for arbitrary groups.

6. Finite Groups: The General Situation

Let S be a set of finite simple groups. Denote the class of finite groups G such that
all composition factors of G belong to S by X = X(5). It is easy to see that such
X is closed under normal subgroups, homomorphic images and extensions. On the
other hand, if a class X is closed under these three operators and S is the set of all
simple groups in X, then X = X(9).

It is clear that such class X is a radical class. This means that in every finite
group G there is a unique maximal normal subgroup X(G) which belongs to X. We
want to characterize elements which constitute X(G).

Following the previous section, an element y € G is locally X-radical if <y<w>>
belongs to X for every x € G. An element y € G is called globally radical if (y“)
belongs to X.

We will use the basic properties of the generalized Fitting subgroup, F*(G) of
a finite group G. See [3].

Theorem 6.1. Let X be a class of finite groups closed under homomorphic images,
normal subgroups and extensions (equivalently, let X be a class of finite groups with
composition factors in some set S of simple groups).
(i) If G is a finite group then every locally X-radical element belongs to X(G).
(ii) If in addition, X is closed under subgroups, then X(G) coincides with the set
of all X-locally radical elements.



1044 R. Guralnick, E. Plotkin € A. Shalev

Remark 6.2. Theorem 5.2 is a particular case of Theorem 6.1 if X is the class of
solvable groups. In this case S consists of all cyclic groups of prime order. We can
take also classes of p-groups, p is prime, of m-groups, and other interesting classes.
However, Theorem 6.1 does not cover the class of nilpotent groups where we have
to use Baer’s theorem for X(G) = F'(G), the Fitting subgroup.

Proof If X is closed under subgroups, then (g%) in X implies that (¢} is in X,
and so we see that the second statement follows from the first. We shall prove the
first implication, i.e. we have to prove that if G is a finite group and g € G with
(g'®)) in X for all 2 € G, then (g%) is in X.

So assume that G is a minimal counterexample to the first statement. This
means that there exists a locally X-radical element g in G' with (¢%) not in X.
Consider the properties of this group G.

Reduction 1: Take an arbitrary locally X-radical element g in G such that (g%)
is not in X. Show that G = (¢%). If not, set H = (¢¢) and suppose that H < G.
Take an arbitrary element h € H. Then h = [] g; where all g; are conjugate to g.
Hence, all g; are locally X-radical elements. Since H < G, then all elements g; lie
in the radical X(H). Then, clearly, h lies in X(H). Therefore, (¢) = H = X(H)
and H is in X, a contradiction, and we may assume that G = (g%).

Reduction 2: G has a unique minimal normal subgroup. If not, G has two normal
subgroups N; and Ny with trivial intersection. Consider Ny Ny/Ny ~ Nj. Since
G/N3 lies in X, then N; € X. Since G/N; € X, we have G € X, a contradiction. In
particular, we may assume that every two normal subgroups in G has a non-trivial
intersection.

Reduction 3: X(G) = 1.
If not, pass to G/X(G) and so by induction, ¢X(G) is in X(G/%(G)) = 1, whence
g € X(Q).

Reduction 4: F(G) = Z(G).

Suppose that the Fitting subgroup F(G) # 1. Suppose that F(G) # Z(G). Since
each Sylow subgroup of F(G) is normal in G, it follows that F(G) is a p-group for
some prime p. Since G = (g), it suffices to show that g commutes with F/(G). If
not, then taking y € F(G) with [g,y] # 1 shows that 1 # g~ 'g¥ and so (¢¢¥) has
a composition factor of order p. Thus X(G) > F(G) # 1, a contradiction.

We now complete the proof. Since G is not abelian, and since G/Z(G) acts
faithfully on F*(G), there is a component @ of G (otherwise, F*(G) = F(G) =
Z (@) and G is abelian).

If Z(G) # 1, then Z(G)NQ # 1 (otherwise the normal closure of @ would be a
minimal normal subgroup).

We may assume that g does not commute with @ (for if g commuted with every
component of G, then so would G' = (g%), which is a contradiction). Let H = (Q, g).
Set N to be the (central) product of the distinct conjugates of @ under (g). Then N



Burnside-Type Problems Related to Solvability 1045

is clearly perfect and H/N is cyclic (generated by g). Also, Z(N) = ®(N) < ®(H)
and N/Z(N) is a minimal normal subgroup of H/Z(N). So applying [21, Lemma
3.4] to H/Z(N), we see that H = (g, h) for some h € N.

We claim that H = J := (g"). Clearly, J is normal in H (since it is normalized
by g € J and by h (by definition)). Clearly, H/J is abelian (since g € J and so
[h,g] € J). Thus, J contains [H, H] = N. Now H = (Q, g) = (N, g), soonce N < J,
since g isin J, H = J.

Since H = (g'"), all composition factors of H are X-groups. If Z(G) # 1, then
Z(G) is an X-group and if Z(G) = 1, then @ is an X-group, @ lies in X(G). In
either case, X(G) # 1, a contradiction.

7. Variation on the Baer-Suzuki Result

Recall that the Baer—Suzuki theorem [19] characterizes the nilpotent radical of a
finite (or linear) group by the property that g is in the nilpotent radical of G if
and only if any two conjugates of g generate a nilpotent group. The proof of this is
relatively elementary.

One can ask if there is a similar result for the characterization of the solvable
radical. Note that, if g2 = 1, then any two conjugates of g generate a dihedral group
and in particular, a metabelian group. Hence, a similar assertion for two conjugates
does not characterize the solvable radical.

In [16, 17], the following theorem is established:

Theorem 7.1. Let G be a finite (or linear) group. Then g is in the solvable radical
of G if and only if any eight conjugates of g generate a solvable group. Thus, a group
G is solvable if and only if in any conjugacy class every eight elements generate a
solvable subgroup.

Remark 7.2. In [12], a similar result for 10 conjugates is proved. The proof in [12]
does not use the Classification of finite simple groups. However, better estimates
certainly depend on the Classification.

Moreover, Flavell, Guest and Guralnick [13] and, independently, Gordeev et al
[18] announced a sharp analog of the Baer—Suzuki theorem:

Theorem 7.3. Let G be a finite (or linear) group. Then g is in the solvable radical
of G if and only if any four conjugates of g generate a solvable group.

The example of ¢ a transposition in S,, (n > 4) shows that four is best possible.
However, this is rare. Indeed, one has the following result [13].

Theorem 7.4. Let G be a finite group. Let g be an element of prime order p > 3.
If any two conjugates of g generate a solvable group, then g is in the solvable radical

of G.

There are also other criteria when two conjugates are enough (cf. [17,
Theorem 1.15]).
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Note the following variation of Baer—Suzuki result (see [22, 47]).

If g is a p-element, then g is in the nilpotent radical of the finite group G if and
only if [g, z] is a p-element for all z € G.

These results use the 3/2 generation theorem of Guralnick and Kantor [20] and
the Classification of finite simple groups.
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