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Abstract

We characterise the class of finite solvable groups by two-variable identities in a way similar
to the characterisation of finite nilpotent groups by Engel identities. Let u1 = x−2y−1x,
and un+1 = [xunx−1, yuny−1]. The main result states that a finite group G is solvable
if and only if for some n the identity un(x, y) ≡ 1 holds in G. We also develop a new
method to study equations in the Suzuki groups. We believe that, in addition to the main
result, the method of proof is of independent interest: it involves surprisingly diverse
and deep methods from algebraic and arithmetic geometry, topology, group theory, and
computer algebra (Singular and MAGMA).
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Identities for finite solvable groups

1. Introduction

1.1 Statement of the problem and main results
In this paper we characterise solvable groups in the class of finite groups by identities in two variables.
The starting point for this research is the following classical fact: the class of finite nilpotent groups
is characterised by Engel identities. To be more precise, Zorn’s theorem [Zor36] (see also [Hup79,
Satz III.6.3]) says that a finite group G is nilpotent if and only if it satisfies one of the identities
en(x, y) = [y, x, x, . . . , x] = 1 (here [y, x] = yxy−1x−1, [y, x, x] = [[y, x], x], etc.).

Our goal is to obtain a similar characterisation of solvable groups in the class of finite groups.
We say that a sequence of words u1, . . . , un, . . . is correct if uk ≡ 1 in a group G implies that
um ≡ 1 in a group G for all m > k. We have found an explicit correct sequence of words
u1(x, y), . . . , un(x, y), . . . such that a group G is solvable if and only if for some n the word un

is an identity in G.
B. Plotkin suggested some Engel-like identities that could characterise finite solvable groups

(see [PPT99, GKNP00]). In the present paper we establish B. Plotkin’s conjecture (in a slightly
modified form).

Define

u1(x, y) := x−2y−1x, and inductively un+1(x, y) := [xun(x, y)x−1, yun(x, y)y−1]. (1.1)

Note that sequence (1.1) is correct.
Our main result is the following.

Theorem 1.1. A finite group G is solvable if and only if for some n the identity un(x, y) ≡ 1 holds
in G.

Theorem 1.1 provides an effectively presented, recursively defined, Engel-like identity un(x, y) ≡ 1
characterising solvable groups. The effective form of un(x, y) is a crucial fact; it gives a way to find
a counterpart of Engel-like notions in the theory of solvable groups and Lie algebras. As a result,
the theorem:

• gives rise to a vast spectrum of Burnside-type problems for solvable groups and Lie algebras
as Zorn’s theorem does for nilpotent groups;

• yields an explicit profinite identity defining the class of prosolvable groups;
• leads to a conjectural description of the solvable radical of a finite group (cf. Baer’s theorem

for the nilpotent radical of a finite group [Bae57]).

Note two obvious properties of the initial word w = x−2y−1x: (1) if a group G satisfies the
identity w ≡ 1, then G = {1}; (2) the words w and x generate the free group F = 〈x, y〉.
Thus, w can also be used as the initial term of a sequence characterising finite nilpotent groups,
see Proposition A.1. We shall discuss the choice of the initial word below. We conjecture after long
computer experiments that Theorem 1.1 holds for any sequence formed as in (1.1) from any initial
word not of the form w = (x−1y)k (k ∈ N).

Historical remarks. Our results can be viewed as a natural development of the classical
Thompson–Flavell theorem [Tho68, Fl95], stating that if G is a finite group in which every two ele-
ments generate a solvable subgroup, then G is solvable. Of course, Theorem 1.1 immediately implies
this theorem (see Corollary A.16 for an analogous statement in the pro-finite setting). As mentioned
in [BW88], the Thompson–Flavell theorem, together with [Bra81, Satz 2.12], implies that finite solv-
able groups can be characterised by a countable set of two-variable identities. (This fact also follows
from [Neu67, Lemma 16.1 and Theorem 16.21] saying that an n-generator group G belongs to a
variety V if and only if all n-variable identities from V are fulfilled in G.) However, this does not
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provide explicit two-variable identities for finite solvable groups. Furthermore, in [BW88], Brandl
and Wilson constructed a countable set of words wn(x, y) with the property that a finite group G is
solvable if and only if for almost all n the identity wn(x, y) ≡ 1 holds in G. As in their construction
there is no easily described relationship between terms of wn(x, y), the question whether one can
characterise finite solvable groups by sequences of identities fitting into a simple recursive definition
remained open.

Recently, Lubotzky proved that for any integer d � 2 the free pro-solvable group F̂d(S) can
be defined by a single pro-finite relation [Lub01, Proposition 3.4]. Using this proposition and
Thompson’s theorem, one can derive the existence of a needed sequence of identities character-
ising finite solvable groups (Lubotzky’s result does not give, however, any candidate for such a
sequence).1

One can mention here some more cases where certain interesting classes of finite groups were
characterised by two-variable commutator identities [Bra81, BP91, BN86, Gup66, GH67, Nik83,
Nik85]; see [GKNP00] or the above cited papers for more details.

Although Theorem 1.1 is a purely group-theoretic result, its proof involves surprisingly diverse
methods of algebraic geometry, arithmetic geometry, group theory, and computer algebra (note,
however, a paper of Bombieri [Bom80] that served for us as an inspiring example of such an
approach). We want to emphasise a special role played by problem-oriented software (in partic-
ular, the packages Singular and MAGMA): not only proofs but even the precise statements of our
results would hardly have been found without extensive computer experiments.

We believe that some of the above techniques yield outcomes which are of interest in their own
right. For example, the geometry of solutions of certain equations in Suzuki groups leads to a new
presentation for Sz(8), see § 1.4 below; results on fixed points of fractional powers of Frobenius
acting on an open variety may have more applications, etc.

The results of this paper were announced in the note [BGGKPP03].
Clearly, in every solvable group the identities un(x, y) ≡ 1 are satisfied from a certain n ∈ N

onward. We shall deduce the non-trivial ‘if’ part of the theorem from the following.

Theorem 1.2. Let G be one of the following groups:

(1) G = PSL(2, Fq) where q � 4 (q = pn, p a prime);

(2) G = Sz(2n), n ∈ N, n � 3 and odd;

(3) G = PSL(3, F3).

Then there are x, y ∈ G such that u1(x, y) �= 1 and u1(x, y) = u2(x, y).

Here PSL(n, Fq) denotes the projective special linear group of degree n over Fq. For q = 2m

we denote by Sz(q) the Suzuki group (the twisted form of 2B2, see [HB82, XI.3]).
Let us show that Theorem 1.2 implies Theorem 1.1.
Assume that Theorem 1.2 holds, and suppose that there exists a non-solvable finite group in

which the identity un ≡ 1 holds. Denote by G a minimal counterexample, that is, a finite non-
solvable group of the smallest order with identity un ≡ 1. Such a G must be simple. Indeed, if H is
a proper normal subgroup of G, then both H and G/H are solvable (because any identity remains
true in the subgroups and the quotients). However, the list of groups in Theorem 1.2 contains

1After this paper was finished J. N. Bray et al. proved that the sequence {sn} defined by the rule s1 = x, sn+1 =
[s−y

n , sn] also characterizes the class of finite solvable groups [BWW05]. Their method is also based on reducing to
Thompson’s list of minimal non-solvable groups, but instead of solving the equation s1 = s2 in each group G from
that list, as in our Theorem 1.2, they prove that for each such G there is y ∈ G such that the map ϕy : G → G defined
by ϕy(x) = [x−y, x] has a non-trivial periodic point.
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Thompson’s list of finite simple groups all of whose subgroups are solvable [Tho68], hence G is one
of the groups (1)–(3). As sequence (1.1) is correct, the assumption u1(x, y) = u2(x, y) implies that
u2(x, y) = u3(x, y) = · · · . From u1 �= 1 it follows that the identity un ≡ 1 does not hold in G,
a contradiction.

Theorem 1.2 admits a generalisation which can easily be deduced from the classification of finite
simple groups.

Corollary 1.3. Let G be a finite non-abelian simple group. Then there are x, y ∈ G such that
u1(x, y) �= 1 and u1(x, y) = u2(x, y).

For small groups from the above list it is an easy computer exercise to verify Theorem 1.2.
Altogether, for example, there are 44 928 suitable pairs x, y in the group PSL(3, F3); here is one of
them:

x =


0 0 1

0 1 0
1 0 1


 , y =


2 0 2

0 1 1
2 1 1


 .

The general idea of our proof can roughly be described as follows. For a group G in the list
of Theorem 1.2, using its standard matrix representation over Fq, we regard the entries of the
matrices corresponding to x and y in this representation as variables, and thus interpret solutions
of the equation u1(x, y) = u2(x, y) as Fq-rational points of an algebraic variety. Lang–Weil type
estimates [LW54] for the number of rational points on a variety defined over a finite field guarantee
in appropriate circumstances the existence of such points for big q. Small values of q are checked case
by case. Of course, we are faced here with the extra difficulty of having to ensure that u1(x, y) �= 1
holds. This is achieved by taking the x, y from appropriate Zariski-closed subsets only. In the next
two sections we discuss more details.

1.2 The case G = PSL(2, Fq)
Here we explain a more general setup which will also shed some light on the somewhat peculiar
choice of the word u1 in (1.1).

Let w be a word in x, x−1, y, y−1. Let G be a group and x, y ∈ G. Define

uw
1 (x, y) := w, and inductively uw

n+1(x, y) := [xuw
n (x, y)x−1, yuw

n (x, y)y−1].

Let R := Z[t, z1, z2, z3, z4] be the polynomial ring over Z in five variables. Consider further the two
following 2× 2 matrices over R.

x(t) =
(

t −1
1 0

)
, y(z1, . . . , z4) =

(
z1 z2

z3 z4

)
.

Let a be the ideal of R generated by the determinant of y and by the four polynomials arising
from the matrix equation uw

1 (x, y) = uw
2 (x, y), and let Vw ⊂ A5 be the corresponding closed set of

five-dimensional affine space. Further, let a0 be the ideal of R generated by the determinant of y and
by the matrix entries arising from the equation uw

1 (x, y) = 1, and let Vw
0 ⊂ A5 be the corresponding

closed set. Our approach aims at showing that Vw\Vw
0 has points over finite fields. We have therefore

searched for words w satisfying dim(Vw)−dim(Vw
0 ) � 1 and also dim(Vw) � 1. We have only found

the following words with this property:

x−2y−1x, y−1xy, yx−1y−1, yxy−1, x−1yxy−1x, x−1yx−1y−1x. (1.2)

The extra freedom one might get by introducing variables for the entries of x does not lead to more
suitable results. Indeed, elements of GL(2) act on the corresponding varieties by conjugation, and
every matrix of determinant 1 except ±1 is conjugate (over any field) to a matrix with entries as
in x(t).
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For the last five words in (1.2), the corresponding closed sets Vw have no absolutely irreducible
components outside Vw

0 and, in fact, the analogue of Theorem 1.2 does not hold for them. For the
first word w = x−2y−1x the closed set Vw has two irreducible components. One of them is Vw

0 ,
the second, which we call S, has dimension 2 and is absolutely irreducible. The map ϕ : S → A1\{0},
ϕ(x, y) = z1, is a fibration with curves of genus 8 as fibres. We now consider the fibre ϕ−1(1) and
thus arrive at the matrices of the form

x(t) =
(

t −1
1 0

)
, y(b, c) =

(
1 b
c 1 + bc

)
.

Note that the obtained curve does not intersect Vw
0 (indeed, Vw

0 is given by the equation w = 1,
which implies that y(b, c) = x(t)−1, and this is impossible with the above choice of x(t) and y(b, c)).

To give the precise form of this curve which is used in computations, we write the equation
u1(x, y) = u2(x, y) in an equivalent form

x−1yx−1y−1x2 = yx−2y−1xy−1. (1.3)

On substituting x(t) instead of x and y(b, c) instead of y, we obtain a matrix equation giving
rise to the following.

Definition 1.4. We denote by I ⊂ Z[b, c, t] the ideal generated by the four polynomials arising
after equating the matrix entries in (1.3), and let C be the corresponding algebraic set.

The following theorem will be proved in § 2:

Theorem 1.5. For any prime p the reduction of C modulo p is an absolutely irreducible curve.

We now use the classical Hasse–Weil bound (in a slightly modified form adapted for singular
curves, cf. [FJ86, Theorem 3.14], [AP96] and [LY94]).

Lemma 1.6. Let D be an absolutely irreducible projective algebraic curve defined over a finite
field Fq, and let Nq = #D(Fq) denote the number of its rational points. Then |Nq−(q+1)| � 2pa

√
q,

where pa stands for the arithmetic genus of D (in particular, if D is a plane curve of degree d,
pa = (d− 1)(d − 2)/2).

In fact, we need an affine version of the lower estimate of Lemma 1.6 (cf. [FJ86, Theorem 4.9
and Corollary 4.10]) based on the fact that an affine curve C has at most deg(C) rational points
less than the projective closure C.

Corollary 1.7. Let C ⊂ An be an absolutely irreducible affine curve defined over the finite
field Fq and C ⊂ Pn the projective closure. Then the number of Fq-rational points of C is at least
q + 1− 2pa

√
q − d where d is the degree and pa the arithmetic genus of C.

To apply Lemma 1.6 (or Corollary 1.7) we have to compute the arithmetic genus of the curve C
(or the degree of some plane projection of C) and to prove that the curve is absolutely irreducible
(which is the most technically difficult part of the proof, see § 2 for more details). Computations
give d = 10 and pa = 12. This implies that for q > 593 there exist enough Fq-rational points on C
to prove Theorem 1.2 in the case of the groups PSL(2).

Remark 1.8. Consider the initial word w = [x, y]. The ideal a corresponding to the variety Vw

contains the polynomial (−tz+v−w)(v+w). Let Vw
1 be the closed set defined by the ideal generated

by a and v + w. This variety has five components: one is two-dimensional and equals Vw
0 , and four

others are of dimension 0; each of them decomposes into four absolutely irreducibles components over
a splitting field of the polynomial 5z4+20z3+36z2+32z+16. Let Vw

2 be the closed set defined by the
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ideal generated by a and −tz+v−w. This variety also has five components, all of dimension 1; one of
them is contained in Vw

0 and each other decomposes into three absolutely irreducibles components
over the splitting field of the polynomial t2 + t − 1. As none of the components, except for that
corresponding to trivial solutions of u1 = u2, is absolutely irreducible, our method fails for the
initial word w = [x, y]. In fact, the analogue of Theorem 1.2 does not hold for this word.

1.3 The case G = Sz(q)
To prove Theorem 1.2, the Suzuki groups G = Sz(q) (q = 2n, n odd) provide the most difficult case.
This is due to the fact that although Sz(q) is contained in GL(4, Fq), it is not a Zariski-closed set.
In fact the group Sz(q) is defined with the help of a field automorphism of Fq (the square root of
the Frobenius), and hence the standard matrix representation for Sz(q) contains entries depending
on q. We shall describe now how our problem can still be treated by methods of algebraic geometry.

Let R := F2[a, b, c, d, a0, b0, c0, d0] be the polynomial ring over F2 in eight variables. Let π : R→ R
be its endomorphism defined by π(a) = a0, π(a0) := a2, . . . , π(d) := d0, π(d0) := d2. Let F be the
algebraic closure of F2 and consider a, . . . , d0 as the coordinates of eight-dimensional affine space
A8 over F. The endomorphism π defines an algebraic bijection α : A8 → A8. The square of α is the
Frobenius automorphism on A8 (note that a similar operator appears in [DL76, § 11]). Let p ∈ A8

be a fixed point of αn, then its coordinates are in F2n if n is odd and in F2n/2 if n is even.
Consider further the two following matrices in GL(4, R):

x =




a2a0 + ab + b0 b a 1
aa0 + b a0 1 0

a 1 0 0
1 0 0 0


 , y =




c2c0 + cd + d0 d c 1
cc0 + d c0 1 0

c 1 0 0
1 0 0 0


 . (1.4)

The matrices x, y also define maps from A8 to GL(4, F). It can easily be checked that the matrices
corresponding to a fixed point of αn (n odd and n � 3) lie in Sz(2n).

Definition 1.9. Let a be the ideal of R generated by the 16 polynomials arising from the matrix
equation (1.3), where x and y are taken from (1.4), let a′ = a : a3c2

0, and let V (respectively V ′)
denote the closed set in A8 corresponding to a (respectively a′). Let U = V ′ \ S where S is defined
by the equation cc0 = 0.

The varieties V ′ and U are needed to understand the geometric structure of V . In fact, V ′

is the unique top-dimensional component of V , and U is a smooth open subset of V ′. Note that
detecting the varieties V ′ and U as well as proving its properties required in an essential way the
computational power of Singular. The following theorem will be proved in § 3.
Theorem 1.10. We have:

(1) dim(V ) = dim(V ′) = 2;
(2) π(a) = a, π(a′) = a′.

We thus see that α defines an algebraic map α : V → V . Our task now becomes to show that
αn (n odd and n � 3) has a non-zero fixed point on the surface V . Our basic tool is the Lefschetz
trace formula resulting from Deligne’s conjecture proved by Fujiwara [Fu97]. To apply this formula,
we replace V by U .

Theorem 1.11. The variety U is a smooth, affine, absolutely irreducible surface invariant under α.
We have b1(U) � 675 and b2(U) � 222.

Here bi(U) = dim H i
ét(U, Q�) stand for the �-adic Betti numbers of U . We use results of

Adolphson–Sperber [AS88] and Ghorpade–Lachaud [GL02] to get the above estimates.
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As U is non-singular, the ordinary and compact Betti numbers of U are related by Poincaré
duality, and we have bi

c(U) := dimH i
c(U, Q�) = b4−i(U). As U is affine, bi(U) = 0 for i > 2.

As U is absolutely irreducible, b0(U) = 1 and the Frobenius acts on the one-dimensional
vector space H0

ét(U, Q�) as multiplication by 4. The operator α induces linear self-maps of all these
cohomology groups. The above properties of U imply that the Lefschetz trace formula holds in the
form

# Fix(U, n) =
4∑

i=0

(−1)i tr(αn | H i
c(U, Q�)),

where Fix(U, n) is the set of fixed points of αn acting on U (n > 1 is an odd integer).
Note that α acts on H0

ét(U, Q�) as multiplication by 2. (Indeed, if it were multiplication by (−2),
for a sufficiently large power of α the right-hand side of the trace formula would be negative.) Hence,
αn acts as multiplication by 2n. Thus tr(αn | H4

c (U, Q�)) = 2n.
We infer from Deligne’s estimates for the eigenvalues of the endomorphism induced by α on

étale cohomology the following inequality:

|#Fix(U, n)− 2n| � b1(U)23n/4 + b2(U)2n/2.

An easy estimate then shows that #Fix(U, n) �= 0 for n > 48. The cases n < 48 are checked
with the help of MAGMA, and this finishes the proof of Theorem 1.2 (and hence Theorem 1.1).
More details can be found in § 3.

Remark 1.12. As a by-product of these computations, we found the first terms of the zeta-function
of the operator α acting on the set U . This is a rational function defined by

ZU (α, T ) := exp
(
−

∞∑
n=1

# Fix(U, n)
n

T n

)
.

We have found that ZU (α, T ) equals

(1−2T )(1−T )(1−T 2)8(1+T 2)3(2T 4+2T 2+1)(4T 8+2T 4+1)(2T 2+2T +1)(8T 6+4T 5+T +1)
(1−2T 2)3

up to terms of order T 33. Note that the absolute values of the zeros and poles of this rational
function are all equal to 1, 1/2, 1/

√
2, or 1/ 4

√
2, as general theory predicts. This formula suggests

heuristic values b4
c(U) = 1, b3

c(U) = 6, b2
c(U) = 43.

1.4 Analogues, problems, and generalisations
First, let us mention the following analogue of Levi–van der Waerden’s problems for nilpotent groups
(cf. [Hup79, § 3.6]).
Problem 1.13. Fix n ∈ N and assume that a finite group G satisfies the identity un(x, y) ≡ 1.
What can be said about the solvability length of G?

If n = 1, then G = {1}. If n = 2, then G is nilpotent of class at most 3.
Further on, Theorem 1.1 admits some natural analogues in Lie-algebraic and group-schematic

settings [GKNP00]. In particular, the following analogue of the classical Engel theorem on nilpotent
Lie algebras is true.

Theorem 1.14 [GKNP00]. Let L be a finite-dimensional Lie algebra defined over an infinite field
k of characteristic different from 2, 3, 5. Define

v1 = [x, y], vn+1 = [[vn, x], [vn, y]] (n > 1). (1.5)
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Then L is solvable if and only if for some n one of the identities vn(x, y) ≡ 0 holds in L. (Here [ , ]
are Lie brackets.)

A much more challenging question is related to the infinite-dimensional case. Namely, the
remarkable Kostrikin–Zelmanov theorem on locally nilpotent Lie algebras [Kos86, Zel90, Zel91]
and Zelmanov’s theorem [Zel88] lead to the following.

Problem 1.15. Suppose that L is a Lie algebra over a field k, the vn are defined by formulas (1.5),
and there is n such that the identity vn(x, y) ≡ 0 holds in L. Is it true that L is locally solvable?
If k is of characteristic 0, is it true that L is solvable?

Of course, it would be of significant interest to consider similar questions for arbitrary groups.
We call G an Engel group if there is an integer n such that the Engel identity en(x, y) ≡ 1 holds

in G.
We call G an unbounded Engel group if for every x, y ∈ G there is an integer n = n(x, y) such

that en(x, y) = 1.
We introduce the following.

Definition 1.16. We call G a quasi-Engel group if there is an integer n such that the identity
un(x, y) ≡ 1 holds in G.

Definition 1.17. We call G an unbounded quasi-Engel group if for every x, y ∈ G there is an integer
n = n(x, y) such that un(x, y) = 1.

Problem 1.18. Is every Engel group locally nilpotent?

Problem 1.19. Is every quasi-Engel group locally solvable?

A property is said to hold locally if it holds for all finitely generated subgroups.
Problem 1.18 has remained open for a long time, cf. [Plo58]. The answer in general is most likely

negative, however, some positive results are known [BM98, Gru53, Plo54, Plo55, Wil91, WZ92], etc.
In the solvable case the situation is even less clear. We dare to state the following.

Conjecture 1.20. Every residually finite, quasi-Engel group is locally solvable.

A group is said to be residually finite if the intersection of all its normal subgroups of finite
index is trivial.

For pro-finite groups the situation looks more promising.

Theorem 1.21 [WZ92, Theorem 5]. Every pro-finite, unbounded Engel group is locally nilpotent.

Conjecture 1.22. Every pro-finite, unbounded quasi-Engel group is locally solvable.

It is quite natural to consider restricted versions of Problems 1.18 and 1.19 as is considered for
the Burnside problem. Let En be the Engel variety defined by the identity en ≡ 1. Let F = Fk,n

be the free group with k generators in the variety En. One can prove that the intersection of all
co-nilpotent normal subgroups Hα in F is also co-nilpotent. Hence, there exists a group F 0

n,k in
En such that every nilpotent group G ∈ En with k generators is a homomorphic image of F 0

n,k.
This implies that all locally nilpotent groups from En form a variety. In other words, the restricted
Engel problem has a positive solution. The situation with the restricted quasi-Engel problem is
unclear.

Problem 1.23. Let F = Fk,n be the free group with k generators in the variety of all quasi-Engel
groups with fixed n. Is it true that the intersection of all co-solvable normal subgroups in F = Fk,n

is also co-solvable?
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Our main theorem can be reformulated in pro-finite terms.

Theorem 1.24. Let F = F (x, y) denote the free group in two variables, and let F̂ be its pro-
finite completion. Let v1, v2, . . . , vm, . . . be any convergent subsequence of (1.1) with limit f from F̂ .
Then the identity f ≡ 1 defines the pro-finite variety of pro-solvable groups.

(See §A.2 for more details.)
It would be of great interest to consider the restricted quasi-Engel problem for pro-finite groups.

Remark 1.25. There is no sense in generalising Conjecture 1.22 too far: from the Golod–Shafarevich
counterexamples one can deduce an example of an unbounded quasi-Engel group that is not locally
nilpotent (and, hence, not locally solvable). We thank B. Plotkin for this observation.

Consider an interesting particular case of linear groups.

Corollary 1.26. Suppose that G ⊂ GL(n,K) where K is a field. Then G is solvable if and only
if it is quasi-Engel.

Proof. The ‘only if’ part is obvious. The ‘if’ part is an immediate consequence of Theorem 1.1
and Platonov’s theorem [Pla67] stating that every linear group over a field satisfying a non-trivial
identity has a solvable subgroup of finite index. (Of course, if K is of characteristic zero, the assertion
follows from the Tits alternative [Tit72].)

Here is one more application of Theorem 1.2: it generates short presentations of finite simple
groups. Let B be the group generated by x, y with the single relation u1(x, y) = u2(x, y), that is
B = 〈x, y | u1 = u2〉. The solvable quotients of B are all cyclic, but B has at least all minimal
simple groups from Thompson’s list as quotients. For example, we found that PSL(2, F5) = 〈x, y |
u1 = u2, x

3 = y2 = 1〉 and

Sz(8) = 〈x, y | u1 = u2, x
7 = y5 = (xy2)5 = (x−1y−1xy2)2 = 1〉.

Notation. Owing to the extensive use of the Singular package, our notation sometimes differs
from the standard notation: for example, in the output of computer sessions, powers such as a12

are denoted as a12. We refer the reader to [GP02a, GP02b, GPS01] for definitions of Singular

commands and their usage, and to [Buc65, GP96, GP98, GP02a] for details on Gröbner bases.
All other notation is more or less standard.
Rings and fields. All rings are assumed commutative with 1; Z, Q, Fq denote the ring of integers,

the field of rational numbers, the field of q elements, respectively. The term k denotes a (fixed)
algebraic closure of a field k.

Ideals and varieties. If I is an ideal in R and i : R → S is a ring homomorphism, IS stands for
the image of I under i. The ideal generated by f1, . . . fk is denoted 〈f1, . . . , fk〉.

For f ∈ R we denote I : f∞ =
⋃∞

n=1 I : fn. If R is noetherian, the chain of ideals I : f ⊆ I :
f2 ⊆ . . . stabilises, and we have I : f∞ = I : fn for some n.

The terms An and Pn denote affine and projective spaces. The term C denotes the projective
closure of an affine set C ⊂ An, and Ih stands for the homogenisation of an ideal I. V(J) denotes
the affine variety defined by the ideal J . If V(J) ⊂ An, we denote D(J) = An \V(J). We shorten
V(〈f1, . . . , fk〉) to V(f1, . . . , fk), and D(〈f1, . . . , fk〉) to D(f1, . . . , fk). We denote by V (k) the set
of rational points of a k-variety V .

The term χ(V ) denotes the Euler characteristic of a variety V.

If D is a projective curve (maybe singular), pa(D) is the arithmetic genus of D, and g(D) denotes
the genus of the normalisation of D.

All other notation will be explained when needed.
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2. The details of the PSL(2) case

Our goal is to prove Theorem 1.5 and to compute the arithmetic genus of C. This will lead us to
the following.

Proposition 2.1. If q = pk for a prime p and q �= 2, 3, then there are x, y in PSL(2, Fq) with
y �= x−1 and u1(x, y) = u2(x, y).

Note that for w = x−2y−1x, the equation u1(x, y) = u2(x, y) has a non-trivial solution if and
only if it has a solution with y �= x−1.

The proof will use some explicit computations with the following matrices. Let R be a commu-
tative ring with identity. Recall that we defined

x(t) =
(

t −1
1 0

)
, y(b, c) =

(
1 b
c 1 + bc

)
∈ SL(2, R)

for t, b, c ∈ R.

Remark 2.2.
(1) We have

x(t)−1 =
(

0 1
−1 t

)
, y(b, c)−1 =

(
1 + bc −b
−c 1

)
;

(2) for any t, b, c ∈ R we have y(b, c) �= x(t)−1, even for the images of x(t) and y(b, c) in PSL(2, R).

The equation u1 = u2 is equivalent to x−1yx−1y−1x2 = yx−2y−1xy−1; we put x = x(t), y =
y(b, c), and write

x−1yx−1y−1x2 − yx−2y−1xy−1 =
(

n1(t, b, c) n2(t, b, c)
n3(t, b, c) n4(t, b, c)

)
.

Let I = 〈n1, n2, n3, n4〉 ⊆ Z[b, c, t] be the ideal generated by the entries of the matrix.
Using Singular

2 we can obtain four explicit generators for I.
Denote by C the Fq-variety defined by the ideal IFq[b, c, t]. To prove Proposition 2.1, it is enough

to prove the following.

Proposition 2.3. Let q be as in Proposition 2.1, then the set C(Fq) of rational points of C is not
empty.

The proof is based on the Hasse–Weil estimate (see Corollary 1.7).
Note that the Hilbert function of C, H(t) = dt−pa +1, can be computed from the homogeneous

ideal Ih of C, hence we can compute d and pa without any knowledge about the singularities of C.
The ideal Ih can be computed by homogenising the elements of a Gröbner basis of I with respect
to a degree ordering (cf. [GP02a]).

In the following, let q = pk be an arbitrary, fixed prime power and F̄q the algebraic closure of Fq.
To apply Corollary 1.7, we have to prove the following.

Proposition 2.4. The ideal IF̄q[b, c, t] is a prime ideal.

To establish this and to provide the input for the application of Lemma 1.6 and Corollary 1.7 we
first compute a Gröbner basis J1, . . . , J5 of I in characteristic 0, i.e. over the rational numbers but

2A file with all Singular computations can be found at http://www.mathematik.uni-kl.de/∼pfister/SolubleGroups.
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with integer coefficients. This can be done in Singular or MAGMA. What we need is, however, a
system of generators of I with integer coefficients that specialize to a Gröbner basis over Fq for any q
(cf. [GP02b] for the relation between Gröbner bases and specialisation). Any Gröbner basis over the
rationals represents, after clearing denominators, a Gröbner basis over Fq for sufficiently large q.
Unfortunately, there are no a priori bounds nor does the computed Gröbner basis give estimates
for q. In our situation, however, we are lucky. By using the lift command in Singular we can
show that J1, . . . , J5 indeed generate I over the integers. Then we compute the s-polynomials of
Ji and Jj for all i, j (with integer coefficients) and check, again by using lift, that they are
integer linear combinations of J1, . . . , J5. Applying Buchberger’s criterion [GP02a, Theorem 1.7.3]
we deduce that J1, . . . , J5 represent a Gröbner basis of IFq[b, c, t] for any q. Some straightforward
computations using Singular show the following.

Lemma 2.5. Let

f1 = t2b4 − t3(t− 2)b3 + (−t5 + 3t4 − 2t3 + 2t + 1)b2 + t2(t2 − 2t− 1)(t− 2)b + (t2 − 2t− 1)2,

f2 = t(t2 − 2t− 1)c + t2b3 + (−t4 + 2t3)b2 + (−t5 + 3t4 − 2t3 + 2t + 1)b + (t5 − 4t4 + 3t3 + 2t2),

h = t(t2 − 2t− 1).

Then the following holds for any prime power q:

(1) {f1, f2} is a Gröbner basis of IF̄q(t)[b, c] with respect to the lexicographical ordering c > b;

(2) I : h = I;

(3) IF̄q(t)[b, c] ∩ L[t, b, c] = 〈f1, f2〉 : h2 = I.

We now give the proof of Proposition 2.4. We have IF̄q(t)[b, c] ∩ F̄q[b, c, t] = 〈f1, f2〉 : h2 =
IF̄q[b, c, t]. Therefore, if IF̄q[b, c, t] were reducible, then IF̄q(t)[b, c] would also be reducible. We are
going to prove that this is not the case.

In F̄q(t)[b, c] the polynomial f2 is linear in c. As f1 does not depend on c, we have F̄q(t)[b, c]/I ∼=
F̄q(t)[b]/〈f1〉 and, hence, it suffices to prove that the polynomial f1 is irreducible.

Set x = bt, and let p(x, t) = t2f1(x/t, t), then

p(x, t) = x4 − t2(t− 2)x3 + (−t5 + 3t4 − 2t3 + 2t + 1)x2 + t3(t− 2)(t2 − 2t− 1)x + t2(t2 − 2t− 1)2.

To prove that f1 ∈ F̄q[t, b] is irreducible, it suffices to prove that p ∈ F̄q[x, t] = F̄q[t][x] is
irreducible. We show that p has no linear and no quadratic factor with respect to x.

First we prove that p has no linear factor, that is, that p(x) = 0 has no solution in F̄q[t].
Assume that x(t) ∈ F̄q[t] is a zero of p(x) = 0. Then x(t) | t2(t2 − 2t− 1)2. If the characteristic

of F̄q is not 2, it is not difficult to see that x(t) cannot contain the square of an irreducible factor of
t2(t2 − 2t − 1)2. If the characteristic of F̄q is 2, it is not possible that t2 | x(t) or (t + 1)3 | x(t).
Moreover, it is easy to see that the leading coefficient of x(t) is (−1)deg(x(t))−1.

By analysing possible zeroes of p(x), separately for char(F̄q) > 2 and char(F̄q) = 2 we find that
p(x) has no linear factor with respect to x in F̄q[x, t].

Now assume that p(x) = (x2 + ax + b)(x2 + gx + d), a, b, g, d ∈ F̄q[t]. This implies:

(1) bd = t2(t2 − 2t− 1)2;
(2) ad + bg = t3(t− 2)(t2 − 2t− 1);

(3) d + ag + b = −t5 + 3t4 − 2t3 + 2t + 1;
(4) a + g = −t2(t− 2).

If t2 | b then, because of equality (2), we obtain t2 | a. Equality (4) implies t2 | g and
equality (2) implies t3 | a. Equality (3) implies that d ≡ 1 + 2t mod (t2) and equality (4) implies
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that g ≡ 2t2 mod (t3). If char(F̄q) �= 2, we obtain d = −(t2 − 2t − 1) and b = −t2(t2 − 2t − 1),
because (t2− 2t− 1)2 ≡ 1+4t mod (t2). If char(F̄q) = 2, then t3 | a and t3 | g. Equality (2) implies
that (a/t3) ·d+(g/t3)b = (t+1)2. This implies (t+1)2 | b and (t+1)2 | d. Therefore, we have in any
characteristic b = −t2(t2−2t−1) and d = −(t2−2t−1). Equality (3) implies that ag = −t3(t−2)2.
This is a contradiction to the fact that t3 | a and t2 | g.

We showed that t2 � b. Similarly, we obtain that t2 � d. This implies that t | b and t | d.
If (t2 − 2t − 1)2 | b, then equality (2) implies that t2 − 2t − 1 | a. Let d = d1t for a suitable
d1 ∈ L; then equality (3) implies that t2 − 2t− 1 | −t5 + 3t4 − 2t3 + 2t + 1− d1t, that is, d1 = −1.
Then b = −t(t2−2t−1)2. Now equality (3) implies that ag = −t4+4t2+4t+1 = −(t2−2t−1)(t+1)2.

However, t2 − 2t − 1 | a and equality (4) implies that deg(a) = 3 and deg(g) = 1. This implies
that t + 1 | a and t + 1 | g, which is a contradiction to equality (4).

Similarly, we obtain that (t2 − 2t − 1)2 � d. This implies that b = b3t(t2 − 2t − 1) and d =
(1/b3)t(t2−2t−1) for a suitable b3 ∈ L. Equality (3) implies that deg(ag) = 5. Owing to equality (4),
we may assume that deg(a) = 3 and deg(g) = 2. Equality (4) implies that a = −t3+ terms of
lower degree. Equality (3) implies that g = t2+ terms of lower degree. Equality (4) implies that
a = −t3 + t2+ terms of lower degree. Equality (2) implies that b3 = −1. Equality (3) implies
that ag = −t5 + 3t4 − 4t2 + 1. Let a = t3 + t2 + a1t + a0 for suitable a1, a0 ∈ L; then, because of
equality (4), g = t2 − a1t− a0. Equality (3) implies that a2

0 = −1. Now −t5 + 3t4 − 4t2 + 1 = a · g
implies that a0 = 0, which is a contradiction. This proves that p is irreducible and Proposition 2.4
is proved.

We can now apply Corollary 1.7 to prove Proposition 2.3. We compute the Hilbert polynomial
H(t) of the projective curve corresponding to Ih, the homogenisation of I. We again use a computa-
tion in characteristic 0 (with Singular) and a straightforward verification showing that the result
stays correct over every F̄q. We obtain H(t) = 10t − 11. From this we get the degree d = 10 and
the arithmetic genus pa = 12 of the projective closure. Using Corollary 1.7, we deduce that

Nq � q + 1− 24
√

q − 10.

This implies that C(Fq) is not empty if q > 593. For small q, we directly find points by a computer
search. Proposition 2.3 and, hence, Proposition 2.1 are proved.

Remark 2.6. Using the leading terms of J , we can even compute the Hilbert polynomial without
computer. Hence (once the matrices are computed by the lift command and the Gröbner bases are
given), we can in principle check everything by hand, as only simple (although tedious) polynomial
computations are necessary. Therefore, the PSL(2) case can be verified without a computer.

Remark 2.7. Proposition 2.1 can also be proved by an analysis of the singularities of the curve C
defined by the ideal I: the proof of the absolute irreducibility of the polynomial f1 follows then
by applying Bezout’s theorem. Furthermore, the Hasse–Weil theorem can be applied here to the
normalisation of the plane curve defined by f1, while above it was applied to the curve defined by I
and not to its projection defined by f1. We used the Hasse–Weil theorem involving the arithmetic
genus which avoids an analysis of the singularities. The arithmetic genus is 12 for the curve C and
15 for its projection to the plane defined by f1. The analysis of singularities allows us to use the
geometric genus, which is 8. Then the Hasse–Weil theorem applies already for q > 277. In principle,
this does not make a big difference because we are using a computer for small fields Fq, anyway.
On the other hand, when analysing the singularities, we have the disadvantage of treating the field
F864 007. That such a large prime plays a special role in the analysis of singularities was rather
unexpected for us.
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3. The details of the Suzuki case

3.1 The variety V and the Suzuki groups

We shall explain here in more detail the relationship of the variety V constructed in § 1.3 to the
Suzuki groups. We use the following representation for Sz(q). Let n = 2m + 1 and q = 2n and
consider the automorphism θ : Fq −→ Fq, θ(a) = a2m+1

. We have θ2(a) = a2, that is, π is the
square root of the Frobenius.

Let

U(a, b) =




1 0 0 0
a 1 0 0

aθ(a) + b θ(a) 1 0
a2θ(a) + ab + θ(b) b a 1


 ,

M(c) =




c1+2m
0 0 0

0 c2m
0 0

0 0 c−2m
0

0 0 0 c−1−2m


 , T =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 . (3.1)

Then Sz(q) = 〈U(a, b),M(c), T | a, b, c ∈ Fq, c �= 0〉 ⊂ SL(4, Fq).
To show that u1(x, y) = u2(x, y) has a solution with y �= x−1, we consider the matrices X =

TU(a, b) and Y = TU(c, d) in Sz(q). It is easy to see that Y = X−1 in Sz(q) if and only if a, b, c, d
are all 0.

To eliminate the dependence of X and Y on q, we replace θ(a), . . . , θ(d) with a0, . . . , d0 which
we regard as indeterminates, along with a, . . . , d. We thus arrive at the matrices x, y ∈ GL(4, R)
defined in (1.4), where R = F2[a, . . . , d, a0, . . . , d0] is the polynomial ring in eight variables.

Using the definition of the ideal a ⊂ R and the variety V (see § 1.3), we can easily produce 16
generators of a and prove that π(a) = a and dim(V ) = 2 (a Singular computation). Also V is
preserved by the operator α, and we have the following.

Proposition 3.1. The matrices corresponding to a fixed point of αn (n odd and n � 3) lie in Sz(2n).

Proof. Let p = (a, . . . , d0) ∈ V be a fixed point of α2m+1. We have a = a2m+1

0 , a0 = a2m+1
(and,

hence, a = a2n
, a0 = θ(a)), and the same formulas hold for b, c, d, b0, c0, d0. To finish the proof,

it remains to combine this with formulas (1.4) and (3.1).

To sum up, we obtained the following reduction.

Theorem 3.2. Suppose that for every odd n > 1, the operator αn has a non-zero Fq-rational fixed
point on the variety V . Then the equation u1 = u2 has a non-trivial solution in Sz(q) for every
q = 2n.

3.2 The geometric structure of V

In this section we study the two-dimensional component V ′ of V defined in § 1.3. In order to make
the formulas simpler, we slightly change notation: we denote a0 = v, b0 = w, c0 = x, d0 = y; we will
replace a by I, and a′ by J . Recall that J is defined to be the ideal quotient J = I : a3x2. To show
that αn has a rational fixed point on V , we want to apply the Lefschetz trace formula. This requires
an absolutely irreducible variety to be acted on by α. As the variety V does not have this property
we have introduced the subvariety V ′ ⊂ V . More formally we set V ′ := V(J) ⊂ V(I) = V . We show
that V ′ is absolutely irreducible and apply the Lefschetz trace formula to the non-singular locus
of V ′.
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The ideal I has 16 generators whereas J needs only 10. As this still makes computations hard
we temporarily work with generic a and c, that is, we do computations in F2(a, c)[w, y, b, d, x, y],
where F2(a, c) denotes the field of fractions of F2[a, c]. Fortunately, Singular allows the com-
putation of Gröbner bases over such rings. We compute a Gröbner basis of the ideal J3 :=
JF2(a, c)[w, y, b, d, x, v] with respect to the lexicographical ordering. As the polynomials of this
Gröbner basis play an essential role in what is to follow we give them here. We define in Singular

notation:

J3[1]=(a8+a6c2+a4c4+a2c6)*v6+(a8+a7c3+a6c2+a5c3+a4c4+a3c7+a2c6
+ac7)*v4+(a7c3+a6c2+a5c5+a5c3+a3c7+a3c5+a2c6+a2c4+ac9+c6)
*v2+(ac9+ac5+c8+c4);

J3[2]=(a4c4+a3c7+a3c5+a3c3+a2c8+a2c4+ac7+c4)*x+(a8+a7c+a4c4
+a3c5)*v5+(a8+a7c+a6c2+a5c3+a4c4+a4c2+a2c6+a2c4)*v3
+(a4c4+a4c2+a3c7+a3c3+a2c8+a2c6)*v;

J3[3]=(c2+1)*d2+(xc3+xc)*d+(v3xa2+v3xc2+v2a4+v2a3c+v2ac3+v2c4
+vxa4+vxa3c+vxa2c2+vxc4+x2a2c2+x2a2+x2ac3+x2c2+c4+c2);

J3[4]=(ac5+ac)*b+(v4a2c2+v4a2+v3xac+v2x2c4+v2x2c2+v2a5c+v2a4
+v2a2c4+v2ac3+vx3ac+vx3+vxa5c+vxa4+vxa3c3+vxa2c4+vxa2c2
+vxac5+vxac3+vxac+vxc2+vx+x2a3c3+x2a2c2+x2ac5+x2c4+a2c4
+a2c2+ac3+ac+c4+c2)*d+(v2xa2c3+v2xc5+vx2a3+vx2ac2+va5c2
+va4c+va3+va2c+vac6+vac4+vac2+vc5+xa5c2+xa4c+xa2c3+xa2c
+xac6+xac2+xc3);

J3[5]=(c)*y+(va2c+va)*bd+(v2ac+v2c2+x4+c4+1)*b+(v4a3c+v4ac
+v3xc2+v2x2ac3+v2x2ac+v2a4+v2a3c3+v2ac3+v2c2+vx3c2+vxa4
+vxa3c3+vxa3c+vxa2c4+vxa2+vxac3+vxac+x2a3c+x2a2c4+x2a2
+x2ac+x2+ac3+ac+c2+1)*d+(v3x2ac2+v3x2c3+v3a3c4+v3a3c2
+v3a2c3+v3a2c+v3ac4+v3c3+v2xa3c2+v2xa3+v2xa2c5+v2xc5
+v2xc+vx4a3+vx4a2c+vx4a+vx4c+vx2a7+vx2a5+vx2a3c2+vx2a2c3
+vx2a+vx2c3+vx2c+va7c2+va7+va4c+va3c6+va3c4+va3c2+va2c5
+va2c+vac6+vac4+vc3+vc+x5a+x5c+x3a6c+x3a5+x3a4c+x3a3
+x3a2c+x3ac2+x3c+xa7c2+xa6c+xa5c2+xa4c3+xa3c6+xa3c4
+xa3c2+xa3+xa2c5+xa2c3+xa2c+xac6+xac4+xa);

J3[6]=w+(vx+1)*y+(a)*b+(vxc+c)*d+(v3a2+v3ac+v2xa2+v2xc2+vx2a2
+vx2ac+vx2c2+vx2+va2c2+va2+vac3+v+xa2c2+xa2+xac3+xc2);

and assert that J3 is generated by these polynomials. Computing the dimension of J3 gives 0, hence
V ′ is a surface.

The least common multiple of the leading coefficients of the above Gröbner basis is

f(a, c) = (a3 + a2c3 + a2c + ac4 + ac2 + c)(ac + 1)(a + c)(c + 1)ac

Then, using Singular,3 we obtain

J3 ∩ F2[a, c, w, y, b, d, x, v] = 〈J3[1], . . . , J3[6]〉 : f∞ = 〈J3[1], . . . , J3[6]〉 : f6 = J.

As J : f = J , no factor of f divides all elements of J . That is why the irreducibility of J3 as an
ideal of F2(a, c)[w, y, b, d, x, v] implies the irreducibility of J .

3The first equality is a general fact (cf. [GP02a]). To see that 〈J3[1], . . . , J3[6]〉 : f∞ = J , it is sufficient to know that
J ⊃ 〈J3[1], . . . , J3[6]〉, J = J : f and that 〈J3[1], . . . , J3[6]〉 : f∞ is a prime ideal, which we shall see later. This is,
computationally, much easier to check than a direct computation.
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Furthermore, we compute the vector space dimension over F2(a, c) as

dimF2(a,c) F2(a, c)[w, y, b, d, x, v]/J3 = 12.

Next we compute directly by elimination (using Singular) that J3 ∩ F2(a, c)[b] = 〈h〉 with a
polynomial h which is of degree 12 with respect to b and we therefore have dimF2(a,c) F2(a, c)[b]/(J3∩
F2(a, c)[b]) = 12. As dimF2(a,c) F2(a, c)[w, y, b, d, x, v]/J3 is also 12, we know that a lexicographical
Gröbner basis with respect to b < v < x < d < y < w of J3 must have leading polynomials as
follows4: b12, v, x, d, y, w.

It follows that the projection

[a, b, c, d, v, w, x, y] → (a, b, c)

over the field F2(a, c) is birational on V(J3). The image of V(J3) in F2(a, c)[b] is defined by the
polynomial h.

This implies that J3F2(a, c)[w, y, d, x, v, b] is a prime ideal if h is absolutely irreducible.
In particular, we obtain that J is absolutely irreducible if h is absolutely irreducible.

To prove that h is absolutely irreducible, we proceed as follows.
First we show that the radical of the ideal of the coefficients of h in F2[a, c] with respect to b is

〈a, c〉 ∩ 〈a + 1, c + 1〉. We do this using the factorising Gröbner basis algorithm. This implies that h
cannot have a non-trivial factor in F2[a, c]. Then we consider h̃(b, c) := h(1, b, c). We get

h̃(b, c) = (c + 1)14b12 + (c + 1)14b10 + (c + 1)11(c6 + c5 + c4 + c + 1)b8

+ (c + 1)11(c6 + c4 + c2 + c + 1)b6 + (c + 1)8(c9 + c7 + c5 + c4 + c3 + c2 + 1)b4

+ (c + 1)10b2 + (c + 1)10c2.

It is sufficient to show that f(x, c) := h̃(x/(c + 1), c)/(c+1)2 is absolutely irreducible. To simplify
the situation, we make the transformation c �→ c + 1. Let a4 = c6 + c5 + c4 + c2 + 1 and a2 =
c9 + c8 + c7 + c6 + c4 + c2 + 1. By elementary considerations similar to those in § 2 we prove the
following.

Lemma 3.3. The polynomial

f = x12 + c2x10 + ca4x
8 + c3(c6 + c + 1)x6 + c2a2x

4 + c6x2 + c8(c + 1)2

is irreducible in F2[x, c].

Altogether, we proved now that V ′ = V(J) is absolutely irreducible. Next we compute the
singular locus of V(J), using Singular (with a special procedure).

Lemma 3.4. The singular locus of V(J) is the union of six smooth curves.

From the equations defining the six curves we find the following.

Corollary 3.5. The singular locus of V ′ is contained in the set S = V ′ ∩ V(xc). The variety
U = V ′ \ S is a smooth irreducible affine surface invariant under the morphism α. For any odd n,
αn has no fixed points in S.

In what follows we only use that U = V ′\S is non-singular and α-invariant, the precise equations
giving the six curves is only relevant for the further statements of the corollary.

4We do not need to directly compute J3∩F2(a, c)[b] = 〈h〉, which is difficult. Once h is given, it suffices to know that
h is irreducible of degree 12, dimF2(a,c) F2(a, c)[w, y, b, d, x, v]/J3 = 12 and h ∈ J3, which is much easier to check.
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3.3 Trace formula
Throughout this section k = F̄2 denotes a (fixed) algebraic closure of F2. All varieties under con-
sideration, even those defined over F2, are viewed as k-varieties.

Let V ′ be the variety defined in § 3.2. We have seen that this is an irreducible affine surface.
Computations in § 3.2 show that the singular locus of V ′ is contained in the set S = V ′ ∩V(xc).
By Corollary 3.5, the variety U = V ′ \ S is a smooth irreducible affine surface invariant under the
morphism α acting in A8 as

α(a, b, c, d, v, w, x, y) = (v,w, x, y, a2 , b2, c2, d2) (3.2)

(see § 3.1).
Our goal is to prove that for n odd and large enough, the set U has an αn-invariant point. In this

section we prove the following estimate of Lang–Weil type.

Theorem 3.6. With the above notation, let # Fix(U, n) be the number of fixed points of αn (counted
with their multiplicities). Then for any odd n > 1 the following inequality holds:

|# Fix(U, n)− 2n| � b1(U)23n/4 + b2(U)2n/2, (3.3)

where bi(U) = dim H i
ét(U, Q�) are �-adic Betti numbers (� �= 2).

The strategy of proof is as follows. The operator α and all its powers act on the étale �-adic coho-
mology groups H i

c(U, Q�) of U (with compact support). We are going to apply Deligne’s conjecture
(proved by Zink for surfaces [Zin90], by Pink [Pin92] in arbitrary dimension (modulo resolution
of singularities), and by Fujiwara [Fu97] in the general case) saying that the Lefschetz(–Weil–
Grothendieck–Verdier) trace formula is valid for any operator on U composed with sufficiently large
power of the Frobenius (in our case this means sufficiently large odd power of α). We shall show that
in our case the trace formula is already valid after twisting with the first power of the Frobenius.
This fact is a consequence of the above-mentioned results on Deligne’s conjecture together with the
following crucial observation: roughly speaking, if we consider the closure U of U in P8, α (as well as
any of its odd powers) has no fixed points at the boundary (that is, on U \U). As soon as the trace
formula is established, the proof can be finished by applying Deligne’s estimates of the eigenvalues
of the Frobenius.

Let us make all this more precise.
Denote by Γ (the transpose of) the graph of α acting on A8 by formulas (3.2), that is, Γ =

{(α(M),M) : M ∈ A8}, and let ΓU = Γ ∩ (U × U).
Consider the natural embedding A8 ⊂ P8, and denote by Γ (respectively ΓU ) ⊂ P8 × P8 the

closure of Γ (respectively ΓU ) with respect to this embedding. Let H0 = (P8 × P8) \ (A8 × A8),
H1 = (V ′ × V ′) \ (U × U), H = H0 ∪H1. Let ∆ denote the diagonal of A8 × A8, ∆ the diagonal
of P8 × P8, ∆U = ∆ ∩ ΓU , and ∆U = ∆ ∩ ΓU . If n is a positive integer, denote the corresponding
objects related to αn by Γ(n), Γ(n), Γ(n)

U , Γ(n)
U , ∆(n)

U , ∆(n)
U .

Lemma 3.7. If n is odd, ∆(n)
U = ∆(n)

U .

Proof. We have

∆(n)
U \∆(n)

U = Γ(n)
U ∩∆ ∩H.

We wish to prove that this set is empty. As

Γ(n)
U ∩∆ ∩H ⊆ Γ(n) ∩ (U × U) ∩∆ ∩H,

it is enough to prove that

Γ(n) ∩∆ ∩H = ∅.
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First note that

Γ(n) ∩∆ ∩H1 = Γ(n) ∩∆ ∩H1 = ∅
(the first equality is obvious as H1 is contained in A8 × A8, and the second equality immediately
follows from Corollary 3.5). Hence, we only have to prove that Γ(n) ∩∆ ∩H0 = ∅.

Let (a, b, c, d, v, w, x, y), (a′ , b′, . . . , y′) be the coordinates in A8 × A8, and let (a : b : · · · : t), (a′ :
b′ : · · · : t′) be the homogeneous coordinates in P8 × P8. Suppose that

M = ((a : b : · · · : t), (a′ : b′ : · · · : t′)) ∈ Γ(n) ∩∆ ∩H0.

If n = 2m + 1, denote s = 2m. With this notation, as M ∈ Γ(n), formulas (3.2) imply that

a′ = vsts, b′ = wsts, c′ = xsts, d′ = ysts, v′ = a2s, w′ = b2s, x′ = c2s, y′ = d2s, t′ = t2s.

On the other hand, as M ∈ H0, we have t = t′ = 0, and hence a′ = b′ = c′ = d′ = 0. Furthermore,
as M ∈ ∆, we have a′ = λa, b′ = λb, c′ = λc, d′ = λd for some λ ∈ k, and hence a = b = c = d = 0.
This implies that v′ = w′ = x′ = y′ = 0, contradiction.

The next goal is to show that the Lefschetz trace formula holds for all odd nth powers of α
(n > 1). We shall do it using the above-mentioned results on Deligne’s conjecture. First, we briefly
recall the general approach ([SGA5, Zin90, Pin92, Fu97]); we mainly use the notation of [Pin92]
and refer the reader to that paper for more details.

(i) Global term. We can (and shall) view our operator α as a particular case of the correspondence a:

U
a1←− ΓU

a2−→ U

(here a1 and a2 stand for the first and second projections, respectively). We regard an odd power
α2m+1 as a ‘twisted’ correspondence b = Frm ◦a with b1 = Frm ◦a1, b2 = a2.

Let Λ denote a finite field extension of Q�, L a constructible Λ-sheaf (in our situation it suffices to
consider the constant sheaf L = Q�). Then a cohomological correspondence u on L with support in b
is a morphism u : b∗1L→ b!

2L, where ∗ stands for the inverse image functor, and ! for the extraordinary
inverse image functor (cf. [Pin92, § 1] and references therein); in our situation b2 = id and hence
b!
2L = L. As b1 is a proper morphism, u induces an endomorphism u! : H•

c (U,L) → H•
c (U,L)

which possesses a well-defined trace tr(u!) ∈ Λ; this is the global term in the desired trace formula.
In down-to-earth terms, in our situation we have

tr(u!) =
4∑

i=0

(−1)i tr(αn | H i
c(U, Q�)). (3.4)

(ii) Compactification. Furthermore, as b1 is proper, our correspondence b can be extended to a
compactification b̄

U

j

��

ΓU
b1�� b2 ��

��

U

��
Ū ΓU

b̄1�� b̄2 �� Ū

where the vertical arrows are open embeddings and the bottom line is proper. This gives rise to
a cohomological correspondence ū! on the sheaf j!L with support in b̄; here ! stands for the direct
image functor with compact support (extension by 0), cf. [Pin92, § 2.3].

The global term does not change after compactification:

tr(ū!) = tr(u!) (3.5)

(see [Pin92, Lemma 2.3.1]).
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For a compactified correspondence the Lefschetz–Verdier trace formula is known (cf. [Pin92,
§ 2.2.1]):

tr(ū!) =
∑
D

LTD(ū) (3.6)

where D runs over all the connected components of Fix(b̄), and the local terms LTD(ū) are defined
as in [Pin92, § 2.1]. In our case Fix(b̄) consists of isolated points (as this is true for the Frobenius),
and all these points are contained in U (because of Lemma 3.7 there are no fixed points at the
boundary, neither on the singular locus, nor at infinity).

(iii) Local terms. Suppose that b2 is quasifinite and y is a point not at infinity. Let x = b2(y), then

d(y) = [k(y)/k(x)]i · lengthOΓU ,y/b
∗
2(mU,xOU,x),

where [k(y)/k(x)]i denotes the inseparable degree of the residue field extension. Clearly, in our case
b2 = id implies that d(y) = 1.

By [Fu97, Theorem 5.2.1], for an isolated fixed point y at finite distance we have

LTy(u) = try(u) (3.7)

provided that 2m > d(y). In our setting,

try(u) equals the multiplicity of y (3.8)

(cf. [Zin90, p. 338] and [Pin92, § 8.3.1]).

(iv) Summing up, items (i)–(iii) (or, more precisely, formulas (3.4), (3.5), (3.6), (3.7), (3.8), together
with Lemma 3.7) imply the following.

Proposition 3.8. If n > 1 is an odd integer, then

# Fix(U, n) =
4∑

i=0

(−1)i tr(αn | H i
c(U, Q�)). (3.9)

We are now ready to prove Theorem 3.6. As U is non-singular, the ordinary and compact Betti
numbers of U are related by Poincaré duality [Kat00, p. 6], and we have bi

c = b4−i. Since U is affine,
bi(U) = 0 for i > 2 (see [Kat00, p. 6]). As U is geometrically integral, b0(U) = 1 and Fr acts on
the one-dimensional vector space H0(U, Q�) as multiplication by four [Kat00, p. 6]. Hence α acts on
the same space as multiplication by two. (Indeed, if it were multiplication by (−2), for a sufficiently
large power of α the right-hand side of (3.9) would be negative.) Hence, αn acts as multiplication
by 2n. Thus tr(αn | H4

c (U, Q�)) = 2n.
On the other hand, according to Deligne [Del81, Theorem 1] for every eigenvalue αij of Fr

acting on H i
c(U, Q�) we have |αij | � 2i/2. This yields similar inequalities for the eigenvalues βij of

α: |βij | � 2i/4 and the eigenvalues βij,n of αn: |βij,n| � 2ni/4. We thus obtain

| tr(αn | H3
c (U, Q�))| � b1(U)23n/4, | tr(αn | H2

c (U, Q�))| � b2(U)2n/2.

This proves the theorem.

Remark 3.9. One can probably get another proof of Proposition 3.8 (and hence Theorem 3.6)
using an approach of [DL76]. In that paper the Lefschetz trace formula is established for any
endomorphism of finite order. A remark in [DL76, § 11] (see also [SGA4, Sommes trig., 8.2, p. 231])
says that the results of the paper can be extended to the case of an endomorphism α with the
property α2 = Fr.
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3.4 Estimates of Betti numbers
As in the previous section, we assume that the ground field is k = F̄2.

Recall that the singular locus of the variety V ′ is contained in the set S = V ′∩V(xc) (see § 3.2).
As before, we denote U = V ′ \ S; it is a smooth irreducible affine variety invariant under the
morphism α. Our aim is to estimate b1(U) and b2(U).

First we deal with b1(U). We want to use the Lefschetz theorem on hyperplane sections.
For technical reasons we want to use hyperplanes of special type, namely those defined by equations
αa + βc + γ = 0. These hyperplane sections are not general, and in order to apply the Lefschetz
theorem, we have to provide a quasifinite map of the surface V ′ onto A2 with coordinates a, c.

The next step is to estimate the Euler characteristic of U . To do this, we represent U as the
union of an open subset U ′ and a finite number of curves. We estimate the Euler characteristics
of these curves and of U ′ separately, using the fact that U ′ is a double cover of a simpler variety.
Having in hand bounds for b1(U) and χ(U), we estimate b2(U).

Proposition 3.10. A regular map π : A8 → A2 defined as π(a, b, c, d, v, w, x, y) = (a, c) is quasi-
finite on U .

Proof. Consider the variety W̃ defined in A8 by equations J3[1− 6].

We have W̃ ⊃ V ′ and W̃ \ V ′ ⊂ V(f) ⊆ A8, where

f(a, c) = c(ac + 1)a(a + c)(c + 1)(a3 + a2c3 + a2c + ac4 + ac2 + c)

(see § 3.2). This means that the coordinates of any point of V ′ (and, in particular, of U), satisfy the
equations J [1− 10]. If f(a, c) �= 0, the equation J3[1] provides at most six different possible values
for v. The equation J3[2] implies that for each of these six values only one value of x is possible.
The equation J3[3] gives at most two values for d, and all of the proceeding equations provide one
value for b, y and w. Hence, for any point (a, c) ∈ A2 with f(a, c) �= 0, the preimage π−1(a, c) is
finite in V ′ and hence in U .

Now let A = V(f) ⊂ A2. Then π−1(A) ∩ U =
⋃

Ai, i = 1, . . . , 6, which may be described as
follows.

(1) A1 = U ∩V(c + 1).

According to calculations, A1 = A1
1 ∪ A2

1, where A1
1 = U ∩V(c + 1) ∩D(a(a + 1)(a2 + a + 1))

and A2
1 = U ∩V(c − 1, a(a + 1)(a2 + a + 1)).

The equations defining A1
1 show that for a fixed value of a, if a(a+1)(a2 +a+1) �= 0, there are at

most four points in U ∩π−1(a, 1). The equations defining A2
1 show that π−1(1, 1) = ∅; π−1(0, 1) = ∅;

π−1(a0, 1), where a0 is a root of a2 + a + 1, consists of two points.

(2) A2 = U ∩V(c) = ∅.
(3) A3 = U ∩V(a) = ∅.
(4) A4 = U ∩V(a + c) = ∅.
(5) A5 = U ∩V(ac + 1) = A1

5 ∪A2
5.

Here A1
5 = U ∩V(ac+1)∩D((a2 +a+1)(a+1)a) and A2

5 = U ∩V((ac+1), (a+1)(a2 +a+1)a).
The equations for A1

5 show that for any point a �= 0, 1, or a0 (a root of a2+a+1), the set π−1(a, 1/a)
contains at most four points. The set A2

5 consists of four points only.

(6) A6 = U ∩V(h1), where h1(a, c) = a3 + a2c3 + a2c + ac4 + ac2 + c.
A6 = A1

6 ∪A2
6 ∪A3

6, where
A1

6 = U ∩V(h1) ∩D(v2 + ac3 + c2 + a2, a(a + 1)(a2 + a + 1));
A2

6 = U ∩V(h1, v
2 + ac3 + c2 + a2) ∩D(a(a + 1)(a2 + a + 1));

A3
6 = U ∩V(h1, v

2 + ac3 + c2 + a2, a(a + 1)(a2 + a + 1)).
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The equations for A1
6 show that each point (a, c) satisfying f(a, c) = 0, v2 + ac3 + c2 + a2 �= 0

and a(a + 1)(a2 + a + 1) �= 0 has at most four preimages in U1. In case of the set A2
6 the preimage

of each point also contains at most four points. The set A3
6 consists of 54 points.

Thus, any point in A2 has a finite (maybe, empty) preimage. Hence, π is quasi-finite.

Further on we shall consider the following sets: V ′ ⊂ A8, defined by the ideal J; W̃ ⊂ A8, defined
by the ideal J3; U = V ′ \V(xc) ⊂ A8; U ′ = V ′ \V(f) ⊂ A8; W ⊂ A4 with coordinates (a, c, v, x),
defined by the ideal 〈J3(1), J3(2)〉; L = W∩V(f) ⊂ A4; Z = W \L ⊂ A4; Y = V(J3[1])∩D(f) ⊂ A3

with coordinates (a, c, v).
These affine sets are included in the following diagram.

W̃

π1

��

⊃ V ′ ⊃ U ⊃ U ′

π1

��
W ⊃ Z

π2

��
Y

The inclusion U ⊃ U ′ follows from computations: we have V ′ ∩ V(x) ⊂ V(f) ∩ V ′. The map
π1 : U ′ → Z is a double unramified cover. This follows from the structure of equations J3[1], . . . , J3[6]:
all the branch points are contained in the set V(f). The map π2 is an isomorphism as x appears
linearly in the equation J3[2] and its coefficient does not vanish in U ′.

Proposition 3.11. We have b1(U) � 675.

Proof. This estimate follows from the Weak Lefschetz Theorem proved by Katz [Kat93, Corol-
lary 3.4.1]. Indeed, we have:

• an algebraically closed field of characteristic 2 � �;

• U , a separated k-scheme of finite type which is a local complete intersection, purely of dimension
2 > 0

• U → A2, a quasi-finite morphism (see Proposition 3.10).

Then, for a constant Q�-sheaf F on U , there exists a dense open set U ⊂ A3 such that for any
(α, β, γ) ∈ U the restriction map

H1(U,F)→ H1(U ∩ {αa + βc + γ = 0}, i∗F)

is injective (i denotes the embedding of the hyperplane section into U).
Denote:

S1 = U ∩V(αa + βc + γ);

S̃ = S1 ∩ U ′ = U ′ ∩V(αa + βc + γ) ⊂ S1;
S = Y ∩V(αa + βc + γ) ⊂ Y.

As U ′ is a double unramified cover of Y, S̃ is a double unramified cover of S. The curve S is
defined in A3 with coordinates (a, c, v) by V(J3[1], αa + βc + γ) ∩D(f).

Let S be the projectivisation of S in P3. For a general triple (α, β, γ) it is an irreducible complete
intersection of degree d = 14. By [GL02, Corollary 7.4], we have

b1(S) � (d− 1)(d − 2) � 156.
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Let B be the union of the plane at infinity with the closure of the set V((αa + βc + γ)f(a, c)).
As deg f = 11, we have deg B = 13. Thus, S ∩ B contains at most 14 × 13 = 182 points.
Hence, b1(S) � 156+ 182 = 338. As S̃ is a double unramified cover of S, b1(S̃) = 2b1(S)− 1 � 675.
As S̃ ⊂ S1, b1(S1) � b1(S̃) � 675.

Proposition 3.12. The Euler characteristic of L satisfies χ(L) � 71 430 < 217.

Proof. The set L = W ∩V(f) consists of several components. According to computations, the list
of components is as follows:

F1 = V(a, c); dim F1 = 2, χ(F1) = 1
F2 = V(v, c); dim F2 = 2, χ(F2) = 1
F3 = V(v − 1, c); dim F3 = 2, χ(F3) = 1
F4 = V(a− 1, c− 1); dim F4 = 2, χ(F4) = 1
E = V(ac− 1, v); dim E = 2, χ(E) = 0

G = V(ac− 1, av2 + c2 + av + cv + v2 + v), dim G = 2, χ(G) = −3

C1 = V(x, a, c2 + cv + 1), dim C1 = 1, χ(C1) = 0
C2 = V(c− 1, v, x), dim C2 = 1, χ(C2) = 1
C3 = V(I3), dim C3 = 1,
H1 = V(I1), dim H1 = 2,
H2 = V(I2), dim H2 = 2,

where

I3 = 〈c− 1, a2v2x + a2v + v2x + av + ax + v + x, a4x2 + a2vx3 + a3v2 + a3x2 + a4 + a2vx + vx3

+ avx + ax2 + a2 + vx + 1, av2x4 + v5x + v4x2 + v2x4 + av4 + avx3 + v4 + a2vx + a2x2

+ vx3 + x4 + avx + vx + x2〉,
I1 = 〈c3 + c2v + c2 + av + cv + v2, acv + ac + c2 + av + v2 + a + c + v, a2v + a2 + ac + cv + v2+c〉,
and

I2 = 〈ac2v + c3v + c3 + c2v + av2 + cv2 + cv + a, c4 + acv + c2v + ac + cv + v+1, a3v2+a2v3+acv3

+ c3v + a2v2 + acv2 + cv2〉.
Let us explain how the Euler characteristics were computed. We have χ(Fi) = 1, i = 1, . . . , 4

because the Fi are just affine spaces. The component E is isomorphic to (A1 \{0}) with coordinates
a and x respectively, so χ(E) = 1 · (1− 1) = 0. The component G is the direct product of A1 with
coordinate x and a curve T which is a ramified covering of A1 with coordinate a. For a fixed point
(a, c, v) in T we have c = 1/a, and v is defined by the quadratic equation

v2(a3 + a) + v(a3 + a2 + a) + 1 = 0.

It follows that if a �= 0, a �= 1, a2 + a + 1 �= 0, there are precisely two points in T with this value
of a. There are no points with a = 0 and precisely one point for each value a = 1 or a2 + a + 1 = 0.
As the Euler characteristics of A1 without four points is −3, we have χ(G) = 2(−3) + 3 = −3.

The curve C1 is isomorphic to A1 \ {0} with coordinate c: v = (1 + c2)/c, χ(A1 \ {0}) = 0.
The curve C2 is A1, χ(A1) = 1.
In order to estimate the Euler characteristics of C3, H1, H2, we use the following theorem of

Adolphson and Sperber.
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Proposition 3.13 (see [AS88, Theorem 5.27] and [Kat01]). If an affine variety V is defined in AN

by r polynomial equations all of degree � d, then

|χ(V )| � 2rDN,r (1, 1 + d, . . . , 1 + d)︸ ︷︷ ︸
r+1

, (3.10)

where DN,r(x0, . . . , xr) =
∑

|W |=N XW is the homogeneous form of degree N in x0, . . . , xr all of
whose coefficients equal 1.

According to formula (3.10),

|χ(C3)| � 23D3,3(1, 8, 8, 8) � 44 232 < 216

|χ(H1)| � 23D3,3(1, 4, 4, 4) � 5992 < 213

|χ(H2)| � 23D3,3(1, 6, 6, 6) � 19 160 < 215.

The pairwise intersection of these components is a union of 16 lines and 10 points. The triple
intersections contain three lines and three points. No four of these components intersect. Thus,
|χ(L)| � 5 + 3 + 44 232 + 5992 + 21 224 + 26 + 6 = 71 488 < 217.

Proposition 3.14. We have b2(U) � 222.

Proof. We consider the following two cases.

(I) χ(U) � 0. Then 1− b1(U) + b2(U) � 0 and b2(U) � b1(U) < 675.

(II) χ(U) > 0. We first find |χ(U ′)|. As U ′ is a double cover of Z, we have |χ(U ′)| = 2|χ(Z)|.
As Z = W \L, we have χ(Z) = χ(W )−χ(L). By formula (3.10), we get |χ(W )| � 22D4,2(1, 15, 15) �
1 069 324. In view of Proposition 3.12, we have |χ(L)| � 71 488. Hence, |χ(Z)| � |χ(W )|+ |χ(L)| �
1 140 812, and therefore |χ(U ′)| � 2 281 624 < 222. On the other hand, χ(U) = χ(U ′) + χ(U \ U ′).
In order to find χ(U), we have to evaluate χ(U \ U ′). Let N = U

⋂
V(f). As N is the intersection

of the smooth affine surface U with the hypersurface V(f), all of its irreducible components Ni

are curves (that is, dim Ni = 1). This follows from [Sha94, Theorem 5, p.74], and is confirmed by
calculations. As by Proposition 3.10, the projection π : U → A2 is quasi-finite, none of Ni is mapped
into a point. Hence, π(Ni) ⊂ A2 is a curve. This curve does not meet the lines V(c) and V(a)
because V(a) ∩ U = ∅. This means that the ring O(π(Ni)) contains the non-vanishing function ac.
If ac = constant on π(Ni), then π(Ni) has two punctures at infinity. If ac �= constant, then the
normalisation of π(Ni) has at least two punctures, as does any curve having a non-constant and
non-vanishing regular function. Thus, χ(π(Ni)) � 0.

Let k denote the degree of the map Ni → π(Ni). By Hurwitz’s formula, χ(Ni) = kχ(π(Ni))− s,
where s � 0 is the branching number. It follows that

χ(Ni) � kχ(π(Ni)) � 0.

It follows that

χ
(⋃

Ni

)
=

∑
χ(Ni)− T,

where T =
∑

x∈⋃Ni
(k(x)− 1) � 0, and k(x) stands for the multiplicity of a point x ∈ ⋃

Ni. Hence,

χ
(⋃

Ni

)
= χ(N) � 0;

χ(U) = χ(U ′) + χ(N) � χ(U ′) � 2 281 624,

and, therefore,

b2(U) = χ(U) + b1(U) � 2 282 299 < 222.
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Corollary 3.15. Let n > 48, q = 2n. Then Vn has an Fq-point.

Proof. On plugging the estimates of Propositions 3.11 and 3.14 into formula (3.3), we see that
# Fix(U, n) > 0 as soon as n > 48. This proves the corollary.

3.5 Small fields
The purpose of this section is to give some information concerning the fixed points and also numbers
of fixed points of the operator αn on the variety V ′ given by the equations J [1], . . . , J [10]. Let k
denote the algebraic closure of F2 and Nn the number of fixed points of αn on V ′(k). As explained
before, if n is even (n = 2k) then Nn is just the number of points of V ′ in the field F2k .

The zeta-function Z(α, T ) of the operator α is defined as in Remark 1.12. It is known to be a
rational function. By a computer calculation using MAGMA we have shown the following.

Proposition 3.16. The power series Z(α, T ) agrees with

(1− 2T )(1−T )(1−T 2)5(1+T 2)2(2T 4 +2T 2 +1)(4T 8 +2T 4 +1)(2T 2 +2T +1)(8T 6 +4T 5 +T +1)

up to terms of degree 32.

Note that the absolute values of the zeros of this polynomial are equal to 1, 1/2, 1/
√

2, or 1/ 4
√

2,
as general theory predicts. The above formula implies the statement in Remark 1.12 above.

The data encoded in the approximate formula for Z(α, T ) are not enough to close the gap
between Corollary 3.15 and Theorem 1.2. However, we have used our method of computation to
exhibit, for each 3 � p � 47, a fixed point of αp acting on V ′(k). With these data at hand we have
finished the proof of Theorem 1.1.
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Appendix

A.1 A variant of Zorn’s theorem
In this appendix we prove the following.

Proposition A.1. Let G be a finite group, and let w = w(x, y) be a word in two variables such
that:

(1) if w(x, y) ≡ 1 in G then G = {1};
(2) the words x and w(x, y) generate the free group F2 = 〈x, y〉. Then G is nilpotent if and only

if it satisfies one of the identities [w(x, y), x, x, . . . , x] = 1.

Proof. Necessity. Let G be a nilpotent group of class n. As the element en(x, y) = [w(x, y), x, . . . , x]
lies in the nth term of the invariant series, en(x, y) is an identity.
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Sufficiency. We want to prove that any G satisfying the identity en(x, y) ≡ 1 for some n is nilpotent.
Assume the contrary.

Suppose that n = 1. Then according to assumption (1) of the proposition, the group G is trivial.
Let n > 1. Let Γ denote a minimal counterexample, that is, a non-nilpotent group of the small-
est order satisfying the identity en(x, y) ≡ 1. Obviously, all subgroups of Γ are nilpotent. Then Γ
is a Schmidt group, that is, a non-nilpotent group all of whose proper subgroups are nilpotent
(see [Sch24, Red56] for the description of these groups). In particular, the commutator subgroup Γ′

is the unique maximal Sylow subgroup in Γ. As Γ′ is nilpotent, it contains a non-trivial centre Z(Γ′).
Take a non-trivial a ∈ Z(Γ′). For any element x /∈ Γ′ there exists y ∈ G such that w(x, y) = a
(condition (2)). Consider the sequence [a, x, x, . . . , x] = [w(x, y), x, x, . . . , x] = en(x, y). There ex-
ists n such that [w(x, y), x, x, . . . , x] ≡ 1. Let n denote the smallest number satisfying this equality,
and let b = [w(x, y), x, x, . . . , x] = en−1(x, y). Clearly, b ∈ Z(Γ′). Moreover, [b, x] = en(x, y) = 1 and
hence b is a non-trivial element from Z(Γ). Take Γ̄ = Γ/Z(Γ). Then the order of Γ̄ is less than the
order of Γ, hence Γ̄ is nilpotent. Therefore Γ is nilpotent. As en(x, y) is an identity in Γ, we get a
contradiction.

The proposition is proved.

A.2 Pro-finite setting
A.2.1 Pseudo-varieties of finite groups. A variety of groups is a class C of groups defined by

some set of identities T (that is, G ∈ C if and only if for every u ∈ T the identity u holds in G).
Birkhoff’s theorem says that C is a variety if and only if C is closed under taking subgroups,
homomorphic images, and direct products. To work with classes of finite groups (which cannot be
closed under taking infinite direct products), one needs a more general notion.

Definition A.2. A pseudo-variety of groups is a class of groups closed under taking subgroups,
homomorphic images, and finite direct products.

By Birkhoff’s theorem every variety of groups is a pseudo-variety. We are interested in pseudo-
varieties of all finite groups, all finite solvable groups, and all finite nilpotent groups.

Let F = F (X0) be a free group with countable set of generators X0. Consider a sequence of
words u = u1, u2, . . . , un, . . . in F . The sequence u determines a class of groups Vu by the following
rule: a group G belongs to Vu if and only if almost all elements u are identities in G. The class Vu

is a pseudo-variety. It turns out that this construction is universal.

Theorem A.3 [ES76]. For every pseudo-variety of finite groups V there exists a sequence of elements
u : N→ F , u = u1, u2, . . . , un, . . . such that V = Vu.

We shall consider a special class of sequences.

Definition A.4. Let X be a finite set. We say that a sequence of elements (not necessarily distinct)
u = u1, u2, . . . , un, . . . of the free group F (X) is correct if given any group G, as soon as an identity
un ≡ 1 holds in G, for all m > n the identities um ≡ 1 also hold in G.

As above, a correct sequence u defines a pseudo-variety of groups V by the rule: G ∈ V if and
only if some identity un ≡ 1, un ∈ u, holds in G.

Remark A.5. If u is a correct sequence defining a pseudo-variety V and v is a subsequence of u,
then v is also correct and defines the same pseudo-variety V .

Let F = F (x, y) and
e1 = [x, y], en+1 = [en, y ], . . . (A.1)
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This sequence is correct and defines the pseudo-variety of all finite Engel groups. According to
Zorn’s theorem [Zor36], this pseudo-variety coincides with the pseudo-variety of all finite nilpotent
groups.

Our main sequence of quasi-Engel words

u1 = w = x−2y−1x, un+1 = [xunx−1, yuny−1], . . . (A.2)

is also correct, and according to Theorem 1.1 it defines the pseudo-variety of all finite solvable
groups.

A.2.2 Residually finite groups.

Definition A.6. We say that a group G is residually finite if the intersection of all its normal
subgroups of finite index Hα, α ∈ I, is trivial.

Define a partial order on the set I by: α < β if and only if Hβ ⊂ Hα. The intersection of two
normal subgroups of finite index is also of finite index, and therefore for every α, β ∈ I there is
γ ∈ I such that α < γ, β < γ. Thus, the set I is directed.

Denote Gα = G/Hα. If α < β then there is a natural homomorphism ϕβ
α : Gβ → Gα.

If gHβ is an element of Gβ then its image in Gα is gHα. Let Ḡ be the direct product of all Gα.
Then there is an embedding G → Ḡ which associates to each g ∈ G the element ḡ = (gHα)α∈I .
Hence, G can be approximated by finite groups Gα, that is, if f , g are distinct elements of G, then
there is α such that f̄α and ḡα are distinct elements of Gα.

A group G is regarded as a topological group, with the topology defined by the system of neigh-
bourhoods of 1 consisting of all normal subgroups of finite index Hα. The system of neighbourhoods
of an element g ∈ G is given by the cosets gHα. The group Ḡ is also a topological group. To define
the topology, consider the projections πα : Ḡ → Gα. Let ker πα = Uα. Then Ḡ/Uα is isomorphic
to Gα = G/Hα. For every g ∈ G the element ḡ lies in Uα if and only if g ∈ Hα. The system of
neighbourhoods of 1 in Ḡ consists of all finite intersections of normal subgroups Uα. This defines
the Tikhonov topology on Ḡ. As all groups Gα are finite, the group Ḡ is compact.

Let g1, . . . , gn, . . . be a sequence of elements of G. As usual, we say that this sequence tends to 1
if for every neighbourhood Hα there exists a natural number N = N(α) such that for all n > N
the element gn lies in Hα.

Definition A.7. Let F = F (X) be a free group. We say that a sequence u = u1, . . . , un, . . . of
elements of F identically converges to 1 in a group G if for any homomorphism µ : F → G the
sequence µ(u) = µ(u1), . . . , µ(un), . . . tends to 1 in G. In this case we write u ≡ 1 in G.

Proposition A.8. Let X be a finite set. If a sequence u1, . . . , un, . . . identically converges to 1 in
G then for every neighbourhood Hα there exists N = N(α) such that all un, n > N , are identities
of the group G/Hα.

Proof. Take a homomorphism µ : F → G, and let µ0 : G → G/Hα be the natural projection.
Then ν = µ0µ is a homomorphism F → G/Hα, and every homomorphism ν : F → G/Hα can
be represented in this way. As both G/Hα and X are finite, the set of different ν is also finite.
Denote them by {ν1, . . . , νk}.

Define an equivalence relation on the set of all homomorphisms µ : F → G by µ1 ≡ µ2 if
µ0µ1 = µ0µ2. For an arbitrary u ∈ F we have µ(u) ∈ Hα if and only if µ0µ(u) = 1. Thus, if µ1 ≡ µ2,
then for every u ∈ F we have µ1(u) ∈ Hα if and only if µ2(u) ∈ Hα. Indeed, let µ1(u) ∈ Hα.
Then µ0µ1(u) = 1 = µ0µ2(u) = 1, and µ2(u) ∈ Hα.
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For every νi, i = 1, . . . , k take µi such that µ0µi = νi. Consider the equivalence classes
[µ1], . . . , [µk]. Each µ : F → G belongs to one of these classes. As the sequence u1, . . . , un, . . . iden-
tically converges to 1 in G, for every µ : F → G there exists N = N(α, µ) such that µ(un) ∈ Hα for
n > N . Let N0 be the maximum of N(α, µi), i = 1, . . . , k. If n > N0, then µi(un) ∈ Hα for every µi.
As every µ is equivalent to some µi, we have µ(un) ∈ Hα for every µ. This means that ν(un) = 1
for every ν : F → G/Hα. Thus the element un defines an identity of the group G/Hα.

A.2.3 Pro-finite groups. We now focus on pro-finite groups, with a goal to establish a rela-
tionship with pseudo-varieties and give another reformulation of our main result. Generalities on
pro-finite groups can be found in [RZ00, Alm94], etc. We recall here some basic notions.

Let V be a pseudo-variety of finite groups. Given a group G, consider all its normal subgroups
of finite index Hα such that G/Hα = Gα ∈ V . If the intersection of all these Hα is trivial, we say
that G is a residually V -group. This is a topological group with V -topology (the subgroups Hα as
above are taken as the neighbourhoods of 1).

Let Ḡ be the direct product of all Gα. Denote by Ĝ a subgroup in Ḡ defined as follows: an
element f ∈ Ḡ belongs to Ĝ if and only if for every α and β such that Hβ ⊂ Hα the equality
ϕβ

α(fβ) = fα holds. Denote fα = gαHα. Then

ϕβ
α(gβHβ) = gαHα = gβHα.

Recall that ϕβ
α are natural homomorphisms.

The group Ĝ turns out to be the completion of G in its V -topology [ES52].
Such a group Ĝ is called a pro-V -group. If V is the pseudo-variety of all finite groups, Ĝ is called

a pro-finite group. Thus, in the class of all pro-finite groups one can distinguish subclasses related
to particular pseudo-varieties V .

A free group F = F (X) is residually finite. Take all normal subgroups of finite index in F .
They define the pro-finite topology in F . Denote by F̂ the completion of F in this topology.
This group is a free pro-finite group (see, for example, [RZ00]).

Indeed, if Ĝ is the pro-finite completion of an arbitrary residually finite group G, then every map
µ : X → Ĝ induces a homomorphism µ : F → Ĝ which turns out to be a continuous homomorphism
of topological groups and therefore induces a continuous homomorphism µ̂ : F̂ → Ĝ.

Another approach to free pro-finite groups is based on the idea of implicit operations (cf. [Alm94,
Alm02, AV01, MSW01, Wei02], etc.). This approach has a lot of advantages but we do not use it
as it needs additional notions which are not necessary for our aims.

Definition A.9. Let f ∈ F̂ . The expression f ≡ 1 is called a pro-finite identity of a pro-finite
group Ĝ if for every continuous homomorphism µ̂ : F̂ → Ĝ we have µ̂(f) = 1.

Definition A.10. (See also [AV01, Alm94]). A variety of pro-finite groups (for brevity, a pro-variety)
is a class of pro-finite groups defined by some set of pro-finite identities.

An analogue of Birkhoff’s theorem for pro-finite groups says that a class of pro-finite groups
is a pro-variety if and only if it is closed under taking closed subgroups, images under continuous
homomorphisms, and direct products. This implies that for an arbitrary pseudo-variety V of finite
groups, the class of all pro-V -groups is a pro-variety. The converse statement is also true. For any
pro-variety C there exists a pseudo-variety of finite groups V such that the class of all pro-V -groups
coincides with C. In the case where V is a correct pseudo-variety of finite groups (that is, is defined
by a correct sequence), one can construct identities defining the pro-variety of pro-V -groups in an
explicit form.
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Let X be a finite set. Let u = u1, . . . , un, . . . be a sequence of elements of a free group F = F (X).
As F̂ is a compact group, there exists a convergent subsequence v = v1, . . . , vm, . . . of u.

Proposition A.11. Let v = v1, v2, . . . , vn, . . . be a convergent sequence of elements of F with
lim v̄n = f . Let Ĝ be a pro-finite group. Then the identity f ≡ 1 holds in Ĝ if and only if v ≡ 1 in
G (that is, v identically converges to 1 in G, see Definition A.7).

Proof. First of all the sequence ḡ1, . . . , ḡn, . . . converges to 1 in Ĝ if and only if g1, . . . , gn, . . .
converges to 1 in G.

Let the identity f ≡ 1 be fulfilled in Ĝ. Then

µ̂(f) = lim µ̂(v̄n) = lim µ(vn) = 1.

Thus, lim µ(vn) = 1 in G. This means that v ≡ 1 in G. Conversely, let v ≡ 1 in G. Then for every
µ : F → G the sequence µ(v) converges to 1 in G. The sequence µ(v) converges to 1 in Ĝ. Using

lim µ̂(v̄n) = lim µ(vn) = 1 = µ̂(f),

we conclude that µ̂(f) = 1 for arbitrary µ. This means that the identity f ≡ 1 holds in Ĝ.

Let V be a pseudo–variety of finite groups defined by a correct sequence u = u1, u2, . . . , un, . . .,
and let v = v1, v2, . . . , vn, . . . be a convergent subsequence of u. Denote the limit of v by f . As u is
a correct sequence, v determines the same class V as u.

Theorem A.12. With the above notation, the class of all pro-V -groups is the pro-variety defined
by the pro-finite identity f ≡ 1.

Proof. Let the pro-finite identity f ≡ 1 hold in a pro-finite group Ĝ. Then by Proposition A.11,
v ≡ 1 in G. Proposition A.8 implies that for every neighbourhood H in G and all sufficiently large
n the identity vn ≡ 1 holds in G/H. This means that G/H lies in V and Ĝ is a pro-V -group.

Conversely, let G/H lie in V . By the definition of V , this means that v identically converges
to 1 in G. Therefore, the identity f ≡ 1 holds in Ĝ.

Remark A.13. Although all convergent subsequences of a correct sequence define the same pseudo-
variety, their limits may be different. For example, consider a correct sequence of the form u =
v1, av1a

−1, v2, av2a
−1, . . . , vn, avna−1, . . . , where a ∈ F and v = v1, v2, . . . , vn, . . . is a correct con-

vergent sequence. If the limit of the subsequence v is f , we get a new convergent subsequence
v′ = av1a

−1, av2a
−1, . . . , avna−1, . . . with limit afa−1. However, the elements f and afa−1 define

the same variety.

Corollary A.14. Let F = F (x, y), and let un be defined by

u1 = w, un+1 = [un, y], . . . (A.3)

where w = [x, y] or w is any word satisfying the conditions the hypotheses of Proposition A.1.

Let v1, v2, . . . , vm, . . . be any convergent subsequence of (A.3) with limit f from F̂ . Then the
identity f ≡ 1 defines the pro-finite variety of pro-nilpotent groups.

Proof. The corollary immediately follows from Proposition A.1, Zorn’s theorem, and Theorem A.12.
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Theorem A.15. Let F = F (x, y), let

u1 = w = x−2yx−1, un+1 = [xunx−1, yuny−1], . . . (A.4)

be our main sequence, and let v1, v2, . . . , vm, . . . be any convergent subsequence of (A.4) with limit f
from F̂ . Then the identity f ≡ 1 defines the pro-finite variety of pro-solvable groups.

Proof. The theorem immediately follows from Theorems 1.1 and A.12.

We can now state the pro-finite analogue of the Thompson–Flavell theorem.

Corollary A.16. A pro-finite group G is pro-solvable if and only if every closed two-generator
subgroup of G is pro-solvable.

Proof. Let every two-generator subgroup of Ĝ be pro-solvable. Take an element f ∈ F̂ (x, y) which
is the limit of a convergent subsequence of our sequence u. Let µ be an arbitrary continuous homo-
morphism F̂ (x, y)→ Ĝ. Then µ(f) = 1, as µ(f) lies in a two-generator subgroup of Ĝ. This is true
for arbitrary µ and, therefore, f ≡ 1. According to Theorem A.15, Ĝ is pro-solvable.

Corollary A.14 and Theorem A.15 should be compared with results of Almeida [Alm02]. He used
the language of implicit operations and the notion of n!-type convergent subsequence to get nice
proofs of theorems of similar type. He also noticed that if our main theorem about solvable groups
is true for the sequence uw

n with initial term w = [x, y], then the n! version of the corresponding
statement is also true.
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