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Abstract

We prove that an element g of prime order q > 3 belongs to the solvable radical R(G) of a finite group if and only if for every
x ∈ G the subgroup generated by g and xgx−1 is solvable. This theorem implies that a finite group G is solvable if and only if in
each conjugacy class of G every two elements generate a solvable subgroup. To cite this article: N. Gordeev et al., C. R. Acad.
Sci. Paris, Ser. I ••• (••••).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Résumé

Le théorème de Baer–Suzuki pour le radical résoluble d’un groupe fini. Nous démontrons qu’un élément g d’ordre premier
q > 3 appartient au radical résoluble R(G) d’un groupe fini G si et seulement si pour tout x ∈ G le sous-groupe engendré par x et
xgx−1 est résoluble. Ce théorème implique qu’un groupe fini G est résoluble si et seulement si dans chaque classe de conjugaison
de G tout couple engendre un sous-groupe résoluble. Pour citer cet article : N. Gordeev et al., C. R. Acad. Sci. Paris, Ser. I •••
(••••).
© 2009 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Le théorème classique de Baer–Suzuki [2,27,1] s’énonce :

Théorème 0.1 (Baer–Suzuki). Le radical nilpotent d’un groupe fini G est l’ensemble des éléments g ∈ G tels que
pour tout a ∈ G le sous-groupe engendré par g et aga−1 est nilpotent.

Quelques travaux récents [6,7,9,10], ont essayé de décrire de façon analogue le radical résoluble d’un groupe fini.
En particulier, le problème suivant est parallèle au résultat de Baer–Suzuki :
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Problème 0.1. Soit G un groupe fini de radical résoluble R(G). Quel est le nombre minimal k tel que g ∈ R(G)

si et seulement si le sous-groupe engendré par x1gx−1
1 , . . . , xkgx−1

k est résoluble pour toute partie à k éléments
{x1, . . . , xk} ⊂ G ?

Récemment on a démontré [11] :

Théorème 0.2. Le radical résoluble d’un groupe fini G est l’ensemble des éléments g satisfaisant à la propriété sui-
vante : pour toute partie à 3 éléments {a, b, c} ⊂ G, le sous-groupe engendré par les éléments g,aga−1, bgb−1, cgc−1

est résoluble.

Donc un élément d’un groupe fini appartient au radical résoluble si et seulement si toute partie à 4 éléments de sa
classe de conjugaison engendre un groupe résoluble. Cet énoncé peut être vu comme un théorème de type Baer–Suzuki
par rapport à la propriété de résolubilité. Le Théorème 0.2 est le meilleur possible : dans les groupes symétriques Sn

(n � 5), tout triplet de transpositions engendre un sous-groupe résoluble.
Cependant, comme indiqué par Flavell [6], on peut espérer qu’un analogue précis du théorème de Baer–Suzuki soit

valable pour les éléments d’ordre premier > 3 dans R(G). Notre résultat principal confirme cette espoir :

Théorème 0.3. Soit G un groupe fini. Alors un élément g d’ordre premier q > 3 appartient à R(G) si et seulement
si pour tout x ∈ G le sous-groupe H = 〈g,xgx−1〉 est résoluble.

Prenant en compte le « théorème pαqβ » de Burnside, le Théorème 0.3 implique :

Corollaire 0.4. Un groupe fini G est résoluble si et seulement si dans chaque classe de conjugaison de G tout couple
d’éléments engendre un sous-groupe résoluble.

Remarque 0.5. Le Théorème 0.3 et le Corollaire 0.4 restent vrais pour les groupes linéaires (non nécessairement
finis).

Remarque 0.6. La démonstration du Théorème 0.3 utilise la classification des groupes finis simples. On peut démon-
trer le Corollaire 0.4 sans utiliser la classification grâce à la caractérisation de J. Thompson des groupes non-résolubles
minimaux [28,5]. Flavell a réussi à démontrer, sans utiliser la classification, un analogue du Théorème 0.2 pour k = 10
[6] et aussi le Théorème 0.2 sous l’hypothèse supplémentaire que l’ordre de g ∈ G est un nombre premier > 3.

Remarque 0.7. R. Guralnick nous a informé que les Théorèmes 0.3 et 0.2 ont été démontrés indépendamment dans
des travaux non-publiés par Guest, Guralnick et Flavell [16,17,8]. De plus, Flavell [8] a réduit le nombre k à 7, la
démonstration n’utilisant pas la classification.

1. Main result

The classical Baer–Suzuki theorem [2,27,1] states that:

Theorem 1.1 (Baer–Suzuki). The nilpotent radical of a finite group G coincides with the collection of g ∈ G satisfying
the property: for any a ∈ G the subgroup generated by g and aga−1 is nilpotent.

Within past few years a lot of efforts have been made in order to describe the solvable radical of a finite group and
to establish a sharp analogue of the Baer–Suzuki theorem with respect to the solvability property (see [6,7,9,10]). In
particular, the following problem is parallel to the Baer–Suzuki result:

Problem 1.2. Let G be a finite group with the solvable radical R(G). What is the minimal number k such that
g ∈ R(G) if and only if the subgroup generated by x1gx−1

1 , . . . , xkgx−1
k is solvable for any x1, . . . , xk in G?

Recently (see [11]) it was proved that
Please cite this article in press as: N. Gordeev et al., Baer–Suzuki theorem for the solvable radical of a finite group, C. R. Acad. Sci. Paris, Ser. I
(2009), doi:10.1016/j.crma.2009.01.004



ARTICLE IN PRESS
JID:CRASS1 AID:4001 /FLA [m3SC+; v 1.109; Prn:9/02/2009; 8:07] P.3 (1-6)

N. Gordeev et al. / C. R. Acad. Sci. Paris, Ser. I ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Theorem 1.3. The solvable radical of a finite group G coincides with the collection of g ∈ G satisfying the property:
for any 3 elements a, b, c ∈ G the subgroup generated by the conjugates g,aga−1, bgb−1, cgc−1 is solvable.

Thus, an element of a finite group belongs to the solvable radical if and only if any four its conjugates generate
a solvable group. This statement may be viewed as a theorem of Baer–Suzuki type with respect to the solvability
property. Theorem 1.3 is sharp and provides the best possible characterization: in the symmetric groups Sn (n � 5)

any triple of transpositions generates a solvable subgroup.
However, as mentioned by Flavell [6], one can expect a precise analogue of the Baer–Suzuki theorem to hold for

the elements of prime order greater than 3 in R(G). Our main result confirms this expectation:

Theorem 1.4. Let G be a finite group. An element g of prime order q > 3 belongs to R(G) if and only if for any x ∈ G

the subgroup H = 〈g,xgx−1〉 is solvable.

Theorem 1.4 together with Burnside’s pαqβ -theorem implies

Corollary 1.5. A finite group G is solvable if and only if in each conjugacy class of G every two elements generate a
solvable subgroup.

Remark 1.6. Theorem 1.4 and Corollary 1.5 remain true for the linear groups (not necessarily finite).

Remark 1.7. The proof of Theorem 1.4 uses the classification of finite simple groups (CFSG). The proof of Corol-
lary 1.5 can be obtained without classification using J. Thompson’s characterization of the minimal nonsolvable groups
[28,5]. Flavell managed to prove, without CSFG, an analogue of Theorem 1.3 for k = 10 [6] and Theorem 1.3 under
the additional assumption that g ∈ G is of prime order q > 3.

Remark 1.8. R. Guralnick informed us that Theorems 1.4 and 1.3 were independently proved in unpublished works
by Guest, Guralnick, and Flavell [16,17,8]. Flavell [8] reduced k to 7 with a proof which does not rely on CFSG.

Notational conventions. Whenever possible, we maintain the notation of [10] which mainly follows [25,3]. In partic-
ular, we adopt the notation of [3] for twisted forms of Chevalley groups (so unitary groups are denoted by PSUn(q

2)

and not by PSUn(q)). However, the classification of outer automorphisms follows [14, p. 60], [13, p. 78]. We say that
a finite group G is almost simple if it contains a unique normal simple group L such that L � G � Aut(L).

2. Outline of the proof

We reduce Theorem 1.4 to the following statement:

Theorem 2.1. Let G be a finite almost simple group, and let g ∈ G be of prime order > 3. Then there is x ∈ G such
that the subgroup generated by g and xgx−1 is not solvable.

The reduction is fairly standard and follows the scheme of [9,10], so the rest of the paper is devoted to the outline
of the proof of Theorem 2.1. We refer to the property stated in Theorem 2.1 as Property (∗). Throughout this section,
G stands for a finite almost simple group, L � G � AutL. We use CFSG to prove that G satisfies (∗).

2.1. Alternating groups, sporadic groups, groups of Lie rank 1 and 2F4

Lemma 2.2. Let L = An, n � 5, be an alternating group. Then G satisfies (∗).

Proof. Clearly it is enough to consider the alternating groups: as Aut(An) = Sn for n �= 6 and [Aut(A6) : A6] = 4,
any element of odd order in Aut(An) lies in An. For G = An, n � 5, the statement is easily proved by induction. �
Lemma 2.3. Let L be a sporadic simple group. Then G satisfies (∗).
Please cite this article in press as: N. Gordeev et al., Baer–Suzuki theorem for the solvable radical of a finite group, C. R. Acad. Sci. Paris, Ser. I
(2009), doi:10.1016/j.crma.2009.01.004
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Proof. As the group of outer automorphisms of any sporadic group is of order at most 2, it is enough to treat the case
where G is a simple sporadic group. Here the proof goes, word for word, as in [9, Prop. 9.1]. Namely, case-by-case
analysis shows that any element x ∈ G of prime order q > 3 is either contained in a smaller simple subgroup of G or
its normalizer is a maximal subgroup of G. In the latter case it is enough to conjugate g by an element x not belonging
to NG(〈g〉) to ensure that 〈g,xgx−1〉 = G. �
Proposition 2.4. Suppose that the Lie rank of L is 1. Then G satisfies (∗).

Proof. Let g ∈ G be of prime order > 3. We shall check that there is x = gα ∈ G, α ∈ L, such that the subgroup of G

generated by g and x is not solvable.
If L = PSL2(q), q � 4, the result follows from [18, Lemma 3.1]. If L = PSU3(q

2), q > 2, the result follows from
the proof of [18, Lemma 3.3] with the single exception where g is a field automorphism. In the latter case we can take
g to be a standard one. It normalizes a subgroup of type A1 generated by a self-conjugate root of A2, and the result
follows from [18, Lemma 3.1].

If L is a Suzuki group 2B2(22m+1), m � 1, or a Ree group 2G2(32m+1), m > 0, we only have to consider the
cases where g ∈ G is a semisimple element of L (since g is of prime order > 3 and cannot be unipotent), or a field
automorphism (since every outer automorphism is a field automorphism).

1. Suzuki case, g is semisimple. Suppose g ∈ 2B2(22m+1) is a semisimple element of order greater than 3. Then g

is regular [3,19]. Choose a cyclic torus T in 2B2(22m+1) of order q2
0 + √

2q0 + 1, where q0 = 2m
√

2. It follows from
the description of maximal subgroups of L (see [26]) that NL(T ) is maximal in L. Moreover, NL(T )/T = Z4 (cf.
[24,29,22]).

Suppose g /∈ T . Since the order of g is bigger than 3 and g is regular, any element x = gα , α ∈ L conjugate to g

does not belong to NL(T ). There exists z ∈ L such that [x, z] is a generator of a nonsplit torus T [15]. Then 〈x, zxz−1〉
contains the nonsplit torus T and the element x which does not belong to NL(T ). Correspondingly, 〈g, z1gz−1

1 〉 = L,
for some z1 ∈ L because of maximality of NL(T ).

Let now g ∈ T . Fix a maximal cyclic torus T1 in 2B2(22m+1) of order q2
0 − √

2q0 + 1, where q0 = 2m
√

2. Again
NL(T1) is maximal in L, and NL(T1)/T1 = Z4 (cf. [24,22]). Then g does not belong to T1, and we repeat the above
arguments.

2. Ree case, x is semisimple. Suppose g ∈ 2G2(22m+1) is a semisimple element of order greater than 3. Then g

is regular [3,19]. Let us choose cyclic tori T , T1 in 2G2(32m+1) of orders q2
0 ± √

3q0 + 1, where q0 = 3m
√

3. Then
NL(T ), NL(T1) are maximal in L, and NL(T )/T = NL(T1)/T1 = Z6 (cf. [21,20,29,22]). With these data the proof
literally repeats the proof for the Suzuki case.

3. Let g be a nontrivial field automorphism of L of prime order greater than 3. For the cases L = PSL2(q), q � 4,
or L = 2B2(22m+1), m � 1, we use a slightly modified counting method from [18, Lemma 3.1].

The Ree groups 2G2(32m+1), m > 0, are not minimal and contain a subgroup isomorphic to PSL2(q), normalized
but not centralized by g. Thus there exists y = gα ∈ L, α ∈ L, such that 〈g,y〉 is not solvable. �
Lemma 2.5. Let L be a group of type 2F4. Then G satisfies (∗).

Proof. Let g ∈ G be a unipotent element of prime order > 3. Then it is easy to reduce the problem to the case of Lie
rank 1. The same idea works if g is a field automorphism of L.

So we can assume that g is a semisimple element which is not contained in a proper parabolic subgroup and thus
lies in one of the tori (4)–(8) from the list of [23]. Suppose that g does not belong to T11. Since |NG(T11)/T11| = 12,
g does not belong to NG(T11). There exists t1 such that [t1, gα], α ∈ L, is a generator of the cyclic nonsplit torus
H = T11 (see [15]). Then 〈gα, t1g

αt−1
1 〉 contains the nonsplit torus H and the element gα which does not belong

to NG(H). Thus 〈g, s1gs−1
1 〉 = L for some s1 ∈ L. If g belongs to T11 we choose t2 such that [t2, gβ ], β ∈ L, is a

generator of the torus H = T10. Now we repeat the previous arguments. �
2.2. General case

Let G be a finite almost simple group, L � G � AutL, the Lie rank of L is � 2, L �= 2F4. This is the
main part of the proof of Theorem 1.4. In contrast with the rank 1 case we avoid here considerations related
Please cite this article in press as: N. Gordeev et al., Baer–Suzuki theorem for the solvable radical of a finite group, C. R. Acad. Sci. Paris, Ser. I
(2009), doi:10.1016/j.crma.2009.01.004
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to the specific subgroup structure of the groups in question and use some basic results on algebraic groups in-
stead.

Let g ∈ G be of prime order q > 3. Our aim is to prove property ∗ using a kind of induction by parabolic subgroups
of G and the corresponding Levi subgroups. In order to use such an induction, we have to embed G into a reductive
algebraic group. For the sake of convenience, we replace induction by studying the minimal counterexample to ∗.

If g ∈ G is a field automorphism of L, then it normalizes but does not centralize a smaller rank group, and we are
done. Hence it is enough to prove the following:

Theorem 2.6. Let G = G(K) be a simple group of Lie type, rank(G) � 2, K a finite field, char(K) = p. Let σ be a
diagonal automorphism of G, and let Γ = 〈σ,G〉. Let g ∈ Γ be of prime order q > 3. Then there exists x ∈ Γ such
that the group 〈g,xgx−1〉 is not solvable.

First we prove that for every pair 〈σ,G〉 there exists a reductive group G over K satisfying the following conditions:

– the derived group G′ is simply connected;
– G′(K)/Z(G′(K)) = G;
– there is τ ∈ G(K) such that 〈τ,G′(K)〉/Z(〈τ,G′(K)〉) = 〈σ,G〉.

Let Gsc be a simple, simply connected algebraic group over a finite field K , and let Gad be the corresponding adjoint
group. Then G = [Gad(K),Gad(K)] = Gsc(K)/Z(Gsc(K)).

Let B be a Borel subgroup of Gad(K), and let g ∈ B . There exists y ∈ G such that ygy−1 = uαu, where uα �= 1 is
a unipotent element corresponding to a simple root α. Using the rank one case, we get x such that 〈g,xgx−1〉 is not
solvable.

Thus we can assume that g is a semisimple element which does not lie in any Borel subgroup.
Let Γ = 〈σ,G〉 be a minimal counter-example to Theorem 2.6, and let g ∈ Γ.

Using arguments from [12] and [4], one can prove that g is of the form g = vẇc where wc is the Coxeter element
of the Weyl group of Gad(K) and v ∈ U � G. In particular, this implies that g is regular.

By [10], for any g = vẇc there is x ∈ G such that [g,x] = u ∈ U.

Put H = 〈g,xgx−1〉. Suppose H is solvable. Denote by Hpq a pq-Hall subgroup of H , and let A be a maximal
abelian normal subgroup of Hpq . Denote by Ap the p-Sylow subgroup of A. One can prove that g does not normalize
any unipotent subgroup of G. This, in particular, implies that Ap = 1, because Ap is normalized by g. Hence |A| = qs .

The next fact about the structure of the minimal counterexample is as follows. Let F � Gad be a reductive subgroup
defined over K , and suppose g ∈ F = F(K). Consider F 0, the identity component of F . Then F 0 is a K-defined
connected reductive group. Suppose that F 0 is not a torus. Then g ∈ F leads to a contradiction and therefore g cannot
lie in any proper reductive subgroup of Gad other than a torus. This leads to a crucial reduction:

Proposition 2.7. If Γ is a minimal counter-example, g ∈ Γ , then the reductive group G corresponding to G is either
the linear group GLq or the unitary group Uq .

Each of these cases is considered separately and in both of them it turns out that g is represented by a monomial
matrix, which leads to a contradiction by Lemma 2.2.

Remark 2.8. It is possible to give another proof of the main theorem which uses the structure of large cyclic
anisotropic tori, description of maximal subgroups in groups of Lie type and Gow’s theorem [15]. An example of
such a proof is given in Section 2.1 for groups of type 2F4 and groups of Lie rank 1.
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