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1. Introduction

This paper is focused on relationships between many-sorted and one-
sorted theories. An insight based on ideas of many-sorted logic leads to
logical geometry, while a one-sorted theory is ultimately related to impor-
tant model-theoretic concepts. Our aim is to show that both approaches
go in parallel and there are bridges which allow to transfer results, notions
and problems back and forth. Thus, an additional freedom in choosing an
approach appears.

The paper can be viewed as a survey of ideas, results and problems col-
lected under the roof of logical geometry. In our opinion, some simple proofs
make the paper more vital.

The first part of the paper contains main notions, the second one is de-
voted to logical geometry, the third part describes types and isotypeness.
The problems are distributed in the corresponding parts. The whole mate-
rial is oriented towards universal algebraic geometry (UAG), i.e., geometry
in an arbitrary variety of algebras Θ. We will distinguish between the
equational algebraic geometry and the logical geometry. In the equational
geometry equations have the form w ≡ w′, where w and w′ are elements
of the free in Θ algebra W (X). In the logical geometry the elements of
the multi-sorted first-order logic play the role of equations. We consider
logical geometry (LG) as a part of UAG. This theory is strongly influenced
by model theory and ideas of A.Tarski and A.I.Malcev.
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We fix a variety of algebras Θ. Let W = W (X) be the free in Θ algebra
over a set of variables X. The set X is assumed to be finite, if the opposite
is not stated explicitly. In the latter case we use the notation X0. All
algebras under consideration are algebras in Θ. Logic is also related to the
variety Θ. As usual, the signature of Θ may contain constants.

2. Main notions

In this section we consider a system of notions we are dealing with. Some
of them are not formally defined in this paper. For the precise definitions
and references use [8], [18], [22], [23], [29], [33].

The general picture of relations between these notions brings forward a
lot of new problems, formulated in Sections 3 and 4. These problems are
the main objective of the paper.

2.1. Equations, points, spaces of points and algebra of formulas
Φ(X). Consider a system T of equations of the form w = w′, w,w′ ∈ W (X).
Each system T determines an algebraic set of points in the corresponding
affine space.

Let X = {x1, . . . , xn} and let H be an algebra in the variety Θ. We
have an affine space HX of points µ : X → H. For every µ we have also
the n-tuple (a1, . . . , an) = ā with ai = µ(xi). For the given Θ we have the
homomorphism

µ : W (X) → H

and, hence, the affine space is viewed as the set of homomorphisms

Hom(W (X), H).

The classical kernel Ker(µ) corresponds to each point µ : W (X) → H.
Every point µ has also the logical kernel LKer(µ). Along with the alge-

bra W (X) we will consider the algebra of formulas Φ(X). Logical kernel
LKer(µ) consists of all formulas u ∈ Φ(X) valid on the point µ.

The algebra Φ(X) will be defined later on, but let us note now that it is an
extended Boolean algebra (Boolean algebra, in which quantifiers ∃x, x ∈ X
act as operations, and equalities (Θ-equalities) w ≡ w′, w,w′ ∈ W (X) are
defined). It is also defined what does it mean that the point µ satisfies
a formula u ∈ Φ(X). These u are treated as equations. For T ⊂ Φ(X),
in Hom(W (X), H) we have an elementary set (definable set) consisting of
points µ which satisfy every u ∈ T .

Each kernel LKer(µ) is a Boolean ultrafilter in Φ(X). Note that

Ker(µ) = LKer(µ) ∩MX ,

where MX is the set of all w ≡ w′, w,w′ ∈ W (X).
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2.2. Extended Boolean algebras. Let us make some comments regard-
ing the definition of the notion of extended Boolean algebra.

Let B be a Boolean algebra. The existential quantifier on B is an unary
operation ∃ : B → B subject to conditions

(1) ∃(0) = 0,

(2) a ≤ ∃(a),
(3) ∃(a ∧ ∃b) = ∃a ∧ ∃b.

The universal quantifier ∀ : B → B is defined dually:

(1) ∀(1) = 1,

(2) a ≥ ∀(a),
(3) ∀(a ∨ ∀b) = ∀a ∨ ∀b.

Here the numerals 0 and 1 are zero and unit of the Boolean algebra B and
a, b are arbitrary elements of B.

As usual, the quantifiers ∃ and ∀ are coordinated by: (∃a) = ¬(∀(¬a)),
and (∀a) = ¬(∃(¬a)).

Now suppose that a variety of algebras Θ is fixed and W (X) is the free
in Θ algebra over the set of variables X. These data allow to define the
extended Boolean algebra. This is a Boolean algebra where the quantifiers
∃x are defined for every x ∈ X and

∃x∃y = ∃y∃x
for every x and y from X. Besides that, for every pair of elements w,w′ ∈
W (X) in an extended Boolean algebra the equality w ≡ w′ is defined.
These equalities are considered as nullary operations, that is, as constants.
Each equality satisfies conditions of an equivalence relation, and for every
operation ω from the signature of algebras from Θ we have

(w1 ≡ w′
1) ∧ . . . ∧ (wn ≡ w′

n) → (w1 . . . wnω) ≡ (w′
1 . . . w

′
nω).

Algebra of formulas Φ(X) is an example of extended Boolean algebra in Θ.
Now consider another example.

2.3. Important example. We start from an affine space Hom(W (X), H).
LetBool(W (X), H) be the Boolean algebra of all subsets ofHom(W (X), H).
Extend this algebra by adding quantifiers ∃x and equalities. For A ∈
Bool(W (X), H) we set: B = ∃xA is the set (”cylinder”) of points µ :
W (X) → H such that there is ν : W (X) → H in A and µ(x′) = ν(x′) for
x′ ∈ X, x′ ̸= x. It is, indeed, an existential quantifier for every x ∈ X.

Define an equality [w ≡ w′]H in Bool(W (X), H) for every w ≡ w′ in MX ,
setting µ ∈ [w ≡ w′]H if (w,w′) ∈ Ker(µ), i.e., wµ = w′µ.

Remark 2.1. The set [w ≡ w′]H can be empty. Thus, we give the following
definition. The equality [w ≡ w′]H is called admissible for the given Θ, if
for every H ∈ Θ the set [w ≡ w′]H is not empty. If Θ is the variety of all
groups, then each equality is admissible. The same is true for the variety
of associative algebras with unity over complex numbers. However, for the
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field of real numbers this is not the case. Here x2+1 = 0 is not an admissible
equality.

We assume that in each algebra of formulas Φ(X) lie all Θ-equalities. To
arbitrary equality w ≡ w′ corresponds either a non-empty equality [w ≡
w′]H in H ∈ Θ, or the empty set in H ∈ Θ which is the zero element of this
Boolean algebra.

We have arrived to an extended Boolean algebra, denoted now byHalXΘ (H).
We shall emphasize that this algebra and the algebra of formulas Φ(X) have
the same signature.

2.4. Homomorphism V alXH . We will proceed from the homomorphism

V alXH : Φ(X) → HalXΘ (H)

with the condition V alXH (w ≡ w′) = [w ≡ w′]H for equalities, if [w ≡
w′]H is non-empty, or 0 otherwise. This homomorphism will be defined in
subsection 2.9. The existence of such a homomorphism is not a trivial fact,
since the equalities MX do not generate (and, of course, do not generate
freely) the algebra Φ(X). If, further, u ∈ Φ(X), then V alXH (u) is a set of
points in the affine space Hom(W (X), H). We say that a point µ satisfies
the formula u if µ belongs to V alXH (u). Thus, V alXH (u) is precisely the set
of points satisfying the formula u. Define the logical kernel LKer(µ) of a
point µ as the set of all formulas u such that µ ∈ V alXH (u).

We have

Ker(µ) = LKer(µ) ∩MX .

Here Ker(µ) is the set of all formulas of the form w ≡ w′, w,w′ ∈ W (X),
such that the point µ satisfies these formulas. In parallel, LKer(µ) is the
set of all formulas u, such that the point µ satisfies these formulas.

Then,

Ker(V alXH ) = ThX(H),∩
µ:W (X)→H

LKer(µ) = ThX(H).

Here ThX(H) is a set of formulas u ∈ Φ(X), such that V alXH (u) is the
unit in Bool(W (X), H). That is, V alXH (u) = Hom(W (X), H) and, thus,
ThX(H) is an X-component of the elementary theory of the algebra H.

In general we have a multi-sorted representation of the elementary theory

Th(H) = (ThX(H), X ∈ Γ),

where Γ is a certain system of sets, see Section 2.5.
It follows from the previous considerations that the algebra of formu-

las Φ(X) can be embedded in HalXΘ (H) modulo elementary theory of the
algebra H. This fact will be used in the sequel.
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2.5. Multi-sorted logic: first approximation. Let, further, X0 be an
infinite set of variables and Γ a system of all finite subsets X in X0.

So, in the logic under consideration we have an infinite system Γ of finite
sets instead of one infinite X0. This leads to multi-sorted logic. This ap-
proach is caused by relations with UAG. In the field of universal algebraic
geometry one can consider equational geometry and logical geometry. Cor-
respondingly, we have algebraic sets of points and definable sets of points
in each affine space.

In the final part of the paper, along with the system of sorts Γ, we also
use a system of sorts Γ∗ where one initial infinite set X0 is added to the
system Γ.

2.6. Algebra HalΘ(H). All these algebras and corresponding categories
present universal semantics for the logic concerned with a variety Θ. Syntax
of this logic is given by the algebra Φ̃. The homomorphism

V alH : Φ̃ → HalΘ(H)

gives the correspondence between syntax and semantics. This homomor-
phism and the homomorphism

V alXH : Φ̃(X) → HalXΘ (H)

will be defined at the end of the section.
We start with the category Θ∗(H) of affine spaces. Its objects are spaces

Hom(W (X), H), where X ∈ Γ.
Morphisms

s̃ : Hom(W (X), H) → Hom(W (Y ), H)

of Θ∗(H) are mappings induced by homomorphisms s : W (Y ) → W (X)
according to the rule s̃(ν) = νs for every ν : W (X) → H.

Given a variety of algebras Θ, define the category Θ0. Its objects are
free in Θ algebras W (X) and morphisms s are homomorphisms of algebras.
The correspondences W (X) → Hom(W (X), H) and s → s̃ give rise to a
contravariant functor

φ : Θ0 → Θ∗(H).

Morphisms s̃ and s act in the opposite direction. Note that if s is surjective,
then s̃ is injective, and if s is injective, then s̃ is surjective.

Proposition 2.2. Functor φ : Θ0 → Θ∗(H) defines a duality of categories
if and only if the variety V ar(H) generated by H coincides with Θ.

Proof. The condition of duality implies that if s1 ̸= s2 for the given mor-
phisms s1, s2 : W (Y ) → W (X) then s̃1 ̸= s̃2.

Let us assume that V ar(H) = Θ and the categories are not dual, so there
are morphisms s1 and s2 such that s1 ̸= s2 but s̃1 = s̃2. Take some y ∈ Y
such that s1(y) = w1, s2(y) = w2 and w1 ̸= w2. We will show that the
non-trivial identity w1 ≡ w2 holds in H. Take an arbitrary homomorphism
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ν : W (X) → H. The equality s̃1 = s̃2 implies s̃1(ν) = s̃2(ν) or νs1 = νs2.
We apply this morphism to the variable y:

νs1(y) = νs2(y) or νw1 = νw2.

Since ν : W (X) → H is an arbitrary homomorphism, then w1 ≡ w2 is an
identity of the algebra H. But V ar(H) = Θ, which means that there are
no non-trivial identities in H. We have a contradiction and the condition
V ar(H) = Θ implies duality of the given categories.

Now we show that if V ar(H) ⊂ Θ, then there is no duality. Let w1 ≡ w2

be some non-trivial identity of the algebra H. Take Y = {y0} and let
s1(y0) = w1, s2(y0) = w2. For any ν : W (X) → H we have

νw1 = νw2, νs1(y0) = νs2(y0), s̃1(ν)(y0) = s̃2(ν)(y0).

Since the set Y contains only one element y0, then s̃1(ν) = s̃2(ν). As ν is
arbitrary, then s̃1 = s̃2 and there is no duality of the categories. �

Define further the category HalΘ(H). Its objects are algebras HalXΘ (H).
Proceed from s : W (X) → W (Y ) and pass to s̃ : Hom(W (Y ), H) →
Hom(W (X), H). Recall that, HalXΘ (H) = Bool(W (X), H). Take A ⊂
Hom(W (X), H). Define

s∗(A) = s̃−1(A) = B ⊂ Hom(W (Y ), H).

By definition, µ ∈ B if and only if µs = s̃(µ) ∈ A. This determines a
morphism

s∗ = sH∗ : HalXΘ (H) → HalYΘ(H).

Here s∗ is well coordinated with the Boolean structure, and relations with
quantifiers and equalities are coordinated by identities from Definition 2.3.
The category HalΘ(H) can be also treated as a multi-sorted algebra

HalΘ(H) = (HalXΘ (H), X ∈ Γ).

2.7. Variety of Halmos algebras HalΘ. Algebras in HalΘ have the form

L = (LX , X ∈ Γ).

Here all domains LX are X-extended Boolean algebras. The unary opera-
tion

s∗ : LX → LY

corresponds to each homomorphism s : W (X) → W (Y ). Besides, we will
define a category L of all LX , X ∈ Γ with morphisms s∗ : LX → LY .
The transition s → s∗ determines a covariant functor Θ0 → L. Informally,
operations of s∗-type make logics dynamical.

Every LX is an X-extended Boolean algebra. Denote its signature by

LX = {∨,∧,¬,∃x,MX}, for all x ∈ X.

Here MX stands for the set of all symbols of relations of equality of the
form w ≡ w′.
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Denote by SX,Y the set of symbols of operations s∗ of type τ = (X;Y ),
where X,Y ∈ Γ. Define the signature

LΘ = {LX , SX,Y ;X, Y ∈ Γ}.
The signature LΘ is multi-sorted. We take LΘ as the signature of an ar-
bitrary algebra from the variety of multi-sorted algebras HalΘ. The con-
structed multi-sorted algebras HalΘ(H) possess this signature with the nat-
ural realization of all operations from LΘ.

There is a series of axioms which determine algebras from the variety
HalΘ. For example, every s∗ respects Boolean operations in LX and LY .
Correlations of s∗ with equalities and quantifiers are described by more
complex identities. Below we give the complete list of axioms for HalΘ (see
also [31], [33]).

Definition 2.3. We call an algebra L = (LX , X ∈ Γ) in the signature LΘ

a Halmos algebra, if

(1) Every domain LX is an extended Boolean algebra in the signature
LX .

(2) Every mapping s∗ : LX → LY is a homomorphism of Boolean alge-
bras. Let s : W (X) → W (Y ), s′ : W (Y ) → W (Z), and let u ∈ LX .
Then s′∗(s∗(u)) = (s′s)∗(u).

(3) Conditions controlling the interaction of s∗ with quantifiers are as
follows:

(a) s1∗∃xa = s2∗∃xa, a ∈ L(X), if s1(y) = s2(y) for every y ̸= x,
x, y ∈ X.

(b) s∗∃xa = ∃(s(x))(s∗a), a ∈ L(X), if s(x) = y and y is a variable
which does not belong to the support of s(x′), for every x′ ∈ X
and x′ ̸= x.
This condition means that y does not participate in the shortest
expression of the element s(x′) ∈ W (Y ).

(4) Conditions controlling the interaction of s∗ with equalities are as
follows:

(a) s∗(w ≡ w′) = (s(w) ≡ s(w′)).

(b) (sxw)∗a ∧ (w ≡ w′) ≤ (sxw′)∗a, where a ∈ L(X) and sxw ∈
End(W (X)) is defined by: sxw(x) = w and sxw(x

′) = x′, for
x′ ̸= x.

Remark 2.4. We should note that all conditions from the definition of a
Halmos algebra can be represented as identities, and this is why the class
of Halmos algebras is, indeed, a variety.

Define HalΘ to be the variety of all Halmos algebras, that is every algebra
from HalΘ satisfies Definition 2.3.

Proposition 2.5. Each algebra HalΘ(H) belongs to the variety HalΘ.
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This proposition will be proved in Section 2.10. Moreover,

Theorem 2.6 ([30]). All HalΘ(H), where H runs through Θ, generate the
variety HalΘ.

In view of Theorem 2.6 one could define from the very beginning the
variety HalΘ as the variety, generated by all algebras HalΘ(H).

Recall, that every ideal of an extended Boolean algebra is a Boolean
ideal invariant with respect to the universal quantifiers action. An extended
Boolean algebra is called simple if it does not have non-trivial ideals. In the
multi-sorted case an ideal is a system of one-sorted ideals which respects
all operations of the form s∗. A multi-sorted Halmos algebra is simple if it
does not have non-trivial ideals. Algebras HalΘ(H) and their subalgebras
are simple Halmos algebras, see [34]. Moreover, these algebras are the
only simple algebras in the variety HalΘ. Finally, every Halmos algebra
is residually simple, see [34]. This fact is essential in the next subsection.
Note, that all these facts are true because of the choice of the identities in
the variety HalΘ.

2.8. Multi-sorted algebra of formulas. We shall define the algebra of
formulas

Φ̃ = (Φ(X), X ∈ Γ).

We define this algebra as the free over the multi-sorted set of equalities

M = (MX , X ∈ Γ)

algebra in HalΘ. Assuming this property denote it as

Hal0Θ = (HalXΘ , X ∈ Γ).

So, HalXΘ = Φ(X) and Φ̃ = Hal0Θ.
In order to define Hal0Θ we start from the absolutely free over the same

M algebra
L0 = (L0(X), X ∈ Γ).

This free algebra is considered in the signature of the variety HalΘ. Algebra
L0 can be viewed as the algebra of pure formulas of the corresponding logical
calculus.

Then, Φ̃ is defined as the quotient algebra of L0 modulo the verbal congru-

ence of identities of the variety HalΘ. The same algebra Φ̃ can be obtained
from L0 using the Lindenbaum-Tarski approach. Namely, basing on identi-
ties of HalΘ we distinguish a system of axioms and rules of inference in L0.
For every X ∈ Γ consider the formulas

(u → v) ∧ (v → u),

where u, v ∈ L0(X). Here u → v means ¬u ∨ v. We assume that every

(u → v) ∧ (v → u),

is deducible from the axioms if and only if the pair (u, v) belongs to the
X-component of the given verbal congruence.
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So, Φ̃ can be viewed as an algebra of the compressed formulas modulo
this congruence.

2.9. Homomorphism V alH. Proceed from the mapping

MX → HalXΘ (H),

which takes the equalities w ≡ w′ in MX to the corresponding equalities
[w ≡ w′]H in HalXΘ (H). This gives rise also to the multi-sorted mapping

M = (MX , X ∈ Γ) → HalΘ(H) = (HalXΘ (H), X ∈ Γ).

Since the multi-sorted set M generates freely the algebra Φ̃, this mapping
is uniquely extended up to the homomorphism

V alH : Φ̃ → HalΘ(H).

Note that this homomorphism is the unique homomorphism Φ̃ → HalΘ(H),
since equalities are considered as constants.

We have

V alXH : Φ(X) → HalXΘ (H),

i.e., V alH acts componentwise for each X ∈ Γ.
Recall that for every u ∈ Φ(X) the corresponding set V alXH (u) is a set

of points µ : W (X) → H satisfying the formula u (see Section 2.4). The
logical kernel LKer(µ) was defined in Section 2.1 in these terms. Now we
can say, that if a formula u belongs to Φ(X) and a point µ : W (X) → H is
given, then

u ∈ LKer(µ) if and only if µ ∈ V alXH (u).

We shall note that a formula u can be, in general, of the form u = s∗(v),
where v ∈ Φ(Y ), Y is different from X. This means that the logical kernel
of the point is very big and it gives a rich characterization of the whole
theory.

As we have seen, LKer(µ) is a Boolean ultrafilter containing the elemen-
tary theory ThX(H). Any ultrafilter with this property will be considered
as an X-type of the algebra H.

It is clear that

Ker(V alH) = Th(H).

This remark is used, for example, in Definition 3.35.

Recall that the algebra Φ̃ is residually simple. This fact implies two
important observations:

1. Let u, v be two formulas in Φ(X). These formulas coincide if and only
if for every algebra H ∈ Θ the equality

V alXH (u) = V alXH (v)

holds.
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2. Let a morphism s : W (X) → W (Y ) be given. The morphism s∗ :
Φ(X) → Φ(Y ) corresponds to s. Let us take formulas u ∈ Φ(X) and
v ∈ Φ(Y ). The equality

s∗(u) = v

holds true if and only if for every algebra H in Θ we have

s∗(V alXH (u)) = V alYH(v).

The following commutative diagram relates syntax with semantics

Φ(X) -s∗ Φ(Y )

?
V alXH ?

V alYH

HalXΘ (H) -sH∗ HalYΘ(H).

2.10. Identities of the variety HalΘ for algebras HalΘ(H). We have
already defined the algebras HalΘ(H). Now we show that these algebras
satisfy the axioms of Definition 2.3 and, thus, belong to the variety HalΘ.
In fact we should check the correspondences between s∗ and quantifiers and
between s∗ and equalities.

First we consider interaction of s∗ with quantifiers. This interaction is
determined by following propositions.

Proposition 2.7. Let s1 and s2 be morphisms W (X) → W (Y ) and let
s1(x

′) = s2(x
′) for all x′ ∈ X, x′ ̸= x. Then the equality

s1∗∃x(A) = s2∗∃x(A),
where A ⊂ Hom(W (X), H), holds in HalΘ(H).

Proof. Let µ ∈ s1∗∃x(A). Then µs1 ∈ ∃x(A). In the set A there is a point
ν such that µs1(x

′) = ν(x′) for x′ ̸= x, x′ ∈ X. We also have the following
equalities:

µs2(x
′) = µs1(x

′) = ν(x′)

and, hence, µs2 ∈ ∃x(A). So, µ ∈ s2∗∃x(A). In a similar manner if µ ∈
s2∗∃x(A), then µ ∈ s1∗∃x(A). Thus, s1∗∃x(A) = s2∗∃x(A). �

Taking A to be a point a we obtain the axiom (3.a) of Definition 2.3.

Proposition 2.8. Let s : W (X) → W (Y ) be a morphism. Take x ∈ X
and let s(x) = y for some y ∈ Y . We assume also that y is not contained
in the support of each s(x′), x′ ̸= x. Then the equality

s∗∃x(A) = ∃s(x)s∗(A),
where A ⊂ Hom(W (X), H), holds in HalΘ(H).

Proof. Let µ ∈ ∃s(x)s∗(A). Take ν ∈ s∗A such that µ(y′) = ν(y′), y′ ̸= y =
s(x), y′ ∈ Y . We also have νs = γ ∈ A and

µ(s(x′)) = µs(x′) = ν(s(x′)) = νs(x′) = γ(x′)

for every x′ ̸= x. So we have µs ∈ ∃x(A) and µ ∈ s∗
(
∃x(A)

)
.
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Before proving the inverse inclusion we give some remarks. First of all
we generalize this situation. Instead of the one variable x we will consider
a set of variables I. Define the quantifier ∃(I) by: µ ∈ ∃(I)A if there is a
point ν in A such that µ(y) = ν(y) for y ̸∈ I. Then we are interested in the
following equality

s∗∃(I)A = ∃(s(I))s∗A.
Let us assume that s(I) = J and I ⊂ s−1(J), and consider the equality
s∗∃(s−1(J))A = ∃(J)s∗A. We will prove that it is true under the condition:
s(x) = s(y) ∈ J if and only if x = y. Note that the latter condition follows
from the assumption of our proposition.

As before we check that if µ ∈ ∃(J)s∗A then µ ∈ s∗∃(s−1(J))A.
Let now µ ∈ s∗∃(s−1(J))A. We will show that µ ∈ ∃(J)s∗A. We have

µs ∈ ∃(s−1(J))A and ν ∈ A with µs(y) = ν(y) for all y ̸∈ s−1(J) = I.
Now we choose a certain element γ ∈ s∗A. We assume that γ(x) = µ(x)

for x ̸∈ J and γ(x) = ν(s−1(x)) if x ∈ s(I) ⊂ J .
Take x = s(x′), x′ ∈ X, x ∈ J . Then x′ = s−1(x) and x′ is uniquely

defined by the element x. So, we have

γs(x′) = γ(s(x′)) = ν(s−1s(x′)) = ν(x′),

where x is an arbitrary element from the set I.
Let now x′ ̸∈ I and s(x′) = x does not belong to J . Then

γs(x′) = γ(s(x′)) = µ(s(x′)) = µs(x′) = ν(x′).

Thus, γs(x′) = ν(x′) for all x′. Then, γs = ν ∈ A and γ ∈ s∗A. Thus,
µ ∈ ∃(J)s∗A. As a result we have that

s∗∃(s−1(J))A = ∃(J)s∗A.

We have started the proof of this equality with the set I and then turned
to the set s(I) = J . The condition s(x) = s(y) implies x = y and we have
s−1(J) = I. Now we can rewrite the equality above as follows:

s∗∃(I)A = ∃(s(I))s∗A.

If the set I consists of only one element x then the statement of Proposi-
tion 2.8 holds. �

Now we consider the correspondence between morphisms and equalities.
Here we have two conditions to check in HalΘ(H):

(1) s∗(w ≡ w′) =
(
s(w) ≡ s(w′)

)
,

(2) sxw∗(A) ∩ V alXH (w ≡ w′) < sxw′∗A,

where A ⊂ Hom(W (X), H).
We show that the first condition holds. Let µ : W (X) → H be a point in

s∗(w ≡ w′). We have µs ∈ V alXH (w ≡ w′), µs(w) = µs(w′), (sw)µ = (sw′)µ,
µ ∈ V alXH (s(w) ≡ s(w′)).

Similarly we can check that if µ ∈
(
s(w) ≡ s(w′)

)
then µ ∈ s∗(w ≡ w′).
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Now we show that the second condition is true. Let

µ ∈ sxw∗(A) ∩ V alXH (w ≡ w′).

Then µsxw ∈ A and wµ = (w′)µ. From the last condition follows that
µsxw(x) = µsxw′(x) and µsxw(y) = µsxw′(y) for y ̸= x. This gives µsxw = µsxw′ .
Since µsxw ∈ A then µsxw′ ∈ A and µ ∈ sxw′∗(A).

Thus, the correspondence between morphisms and equalities is verified.
So, each algebra HalΘ(H) satisfies the identities of the variety HalΘ.
We finished a survey of the notions of multi-sorted logic needed for UAG

and in the next section we will relate these notions with the ideas of one-
sorted logic used in Model Theory. Note also that we cannot define algebras
of formulas Φ(X) individually. They are defined only in the multi-sorted
case of algebras Φ̃ = (Φ(X), X ∈ Γ).

In fact, the definition of the algebra of formulas Φ̃ and the system of
algebras Φ(X) is the main result of the first part of the paper. They are
essentially used throughout the paper.

3. Logical geometry

3.1. Introduction. The setting of logical geometry looks as follows. As
before, we fix a variety of algebras Θ. Let X = {x1, . . . , xn} be a finite set
of variables, W (X) the free in Θ algebra over X, H an algebra in Θ. The
set

Hom(W (X), H)

of all homomorphisms µ : W (X) → H is viewed as the affine space of the
sort X over H.

Take the algebra of formulas Φ(X) which was defined in Section 2.8. Con-
sider various subsets T of Φ(X). We will establish a Galois correspondence
between such T and sets of points A in the space Hom(W (X), H). This
Galois correspondence gives rise to logical geometry in the given Θ.

The notion of the logical kernel plays a major role in this correspondence.
Recall (see Section 2.4), that for every point µ : W (X) → H there exists its
logical kernel LKer(µ) which is a Boolean ultrafilter in Φ(X), containing
the elementary theory ThX(H).

Having in mind the context of the theory of models (see the next section),
we view LKer(µ) as an LG-type (that is, logically-geometric type) of the
point µ. Denote LKer(µ) = LGX

H(µ).
Note that the variety Θ is arbitrary and, correspondingly, the system of

notions and statements of problems is of a universal character. However,
even in the classical situation Θ = Com− P of the commutative and asso-
ciative algebras with unit over the field P , many new problems and results
appear.

3.2. Galois correspondence in the Logical Geometry. Let us start
with a particular case when the set of formulas T in Φ(X) is a set of equa-
tions of the form w = w′, w,w′ ∈ W (X), X ∈ Γ.
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We set
A = T ′

H = {µ : W (X) → H | T ⊂ Ker(µ)}.
Here A is an algebraic set in Hom(W (X), H), determined by the set T .

Let, further, A be a subset in Hom(W (X), H). We set

T = A′
H =

∩
µ∈A

Ker(µ).

Congruences T of such kind are called H-closed in W (X). We have also
Galois-closures T ′′

H and A′′
H .

Let us pass to the general case of logical geometry. Let now T be a set
of arbitrary formulas in Φ(X). We set

A = TL
H = {µ : W (X) → H | T ⊂ LKer(µ)}.

We have also
A =

∩
u∈T

V alXH (u).

Here A is called a definable set in Hom(W (X), H), determined by the set T
(cf., Section 3.10). We use the term ”definable” for A of such kind, meaning
that A is defined by some set of formulas T .

For the set of points A in Hom(W (X), H) we set

T = AL
H =

∩
µ∈A

LKer(µ).

We have also

T = AL
H = {u ∈ Φ(X) | A ⊂ V alXH (u)}.

Here T is a Boolean filter in Φ(X) determined by the set of points A.
Filters of such kind are Galois-closed and we can define the Galois-closures
of arbitrary sets T in Φ(X) and A in Hom(W (X), H) as TLL and ALL.

Proposition 3.1. [34] Intersection of H-closed filters is also an H-closed
filter.

3.3. AG-equivalent and LG-equivalent algebras. LG-isotypic alge-
bras. Let us formulate two key definitions and the corresponding results
(see, for example, [29], [32]).

Definition 3.2. Algebras H1 and H2 are AG-equivalent, if for every X and
every system of equations T holds T ′′

H1
= T ′′

H2
.

Definition 3.3. Algebras H1 and H2 are LG-equivalent, if for every X and
every set of formulas T in Φ(X) holds TLL

H1
= TLL

H2
.

Let now
(

∧
(w,w′)∈T

(w ≡ w′)) → (w0 ≡ w′
0)

be a quasi-identity. We will also write

T → w0 ≡ w′
0.
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This quasi-identity can be infinitary if the set T is infinite. Note that
w0 ≡ w′

0 ∈ T ′′
H if and only if the quasi-identity T → w0 ≡ w′

0 holds true in
the algebra H.

Algebras H1 and H2 in Θ are AG-equivalent, if and only if each quasi-
identity T → w0 ≡ w′

0 which holds true in H1 is a quasi-identity of the
algebra H2.

In particular, if H1 and H2 are AG-equivalent then they generate the
same quasi-variety. The inverse statement is not true (see [18]). Recall that
quasi-varieties are generated by systems of finitary quasi-identities.

Consider the following formula:

(
∧
u∈T

u) → v, v ∈ Φ(X)

or
T → v.

The set T can be infinite and then we speak about infinitary formulas.

Proposition 3.4. A formula v belongs to TLL
H if and only if the formula

T → v holds true in the algebra H.

Proof. Take A = TL
H . We have v ∈ TLL

H if and only if A ⊂ V alXH (v). A point
µ belongs to A if and only if µ satisfies every u ∈ T . The formula T → v
holds true in H if and only if for every point µ satisfying all formulas u ∈ T
this point satisfies the formula v, i.e. µ ∈ V alXH (v). Thus, A ⊂ V alXH (v)
whenever T → v holds in H. �

From this proposition follows:

Proposition 3.5. Algebras H1 and H2 are LG-equivalent if for every X ∈ Γ
and T ⊂ Φ(X) the formula T → v holds true in the algebra H1 if and only
if it is true in the algebra H2.

Denote by ImTh(H) the implicative theory of the algebra H. Recall
that the implicative theory is the set of all formulas of the form T → u, for
different X ∈ Γ, which hold true in the algebra H. So, algebras H1 and H2

are LG-equivalent if their implicative theories coincide, i.e.,

ImTh(H1) = ImTh(H2).

Now we give one more approach to the notion of LG-equivalence. Let T
be a set of formulas from Φ(X) and let T∨ be the set of all disjunctions of

the formulas u ∈ T and T̃∨ be the set of all disjunctions of the formulas ¬u
for u ∈ T . Here we have the following properties

¬(
∧
u∈T

u) = T̃∨; ¬(
∧
u∈T

¬u) = T∨.

We want to consider the disjunctive theory of the algebra H. The dis-
junctive theory of the algebra H is the set of all possible formulas T∨, for
all T ⊂ Φ(X) and different X ∈ Γ, which hold true in the algebra H.
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Note that a formula T → v holds true in the algebra H if and only if the

formula T̃∨∨ v is true in H. Thus if the disjunctive theories of two algebras
H1 and H2 coincide then these algebras are LG-equivalent. Moreover, there
is the following

Proposition 3.6. Algebras H1 and H2 are LG-equivalent if and only if
their disjunctive theories coincide.

Proof. Let algebras H1 and H2 be LG-equivalent. We take a set of formulas

T ⊂ Φ(X) and consider the formula T̃∨ ∨ v, where v is the formula (x ≡
y)∧ (x ̸≡ y). There is no point µ : W (X) → H satisfying the formula v. So

µ satisfies the formula T̃∨ ∨ v if and only if µ satisfies the formula T̃∨. It
means that there is u ∈ T such that the point µ does not satisfy the formula
u and so this point satisfies the formula T → v.

Now let H = H1 and let T∨ be a formula which hold true in the algebra

H1. An arbitrary point µ1 : W (X) → H1 satisfies T
∨ and T̃∨ → v. Since the

algebras H1 and H2 are LG-equivalent, then every point µ2 : W (X) → H2

satisfies the formula T̃∨ → v and, hence, it satisfies the formula T∨ ∨ v. So,
each point µ2 : W (X) → H2 satisfies the formula T∨. Thus, the disjunctive
theories of H1 and H2 coincide. �

Note that

Proposition 3.7. If algebras H1 and H2 are LG-equivalent then they are
elementarily equivalent.

Proof. Let us consider the formula u → v, where u is the formula x ≡ x.
This formula holds true in the algebra H if and only if the formula v is true
in H, i.e., v ∈ Th(H). If algebras H1 and H2 are LG-equivalent then the
formula u → v holds in H1 if and only if it is true in H2. Thus v ∈ Th(H1)
if and only if v ∈ Th(H2), that is, Th(H1) = Th(H2). �
Definition 3.8. Two algebrasH1 andH2 are called LG-isotypic (cf. Section
4.4) if for every point µ : W (X) → H1 there exists a point ν : W (X) → H2

such that LKer(µ) = LKer(ν) and, conversely, for every point ν : W (X) →
H2 there exists a point µ : W (X) → H1 such that LKer(ν) = LKer(µ).

The main theorem is the following [48]

Theorem 3.9. Algebras H1 and H2 are LG-equivalent if and only if they
are LG-isotypic.

Proof. Let H1 and H2 be LG-equivalent algebras. By definition for any
finite set X and any H1-closed filter T from Φ(X) we have:

T = TLL
H1

= TLL
H2

.

So, T is H1-closed if and only if it is H2-closed.
Let T = LKer(µ) be the logical kernel of a point µ : W (X) → H1. Then

TL
H1

= A, where A = {µ} and TLL
H1

= AL
H1

= LKer(µ) = T . So, T is an
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H1-closed filter. Hence, T is an H2-closed filter. Since T = LKer(µ), the
filter T is maximal. Since H1 and H2 are LG-equivalent, there exists a set B
in Hom(W (X), H2) such that BL

H2
= T . Then T =

∩
ν∈B LKer(ν). Since

the filter T is maximal, LKer(ν) = T = LKer(µ) for all points ν ∈ B.
Note that we used the fact that TL

H2
is not empty. Indeed, if we assume

that TL
H2

= {∅} then TLL
H2

= {∅}LH2
= Φ(X) = TLL

H1
= T , but T is a proper

filter.
In the similar way one can prove that if T = LKer(µ) is the logical kernel

of a point ν : W (X) → H2, then there exists a point µ : W (X) → H1 such
that LKer(ν) = LKer(µ). Hence, H1 and H2 are isotypic.

Let, further, H1 and H2 be isotypic algebras. This means that if T =
LKer(µ) is the logical kernel of a point µ : W (X) → H1, then T = LKer(ν)
is the logical kernel for some ν : W (X) → H2 as well, and vice versa. Recall,
that every logical kernel is a closed filter, so T is H1- and H2-closed filter.

Let, now, T be an arbitrary H1-closed filter in Φ(X). We will show that
T is H2-closed.

Let TL
H1

= A, then T = TLL
H1

= AL
H1

=
∩

µ∈A LKer(µ). Since H1 and H2

are isotypic, there exist points ν : W (X) → H2 such that∩
ν∈Hom(W (X),H)

LKer(ν) =
∩
µ∈A

LKer(µ).

According to Proposition 3.1, the intersection of H-closed filters is also an
H-closed filter, hence T is an H2-closed filter.

Similarly, we can prove that each H2-closed filter is H1-closed. Hence, H1

and H2 are LG-equivalent. �
From this theorem follows

Corollary 3.10. If the algebras H1 and H2 are isotypic, then they are
elementarily equivalent.

Proof. Take a formula x = x → u, where u ∈ Φ(X). This formula holds
in H1 if and only if u holds in H1. Since H1 and H2 are isotypic, then
(Proposition 3.5) x = x → u holds in H1 if and only if it holds in H2. So if
u belongs to the elementary theory of H1, then it belongs to the elementary
theory of H2 and vice versa.

�
3.4. Categories of algebraic and definable sets over a given algebra
H. Recall that we introduced (Section 2.6) the category of affine spaces
Θ∗(H). It is natural to assume that V ar(H) = Θ. If this condition does
not hold, the situation when for two different morphisms s1 : W (Y ) →
W (X) and s2 : W (Y ) → W (X) the corresponding morphisms s̃1 and s̃2
in Θ∗(H) coincide, is possible. This breaks duality between Θ0 and Θ∗

(Proposition 2.2) and, as we will see, leads to a lot of other disadvantages.
The condition V ar(H) = Θ plays also a crucial role in the problem of
sameness of geometries over different algebras.
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Define now a category of algebraic sets AGΘ(H) and a category of defin-
able sets LGΘ(H).

Define first a category SetΘ(H). Its objects are pairs (X,A) with A being
a subset in Hom(W (X), H) and X ∈ Γ.

Given s : W (Y ) → W (X), a morphism s∗ takes (X,A) to (Y,B), where
B contains the points ν : W (Y ) → H such that ν = µs for µ ∈ A.

Now, AGΘ(H) is a full subcategory in SetΘ(H), whose objects are pairs
(X,A), where A is an algebraic set.

If for A we take definable sets, then we have the category LGΘ(H) which
is a full subcategory in SetΘ(H).

Two key results are as follows (see, for example, [29], [32]).

Theorem 3.11. If H1 and H2 are AG-equivalent, then categories AGΘ(H1)
and AGΘ(H2) are isomorphic.

Theorem 3.12. If H1 and H2 are LG-equivalent, then categories LGΘ(H1)
and LGΘ(H2) are isomorphic.

Remark 3.13. In view of Theorem 3.8, the geometric notion of LG-equiva-
lent algebras coincides with a model theoretic notion of isotypic algebras.
Thus, if algebras H1 and H2 are isotypic, then the categories of definable
sets LGΘ(H1) and LGΘ(H2) are isomorphic for every Θ.

Theorems 3.11 and 3.12 provide sufficient conditions for isomorphisms of
categories of algebraic and definable sets, respectively. Other necessary and
sufficient conditions will be treated in the sequel.

Beforehand, we shall slightly modify the categoriesAGΘ(H) and LGΘ(H).
First of all, modify the definition of the categoryAGΘ(H). ObjectsAGX

Θ (H)
of AGΘ(H) are not pairs (X,A), where A is an algebraic set, but systems
of all algebraic sets in the space Hom(W (X), H), where X is fixed. Anal-
ogously, an object LGX

Θ (H) is the system of all definable sets in the space
Hom(W (X), H).

Note that all definable sets under the given X constitute a lattice, while
all algebraic sets are just a poset. So, one can say that objects AGX

Θ (H)
of AGΘ(H) are posets of algebraic sets in Hom(W (X), H), while objects
LGX

Θ (H) of LGΘ(H) are lattices of definable sets in Hom(W (X), H). By
definition, every algebraic set is a definable set.

Morphisms between AGX
Θ (H) and AGY

Θ(H), as well as between LGX
Θ (H)

and LGY
Θ(H), are defined in terms of the maps s : W (Y ) → W (X). We

will describe these morphisms in more detail.

First of all, recall that objects in the categories Θ0 and Φ̃Θ are free alge-
bras W (X) and algebras of formulas Φ(X), respectively. Every homomor-
phism s : W (Y ) → W (X) gives rise to a morphism s∗ : Φ(Y ) → Φ(X). In
particular, s∗ acts on equalities as follows: s∗(w1 ≡ w2) = (s(w1) ≡ s(w2))
(action of s∗ is regulated by Definition 2.3). Note that equalities of the
form w ≡ w′, w, w′ in W (X), can be treated as formulas in Φ(X). This
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correspondence s 7→ s∗ allows us to define morphisms s̃ and s̃∗ in AGΘ(H)
and LGΘ(H).

Given s : W (Y ) → W (X), a morphism s̃ : AGX
Θ (H) → AGY

Θ(H) is
defined as follows. For an algebraic set A in AGX

Θ (H) take all points ν in
Hom(W (Y ), H) of the form ν = µs, where µ ∈ A. Define B = s̃A as the
algebraic set determined by the set of all such ν. Then the object AGY

Θ(H)
corresponding to AGX

Θ (H) contains all B of such kind. So, morphisms
in AGΘ(H) are maps of posets, originated from homomorphisms of free
algebras, that is maps of the form s̃. Note, that all s̃ preserve poset structure
by definition.

Analogously, a morphism s̃∗ : LG
X
Θ (H) → LGY

Θ(H) is defined as follows:
given A ∈ LGX

Θ (H) and s : W (Y ) → W (X), the set B = s̃∗A is the
definable set determined by all points ν of the form ν = µs, µ ∈ A. The
object LGY

Θ(H) corresponding to LGX
Θ (H) contains all B of such form.

Now we define categories of algebras of formulas CΘ(H) and FΘ(H). Let
us start with CΘ(H). If A ∈ AGX

Θ (H), then take T = A′
H . This is an H-

closed congruence on W (X), that is, T ′
H = A. Denote by CX

Θ (H) the poset
of all such T , where A runs through AGX

Θ (H). These CX
Θ (H) are objects of

CΘ(H). They are in one-to-one correspondence with objects AGX
Θ (H).

Let us describe morphisms of CΘ(H). Let s : W (Y ) → W (X) be a
morphism in Θ0. Recall that s∗(w1 ≡ w2) = (s(w1) ≡ s(w2)). Let T2 be
an H-closed congruence in CY

Θ (H). Define T1 as the H-closed congruence
in CX

Θ (H) determined by the set of all equalities of the form s∗(w ≡ w′),
where w ≡ w′ in T2. So T1 = (s∗T2)

′′.
Consider the commutative diagram

T2
-s∗ T1

?
V alYH ?

V alXH (♢)

B � s̃ A,

where A′
H = T1, T

′
1H = A, B′

H = T2, T
′
2H = B (follows from Section 2.9).

Here T2 and T1 are H-closed congruences in W (Y ) and W (X), respectively.
In particular, (♢) implies that s∗ : C

Y
Θ (H) → CX

Θ (H) is a map of posets.
This diagram gives rise to the category CΘ(H) of all H-closed congru-

ences.
It is important to get another look at the morphisms s∗ in CΘ(H). Let H-

closed congruences T2 in CY
Θ (H) and T1 in CX

Θ (H) be given. The morphism
s∗ takes T2 to T1 if and only if s∗ satisfies the diagram (♢). So, s∗ assigns
T1 to T2 if and only if we have (♢). Moreover, if one knows s∗ and T1, then
(♢) recovers T2.

Proposition 3.14. Let V ar(H) = Θ. The category CΘ(H) of posets of
H-closed congruences is anti-isomorphic to the category AGΘ(H) of posets
of algebraic sets.
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Proof. The correspondence CΘ(H) → AGΘ(H) is one-to-one. The condition
V ar(H) = Θ provides that the correspondence s∗ → s̃ is also one-to-one
(see Proposition 2.2). �

The dual category C−1(H) is isomorphic to AGΘ(H).
We shall repeat the similar construction using L-Galois correspondence.

We have the diagram (♢♢) (whose particular case is the diagram (♢)) :

T2
-s∗ T1

?
V alYH ?

V alXH (♢♢)

B � s̃∗ A

where AL
H = T1, T

L
1H = A, BL

H = T2, T
L
2H = B. Here T2 and T1 are H-

closed filters in Φ(X) and Φ(Y ), respectively. It gives rise to the categories
of H-closed filters FΘ(H) and F−1

Θ (H). Objects of FΘ(H) are lattices of
H-closed filters FX

Θ (H). Let F2 be an H-closed filter in F Y
Θ (H). Define F1

as the H-closed filter determined by the set of formulas of the form s∗v,
where v in T2. So, F1 = (s∗F2)

LL.
In other words, let H-closed filters T2 and T1 in F Y

Θ (H) and FX
Θ (H),

respectively, be given. Take TL
1H = A and TL

2H = B. The diagram (♢♢)
determines when s∗ takes T2 to T1. In particular, T1 defines uniquely T2 by
T2 = s−1

∗ (T1), that is, T2 is the inverse image of T1.

Proposition 3.15. Let V ar(H) = Θ. The category FΘ(H) of lattices of
H-closed filters is anti-isomorphic to the category LGΘ(H) of lattices of
definable sets.

The dual category F−1
Θ (H) is isomorphic to the category of definable sets

LGΘ(H).

3.5. Geometric and logical similarity of algebras.

Definition 3.16. We call algebras H1 and H2 geometrically similar if the
categories of algebraic sets AGΘ(H1) and AGΘ(H2) are isomorphic.

Since the categories AGΘ(H) and CΘ(H) are dual, algebrasH1 andH2 are
geometrically similar if and only if the categories CΘ(H1) and CΘ(H2) are
isomorphic. In view of Theorem 3.2, if algebras H1 and H2 are geometrically
equivalent, then they are geometrically similar.

Definition 3.17. We call algebras H1 and H2 logically similar, if the cate-
gories of definable sets LGΘ(H1) and LGΘ(H2) are isomorphic.

Algebras H1 and H2 are logically similar if and only if the categories
FΘ(H1) and FΘ(H2) are isomorphic.

By Theorem 3.3 if H1 and H2 are logically equivalent, then they are
logically similar.

The following problems are our main target:
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Problem 1. Find necessary and sufficient conditions on algebras H1 and
H2 in Θ that provide algebraic similarity of these algebras.

Problem 2. Find necessary and sufficient conditions on algebras H1 and
H2 in Θ that provide logical similarity of these algebras.

We start with examples of specific varieties, where necessary and suffi-
cient conditions for isomorphism of the categories of algebraic sets can be
formulated solely in terms of properties of algebras H1 and H2. Afterwards
we will dwell on a general approach. In what follows, all fields and rings are
assumed to be infinite.

Theorem 3.18. Let V ar(H1) = V ar(H2) = Θ.

(1) Let Θ be one of the following varieties
• Θ = Grp, the variety of groups,
• Θ = Jord, the variety of Jordan algebras,
• Θ = Inv, the variety of inverse semigroups,
• Θ = Nd, the variety of nilpotent groups of class d.

Categories AGΘ(H1) and AGΘ(H2) are isomorphic if and only if the
algebras H1 and H2 are geometrically equivalent (see [7]) [17], [45],
[43]).

(2) Let Θ = Com−P or Lie−P and σ ∈ Aut(P ). Define a new algebra
Hσ. The multiplication ◦ on a scalar in Hσ is defined through the
multiplication in H by the rule:

λ ◦ a = λσ · a, λ ∈ P, a ∈ H.

Categories AGΘ(H1) and AGΘ(H2) are isomorphic if and only if
the algebras Hσ

1 and H2 are geometrically equivalent for some σ ∈
Aut(P ) (see [3], [29], [14], [15], [11], [39]).

(3) Let Θ = Ass− P . Denote by H∗ the algebra with the multiplication
∗ defined as follows: a ∗ b = b · a. The algebra H∗ is called opposite
to H. The categories AGΘ(H1) and AGΘ(H2) are isomorphic if
and only if for some σ ∈ Aut(P ) the algebras (H∗

1 )
σ and H2 are

geometrically equivalent, where (H∗
1 )

σ is opposite to either H1 or to
H∗

1 ( [1], [2], [29]).

Remark 3.19. The list of varieties of Theorem 3.18 is not complete. Similar
results are known for the varieties of semigroups [16], linear algebras [44],
[39], power associative algebras, alternative algebras [45], non-commutative
non-associative algebras, commutative non-associative algebras, color Lie
superalgebras, Lie p-algebras , color Lie p-superalgebras, Poisson algebras
[39], free R-modules [10], Nielsen-Schreier varieties [39], and for the varieties
of some classes of representations [37], [47], [46].

3.6. Similarity of algebras and isomorphism of functors. We will
make some preparations, basing on the idea of isomorphism of functors.
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Definition 3.20. Let φ1, φ2 be two functors from category C1 to a concrete
category C2. We say that an isomorphism of functors S : φ1 → φ2 is defined
if for any morphism ν : A → B in C1 the following commutative diagram
takes place

φ1(A) -SA φ2(A)

?
φ1(ν)

?
φ2(ν)

φ1(B) -SB φ2(B).

Here SA is the A-component of S, that is, a function which makes a bijective
correspondence between φ1(A) and φ2(A). The same is valid for SB.

Note that SA and SB are not necessarily morphisms in C2. Thus, this
definition is different from the standard one, where all SA have to be mor-
phisms in C2. The commutative diagram above can be reformulated as

φ1(ν) = S−1
B φ2(ν)SA, φ2(ν) = SBφ1(ν)S

−1
A .

An invertible functor from a category to itself is an automorphism of the
category. The notion of isomorphism of functors gives rise to the notion of
an inner automorphism of a category. An automorphism φ of the category
C is called inner (see [29]) if φ is isomorphic to the identity functor 1C . This
provides the commutative diagram

A -sA φ(A)

?
ν

?
φ(ν)

B -sB φ(B),

that is, φ(ν) = sBνs
−1
A .

Following Proposition is the main tool in the proof of Theorem 3.18:

Proposition 3.21 ([26]). If for the variety Θ every automorphism of the
category Θ0 is inner, then two algebras H1 and H2 are geometrically similar
if and only if they are geometrically equivalent.

So, studying automorphisms of Θ0 plays a crucial role in Problem 1. The
latter problem is treated by means of Reduction Theorem (see [29], [10], [15],
[36]). This theorem reduces investigation of automorphisms of the whole
category Θ0 of free in Θ algebras to studying the group Aut(End(W (X))
associated with a single object W (X) in Θ0. Here, W (X) is a finitely gen-
erated free in Θ hopfian algebra, which generates the whole variety Θ. In
fact, if all automorphisms of the endomorphism semigroup of a free alge-
bra W (X) are close to being inner, then all automorphisms of Θ0 possess
the same property. More precisely, denote by Inn(End(W (X)) the group
of inner automorphisms of Aut(End(W (X)). Then the group of outer au-
tomorphisms Aut(End(W (X))/Inn(End(W (X)) measures, in some sense,
the difference between the notions of geometric similarity and geometric
equivalence.
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Now we will treat the general problem using the Galois-closure functors.
For every algebra H ∈ Θ consider two functors

ClAH : Θ0 → PoSet,

ClLH : Φ̃Θ → Lat,

where A and L stand for the functors of algebraic and logical closures,
respectively. We will suppress these indices in the sequel, assuming that
the type of Cl-functor is clear in each particular case.

In fact, PoSet is the category CΘ(H) of partially ordered sets of H-closed
congruences CX

Θ (H), while Lat is the category FΘ(H) of lattices of H-closed
filters FX

Θ (H).
So, ClH assigns the poset CX

Θ (H) of all H-closed congruences on W (X)
to every object W (X) in Θ0. If s : W (Y ) → W (X) is a morphism in Θ0,
then ClH(s) = s∗ : C

Y
Θ (H) → CX

Θ (H) is a morphism in CΘ(H).

Analogously, in case of Φ̃Θ → Lat, every s : W (Y ) → W (X) gives rise to

s∗ : Φ(Y ) → Φ(X),

and for T2 ⊂ Φ(Y ), T1 ⊂ Φ(X) define s∗ : T2 → T1 by taking all v ∈ T2

such that s∗v = u ∈ T1. Using (♢♢) we extend s∗ to

s∗ : ClH(T2) → ClH(T1).

The correspondence s → s∗ gives rise to contravariant ClH-functors Θ
0 →

PoSet and Φ̃Θ → FΘ(H).

Definition 3.22. AlgebrasH1 andH2 are called weakly geometrically equiv-
alent if the geometric functors ClH1 and ClH2 are isomorphic.

Definition 3.23. Algebras H1 and H2 are called weakly logically equivalent
if the logical functors ClH1 and ClH2 are isomorphic.

It is clear that if algebras H1 and H2 are geometrically (logically) equiv-
alent, then they are weakly geometrically (logically) equivalent.

3.7. Automorphic equivalence of algebras. Apply these notions to
Problem 1 and Problem 2. Consider a commutative diagram

Θ0 -φ
Θ0

HHHHHjClH1

�
�

��+ ClH2

PoSetΘ,

where φ is an automorphism of Θ0. Commutativity of these diagrams means
that there exists an isomorphism of functors

α(φ) : ClH1 → ClH2 · φ.

In its turn, this isomorphism of functors means that the diagram
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ClH1(W (Y )) -α(φ)W (Y )
ClH2(φ(W (Y )))

?
ClH1

(s)
?
ClH2

(φ(s))

ClH1(W (X)) -α(φ)W (X)
ClH2(φ(W (X))),

is commutative.

Definition 3.24. Algebras H1 and H2 are called geometrically automor-
phically equivalent if for some automorphism φ : Θ0 → Θ0 the geometric
functors ClH1 and ClH2φ are isomorphic by an isomorphism α(φ).

If the type of Cl-functors is specified we speak merely of automorphically
equivalent algebras. Note that Definition 3.24 of automorphic equivalence
is different from the one, previously used in the literature (see, for example
[42]-[46]).

Our next aim is to get a special presentation of α(φ). We start from the
semigroup of endomorphisms End(W (Y )), where W = W (Y ) is an object
of the category Θ0.

Assume that a binary relation ρ is defined on End(W (Y )). Given ρ,
define an H-closed congruence T = τ(ρ) on W (Y ).

Let νρν ′, where ν, ν ′ belong to End(W (Y )). Given w ∈ W (Y ), take the
elements wν = w1 and wν′ = w2. Consider the system of equations w1 = w2,
assuming that w runs through W (Y ) and (ν, ν ′) runs through ρ. Denote
by T = τ(ρ) the H-closed congruence on W (Y ) defined by the system of
equations w1 = w2.

Define µT to be the homomorphism µT : W (Y ) → W (Y )/T . Suppose
that an H-closed congruence T on W (Y ) is given. Define ρ = ρ(T ) by νρν ′

if and only if µTν = µTν
′. So we have the correspondences ρ 7→ T = τ(ρ)

and T → ρ = ρ(T ). One can check that if τ(ρ) = T , then ρ(T ) = ρ, that
is, τ(ρ(T )) = T and, correspondingly, ρ(τ(ρ)) = ρ.

Define the relation ρ∗ = φ(ρ) on End(φ(W )) by the rule: µφ(ρ)µ′

where µ, µ′ ∈ End(φ(W )), if there exist ν and ν ′ ∈ End(W ) with φ(ν) =
µ, φ(ν ′) = µ′ and νρν ′. For the sake of simplicity we assume here that
the cardinalities of X and φ(Y ) coincide. So, ρ∗ = φ(ρ) on End(φ(W ))
is determined by ρ and φ. More precisely, if T ∗ ∈ ClH2(φ(W )), then
ρ∗(T ∗) = φ(ρ)(T ∗) = φ(ρ(T )).

In this setting the the isomorphism α(φ) is defined by the rule:

α(φ)(T ) = τφ(W )(φ(ρ(T ))),

where T ∈ ClH1(W ), i.e., T is aH1-closed congruence onW . Indeed, for T ∈
ClH1(W ) we have α(φ)(T ) = T ∗, where T ∗ ∈ ClH2(φ(W )). Represent T ∗ as
T ∗ = τ ∗φ(W )(ρ

∗(T ∗)). Using ρ∗(T ∗) = φ(ρ(T )), we get T ∗ = τ ∗φ(W )(φ(ρ(T )).

Hence, α(φ)W (T ) = τφ(W )(φ(ρWT ))).
We omit the proof of the following theorem.
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Theorem 3.25. Let V ar(H1) = V ar(H2) = Θ. Suppose that the algebras
H1 and H2 are geometrically automorphically equivalent. Then the algebras
H1 and H2 are geometrically similar.

Moreover, there is an order preserving isomorphism of the categories
AGΘ(H1) and AGΘ(H2).

In the particular case φ = idΘ0 we come out with the isomorphism of ClH1

and ClH2 which means that the algebrasH1 andH2 are weakly geometrically
equivalent.

3.8. Logically automorphically equivalent algebras. Let us start from
the following triangular diagram:

Φ̃Θ
-φ

Φ̃Θ

Q
Q
QQsClH1

�
�

�= ClH2

LatΘ
Commutativity of this diagram means that there is an isomorphism of

functors

αφ : ClH1 → ClH2φ.

Let us represent this isomorphism of functors as a commutative diagram

ClH1(Φ(Y )) -(αφ)Φ(Y )
ClH2φ(Φ(Y ))

?
ClH1

(s∗)
?
ClH2

φ(s∗)

ClH1(Φ(X)) -(αφ)Φ(X)
ClH2φ(Φ(X)).

In both upper and lower rows we have many different mappings of sets.
Vertical mappings are defined uniquely. They are determined by the homo-
morphism s : W (Y ) → W (X) which implies s∗ : Φ(Y ) → Φ(X). In the
sequel we will choose unique mappings for the upper and lower horizontal
rows. Let us do it for the upper row.

Take the semigroup End(Φ(Y )) of endomorphisms of the algebra of for-
mulas Φ(Y ). Let a binary relation ρ be defined on End(Φ(Y )). Given ρ,
define an H-closed filter T = τ(ρ) on F (Y ).

For a given ρ take the elements (uν → uν′)∧ (uν′ → uν) for any u ∈ Φ(Y )
and all νρν ′. Generate an H-closed filter T by all elements of such kind.
Denote T = τΦ(ρ). So, ρ 7→ T = τ(ρ).

Conversely, let an H-closed Boolean filter T ∈ Φ(Y ) be given. Consider
the homomorphism of Boolean algebras

µT : Φ(Y ) → Φ(Y )/T.

Take two elements ν and ν ′ in End(Φ(Y )). We set: νρν ′ if and only if
µTν = µTν

′. This means that uν and uν′ are the same in Φ(X)/T for any
u ∈ Φ(X). In other words, (uν → uν′) ∧ (uν′ → uν) ∈ T for any u ∈ Φ(X).
Thus, T 7→ ρ(T ) = ρ.
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We have

τΦ(ρ(T )) = T ; ρ(τΦ(ρ)) = ρ.

We considered the relation ρ for the algebra Φ(Y ). We now intend to
study the relation φ(ρ) for the algebra φ(Φ(Y )). The relation φ(ρ) is defined
in a standard way. Let µ and µ′ be endomorphisms of the algebra φ(Φ(Y )).
We set: µφ(ρ)µ′ holds if and only if νρν ′ holds for φ(ν) = µ and φ(ν ′) = µ′.
Let us apply the latter to the diagram defining isomorphism of functors
ClH1 and ClH2φ. Take T ∈ ClH1(Φ(Y )) and denote (αφ)Φ((Y )(T ) by T ∗.
This T ∗ lies in ClH2φ(Φ(Y )). Here T = τΦ(Y )(ρ(T )). Correspondingly,
T ∗ = τφ(Φ(Y ))(φ(ρ(T ))). Hence, T

∗ is uniquely determined by the filter T .
We apply the passage from T to T ∗ to the upper and lower horizontal

rows of the diagram.

Definition 3.26. Two algebras H1 and H2 of the variety Θ are called logi-
cally automorphically equivalent if for some automorphism φ of the category

Φ̃Θ there is an isomorphism of functors αφ : ClH1 → ClH2φ.

The following theorem holds true:

Theorem 3.27. If the algebras H1 and H2 of the variety Θ are logically
automorphically equivalent, then they are logically similar.

Moreover, there exists an isomorphism of the categories LGΘ(H1) and
LGΘ(H2) which preserves the order relation and correlates with the lattices
of definable sets.

In the particular case φ = idΘ0 the algebras H1 and H2 are weakly logi-
cally equivalent.

Remark 3.28. We considered a special transition from the filter T to an-
other filter T ∗, based on the relation ρ on the set End(Φ(X)), and we wrote
(αφ)Φ(X)(T ) = T ∗. Other transitions are possible as well.

Let us sketch one of the possible transitions from T to T ∗. Consider a
constraint for affine spaces Hom(W (X), H). The algebra W (X) cannot be
represented as a subalgebra in the algebraH. This means, that for any point
µ : W (X) → H there is a nontrivial kernelKer(µ). The point µ satisfies the
equality w ≡ w′, w, w′ ∈ W (X). Then we have w ≡ w′ ∈ LKer(µ). This
implies ClH(w ≡ w′) = (w ≡ w′)LLH ⊂ LKer(µ). Denote T = (w ≡ w′)LLH .
Since T is a filter, then νρν ′ implies (uν → uν′) ∧ (uν′ → uν) ∈ T for any
u ∈ Φ(X) and the given ρ. The initial relation ρ determines the filter T
and the equality w ≡ w′ determines the same T . This hints to correlate
the transitions from T to T ∗ with equalities in the situation of special affine

spaces. Besides, we keep in mind that equalities generate the algebra Φ̃Θ.
Now we shall formulate several problems related to logical geometry.

Some of them are relevant also for the AG−case. Let us start with the
variety Θ = Grp.
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Problem 3. It is known [38], [48], that any groupH which is LG-equivalent
to a free group W (X), is isomorphic to it. What is the situation, if H is
logically automorphically equivalent to W (X)?

Problem 4. What can be said about a group H which is logically similar
to a free group W (X)?

Problem 5. If two groups are LG-equivalent, then they are isotypic and,
hence, elementary equivalent. What is the relation between the elementary
equivalence of groups and their logical similarity?

Problem 6. Are there logically similar groups H1 and H2, such that the
functors ClH1 and ClH2φ are not isomorphic for any automorphism φ?

Similar questions makes sense for algebras

Problem 7. Whether it is true that if the algebras H1 and H2 of the variety
Θ are logically similar, then for some automorphism φ they are logically
automorphically equivalent.

Problem 8. Propositions 3.5 and 3.6 provide implicative and disjunctive
criteria for algebras to be logically equivalent. Find criteria which provide
automorphical equivalence of algebras.

As it was said above, the group of automorphisms of the category Θ0

plays an exceptional role in problems related to geometrical similarity. The
following problems are directed to find out what is the situation in the case
of logical geometry.

Problem 9. Study the group of automorphisms of the category Φ̃Θ.

Problem 10. Study the group of automorphisms Aut(End(Φ(X))).

3.9. Logically perfect and logically regular varieties. Up to now we
assumed that the variety Θ is arbitrary. Further on we distinguish classes
of varieties which are characterized by specific logical properties.

Let H be an algebra in Θ.

Definition 3.29. Algebra H is called logically homogeneous if for every
two points µ : W (X) → H and ν : W (X) → H the equality LKer(µ) =
LKer(ν) holds if and only if there exists an automorphism σ of the algebra
H such that µ = νσ.

Definition 3.30. A variety of algebras Θ is called logically perfect if every
finitely generated free in Θ algebra W (X), X ∈ Γ is logically homogeneous.

Definition 3.31. An algebra H in Θ is called logically separable, if every
algebra H ′ ∈ Θ which is LG-equivalent to H is isomorphic to H.

Definition 3.32. A variety Θ is called logically regular if every free in Θ
algebra W (X), X ∈ Γ is logically separable.

The following theorem is valid:
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Theorem 3.33. If the variety Θ is logically perfect, then it is logically
regular.

Proof. Let the variety Θ be logically perfect and W = W (X) be a free in
Θ algebra of rank n, X = {x1, . . . , xn}. Rewrite W = H =< a1, . . . , an >,
where a1, . . . , an are free generators in H. Let H and G ∈ Θ be isotypic.

Take µ : W (X) → H with µ(xi) = ai. We have ν : W (X) → G with
TH
P (µ) = TG

P (ν), ν(xi) = bi, B =< b1, . . . , bn >. The algebras H and B are
isomorphic by the isomorphism ai → bi, i = 1, . . . , n.

Indeed, TH
P (µ) = TG

P (ν) implies LKer(µ) = LKer(ν) and we have
Ker(µ) = Ker(ν). This gives the needed isomorphism H → B.

Let us prove that B = G. Let B ̸= G and there is b ∈ G which doesn’t
lie in B.

Take a subalgebra B′ =< b, b1, . . . , bn > in G and a collection of variables
Y = {y, x1, . . . , xn} with ν ′ : W (Y ) → G, ν ′(y) = b, ν ′(xi) = ν(xi) = bi,
i = 1, . . . , n.

We have µ′ : W (Y ) → H with TH
P (µ′) = TG

P (ν ′). Let µ′(y) = a′, µ′(xi) =
a′i, i = 1, . . . , n. Let the algebras H ′ =< a′, a′1, . . . , a

′
n > and B′ =<

b, b1, . . . , bn > be isomorphic.
Further we work with the equality LKer(µ′) = LKer(ν ′). Take a formula

u ∈ LKer(µ) and pass to a formula u′ = (y ≡ y)∧u. The point (b1, . . . , bn)
satisfies the formula u and, hence, the point ν ′ satisfies u′. Therefore, the
point µ′ satisfies u′ as well, and u′ ∈ LKer(µ′).

Take now a point µ′′ : W (X) → H setting µ′′(xi) = a′i, i = 1, . . . , n. The
point µ′ satisfies the formula u′ if and only if the point µ′′ satisfies u. Hence,
LKer(µ) = LKer(µ′′). Therefore, the point µ′′ is conjugated with the point
µ by some isomorphism σ. Thus, the point < a′1, . . . , a

′
n > is a basis in

H and a′ ∈< a′1, . . . , a
′
n >. This contradicts with b ̸∈< b1, . . . , bn >. So,

B = G and H and G are isomorphic. �
Problem 11. Is the converse statement true? That is, whether every logi-
cally regular algebra is logically perfect.

It seems to us that the answer may be negative and the logical regularity
of a variety Θ doesn’t imply its logical perfectness. This leads to the problem

Problem 12. Find a logically regular but not logically perfect variety Θ.
In particular, consider this problem for different varieties of groups and
varieties of semigroups.

Let us give some examples of perfectness and regularity for varieties of
groups and semigroups (see [19], [20], [21], [38], [48]).

• The variety of all groups is logically perfect, and, hence, is logically
regular.

• The variety of abelian groups is logically perfect, and, hence, is
logically regular.

• The variety of all nilpotent groups of class at most n is logically
perfect, and, hence, is logically regular.
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• The variety of all semigroups is logically regular.
• The variety of all inverse semigroups is logically regular.

Now we can specify Problem 12 to the case of semigroups.

Problem 13. Check whether the varieties of all semigroups and of all in-
verse semigroups are logically perfect.

We shall emphasize two following problems regarding solvable groups.

Problem 14. What can be said about logical regularity and logical per-
fectness for the variety of all solvable groups of the derived length at most
n.

Problem 15. Is the variety of metabelian groups logically perfect? Is the
variety of metabelian groups logically regular?

The situation with logical regularity and logical perfectness of other vari-
eties of algebras is not clear. Let us point out some questions which appear
by varying the variety Θ. First of all:

Problem 16. Let Θ be a classical variety Com−P , the variety of commu-
tative and associative algebras with unit over a field P . The problem is to
verify its logical regularity and logical perfectness.

The same question stands with respect to some other well-known varieties.
So, are the following varieties logically perfect or logically regular?

Problem 17. The variety Ass− P of associative algebras over a field P .

Problem 18. The variety Lee− P of Lee algebras over a field P .

Problem 19. The variety of n-nilpotent associative algebras.

Problem 20. The variety of n-nilpotent Lee algebras.

Problem 21. The varieties of solvable Lee/associative algebras of derived
length at most n .

It is also important to find out how the passage from a semigroup/group
to a semigroup/group algebra behaves with respect to logical regularity and
logical perfectness. This leads to the problem:

Problem 22. Let S be a semigroup/group and P a field, both logically
homogeneous. Whether it is true that the semigroup/group algebra PS is
logically homogeneous as well.

3.10. Logically noetherian and saturated algebras.

Definition 3.34. An algebra H is called logically noetherian if for any set
of formulas T ⊂ Φ(X), X ∈ Γ there is a finite subset T0 in T determining
the same set of points A that is determined by the set T .

Definition 3.35. An algebra H ∈ Θ is called LG-saturated if for every X ∈
Γ each ultrafilter T in Φ(X) containing ThX(h) has the form T = LKer(µ)
for some u : W (X) → H.
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Theorem 3.36. If an algebra H is logically noetherian then H is LG-
saturated.

Proof. We start from the homomorphism:

V alXH : Φ(X) → HalXΘ (H).

Here Ker(V alXH ) = ThX(H). Consider the quotient algebra Φ(X)/ThX(H)
which is isomorphic to a subalgebra in HalXΘ (H). For every u ∈ Φ(X)
denote by [u] the image of u in the quotient algebra. By definition [u] = 0
means that V alXH (u) is the empty subset in Hom(W (X), H). Analogously
[u] = 1 means that V alXH (u) is the whole space Hom(W (X), H) and, thus,
u ∈ ThX(H).

Denote by T an ultrafilter in Φ(X), containing the theory ThX(H). We
need to check that there is a point µ : W (X) → H such that T = LKer(µ).
Let [u] = 0. Then [¬u] = 1, which means that ¬u ∈ ThX(H) ⊂ T . Hence
¬u ∈ T . Then u does not belong to ThX(H), since T cannot contain both u
and ¬u. So u /∈ T . Thus, if [u] = 0 then u /∈ T . If u ∈ T , then [u] ̸= 0. This
means that V alXH (u) is not empty. Thus, we have a point µ : W (X) → H
which satisfies u, that is u ∈ LKer(µ). Since H is logically noetherian, then

there exists a finite subset T0 = {u1, . . . , un} such that TL
H = (T0)

L
H . Take

u = u1∧u2∧. . . un. Since all ui ∈ T , then u ∈ T and there exists µ satisfying
formula u. The same point µ satisfies every ui. Thus, µ ∈ (T0)

L(H)=TL(H)
and T lies in LKer(µ). Therefore T = LKer(µ). �

Each finite algebra H is logically noetherian. Hence, every finite H is
LG-saturated. This holds for every Θ.

3.11. Automorphically finitary algebras. We have already mentioned
that the group Aut(H) acts in each space Hom(W (X), H), X ∈ Γ.

Definition 3.37. Let us call an algebra H automorphically finitary if in
each such action there is only a finite number of Aut(H)-orbits.

It is easy to show that if algebra H is automorphically finitary, then it
is logically noetherian. The example of abelian groups of exponent p shows
that there exist infinite automorphically finitary algebras and, thus, there
are infinite saturated algebras.

Problem 23. Describe all automorphically finitary abelian groups.

Problem 24. Construct examples of non-commutative automorphically
finitary groups.

Problem 25. Classify abelian groups by LG-equivalence relation.

Let us make some comments regarding Problem 25. According to Theo-
rem 3.9, LG-equivalent abelian groups are isotypic. As we know (Corollary
3.10), isotypeness of algebras implies their elementary equivalence. Classi-
fication of abelian groups with respect to elementary equivalence was ob-
tained by W. Szmielew in her classical paper [41]. So, Problem 25 asks how
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one should modify the list from [41] in order to obtain the isotypic abelian
groups.

We considered two important characteristics of varieties of algebras, namely,
their logical perfectness and logical regularity. Let us introduce one more
characteristic.

We call a variety Θ exceptional if

• any two distinct free in Θ algebras W (X) and W (Y ) of a finite rank,
generating the whole Θ, are elementarily equivalent, and

• if W (X) and W (Y ) are isotypic then they are isomorphic.

Problem 26. Find examples of non-trivial exceptional varieties. Is it true
that the Burnside variety Bn of all groups of exponent n, where n is big
enough, is exceptional? Is it true that the Engel variety En of all groups
with the identity en(x, y) = [[[x, y], y], . . . , y] ≡ 1, where n is big enough,
is exceptional? Here [x, y] = xyx−1y−1, and the commutator in en(x, y) is
taken n-times.

4. Model theoretical types and logically geometric types

4.1. Definitions of types. The notion of a type is one of the key notions
of Model Theory. In what follows we will distinguish between model the-
oretical types (MT-types) and logically geometric types (LG-types). Both
kinds of types are oriented towards some algebra H ∈ Θ, where Θ is a fixed
variety of algebras.

Generally speaking, a type of a point µ : W (X) → H is a logical charac-
teristic of the point µ. Model-theoretical idea of a type and its definition is
described in many sources, see, in particular, [9], [13]. We consider this idea
from the perspective of algebraic logic (cf., [33]) and give all the definitions
in the corresponding terms.

Proceed from the algebra of formulas Φ(X0), where X0 is an infinite set of
variables. It is obtained from the algebra of pure first-order formulas with
equalities w ≡ w′, w,w′ ∈ W (X0) by Lindenbaum-Tarski algebraization
approach (cf. Section 2.8). Φ(X0) is an X0-extended Boolean algebra,
which means that Φ(X0) is a Boolean algebra with quantifiers ∃x, x ∈ X0

and equalities w ≡ w′, where w,w′ ∈ W (X0). Here, W (X0) is the free
over X0 algebra in Θ. All these equalities generate the algebra Φ(X0).
Besides, the semigroup End(W (X0)) acts on the Boolean algebra Φ(X0)
and we can speak of a polyadic algebra Φ(X0) [8]. However, the elements
s ∈ End(W (X0)) and the corresponding s∗ are not included in the signature
of the algebra Φ(X0).

Since Φ(X0) is a one-sorted algebra, one can speak, as usual, about free
and bound occurrences of the variables in the formulas u ∈ Φ(X0).

Define further X-special formulas in Φ(X0), X = {x1, . . . , xn}. Take
X0\X = Y 0. A formula u ∈ Φ(X0) is X-special if each of its free variables
occurs in X and each bound variable belongs to Y 0. A formula u ∈ Φ(X0)
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is closed if it does not have free variables. Only finite number of variables
occur in each formula.

Denoting an X-special formula u as u = u(x1, . . . , xn; y1, . . . , ym) we
solely mean that the set X consists of variables xi, i = 1, . . . n, and those
of them who occur in u, occur freely.

Definition 4.1. Let H be an algebra from Θ. An X-type (over H) is a set
of X-special formulas in Φ(X0), consistent with the elementary theory of
the algebra H.

We call such type an X-MT-type (Model Theoretic type) over H. An X-
MT-type is called complete if it is maximal with respect to inclusion. Any
complete X-MT-type is a Boolean ultrafilter in the algebra Φ(X0). Hence,
for every X-special formula u ∈ Φ(X0), either u or its negation belongs to
a complete type.

Definition 4.2. An X-LG-type (Logically Geometric type) (over H) is a
Boolean ultrafilter in the corresponding Φ(X), which contains the elemen-
tary theory ThX(H).

So, anyX-MT-type lies in the one-sorted algebra Φ(X0). AnyX-LG-type

lies in the domain Φ(X) of the multi-sorted algebra Φ̃.
We denote the MT-type of a point µ : W (X) → H by TpH(µ), while the

LG-type of the same point is, by definition, its logical kernel LKer(µ).

Definition 4.3. Let a point µ : W (X) → H, with ai = µ(xi), be given. An
X-special formula u = u(x1, . . . , xn; y1, . . . , ym) belongs to the type TpH(µ)
if the formula u(a1, . . . , an; y1, . . . , ym) is satisfied in the algebra H.

The type TpH(µ) consists of all X-special formulas satisfied on µ. It is a
complete X-MT-type over H.

By definition, the formula v = u(a1, . . . , an; y1, . . . , ym) is closed. Thus, if
it is satisfied on a point, then its value set V alHX(v) is the whole affine space
Hom(W (X), H).

Note that in our definition of an X-MT-type the set of free variables in
the formula u is not necessarily the whole X = {x1, . . . , xn} and can be a
part of it. In particular, the set of free variables can be empty. In this case
the formula u belongs to the type if it is satisfied in H.

In the previous sections the algebra Φ̃ was built basing on the set Γ of
all finite subsets of the set Γ. In fact, one can take the system Γ∗ = Γ

∪
X0

instead of Γ and construct the corresponding multi-sorted algebra. Then,
to each homomorphism s : W (X0) → W (X) it corresponds a morphism
s∗ : Φ(X0) → Φ(X) and, vice versa, s : W (X) → W (X0) induces s∗ :

Φ(X) → Φ(X0). In this setting the extended Boolean algebra HalX
0

Θ (H)

and the homomorphism V alX
0

H : Φ(X0) → HalX
0

Θ (H) are defined in the

usual way. A point µ : W (X0) → H satisfies u ∈ Φ(X0) if µ ∈ V alX
0

H (u).
One more remark. Φ(X0) is generated by equalities. Hence, when we

say that a variable occurs in a formula u ∈ Φ(X0), this means that it
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occurs in one of the equalities w = w′, participating in u. The set of
variables occurring in u determines a subalgebra Φ(X ∪ Y ) in Φ(X0), such
that u ∈ Φ(X ∪ Y ).

If we stay in one-sorted logic, this is a subalgebra in the signature of the
one-sorted algebra Φ(X0).

On the other hand, we can view algebra Φ(X ∪ Y ) as an object in the
multi-sorted logic. Here, to every homomorphism s : W (X ∪Y ) → W (X ′∪
Y ′) it corresponds a morphism s∗ : Φ(X ∪ Y ) → Φ(X ′ ∪ Y ′). For u ∈
Φ(X ∪ Y ) we have s∗u ∈ Φ(X ′ ∪ Y ′). Let u be an X-special formula. It is
important to know for which s the formula s∗u is X ′-special.

4.2. Another characteristic of the type TpH(µ). We would like to re-
late the MT-type of a point to its LG-type.

Given an infinite set X0 and a finite subset X = {x1, . . . , xn}, consider
a special homomorphism s : W (X0) → W (X) such that s(x) = x for each
x ∈ X, i.e., s is identical on the set X. According to the transition from s
to s∗, we obtain

s∗ : Φ(X
0) → Φ(X).

Theorem 4.4. For each special homomorphism s, each special formula u =
u(x1, . . . , xn; y1, . . . , ym) in Φ(X0) and every point µ : W (X) → H, we have
u ∈ TpH(µ) if and only if s∗u ∈ LKer(µ). Here, in the first case u is
considered in one-sorted algebra Φ(X0), while in the second case s∗u lies in

the domain Φ(X) of the multi-sorted Φ̃ = (Φ(X), X ∈ Γ∗).

Proof. Given a point µ, consider a set Aµ : W (X) → H of the points
η : W (X0) → H defined by the rule η(xi) = µ(xi) = ai for xi ∈ X and, η(y)
is an arbitrary element in H for y ∈ Y 0. Denote

Tµ =
∩

η∈Aµ

LKer(η).

Here, as usual, LKer(η) is the ultrafilter in Φ(X0), consisting of formulas u
valid on a point η. It is proved [33], that a special formula u belongs to the

type TpH(µ) if and only if u ∈ Tµ, which is equivalent to V alX
0

H (u) ⊃ Aµ.
Note that the formula u of the kind

x1 ≡ x1 ∧ . . . ∧ xn ≡ xn ∧ v(y1, . . . , ym)

belongs to each LKer(η) if the closed formula v(y1, . . . , ym) is satisfied in
the algebra H. This means also that Tµ is not empty for every µ.

Return to the special homomorphism s : W (X0) → W (X) and consider
the point µs : W (X0) → H. For xi ∈ X we have µs(xi) = µ(xi) = ai.
Hence, the point µs belongs to Aµ.

Observe that for the formula u = u(x1, . . . , xn; y1, . . . , ym), the formula
u(a1, . . . , an; y1, . . . , ym) is satisfied in the algebra H if the set Aµ lies in

V alX
0

H (u). Thus, µs belongs to V alX
0

H (u). By definition of s∗ we have that
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µ lies in s∗V alX
0

H (u) = V alXH (s∗u), which means that

s∗u ∈ LKer(µ).

We proved the statement in one direction.
Conversely, let s∗u ∈ LKer(µ). Then

µ ∈ V alXH (s∗u) = s∗V alX
0

H (u)

and µs ⊂ V alX
0

H (u). Since the formula u(a1, . . . , an; y1, . . . , ym) is satisfied

in H, then every point from the set Aµ belongs to V alX
0

H (u) (see also [6]).
This means that the formula u belongs to TpH(µ).

�
We have mentioned the notion of LG-saturated algebra (see Definition

3.35). The standard notion of saturation defined in Model Theory will be
called MT-saturation. MT-saturation of an algebra H means that for any
X-type T there is a point µ : W (X) → H such that T ⊂ TpH(µ).

Theorem 4.5. If algebra H is LG-saturated, then H is MT-saturated.

Proof. Let H be an LG-saturated algebra and T be an X-MT-type corre-
lated with ThX0

(H). We can assume that the theory ThX0
(H) is contained

in the set of formulas T .
Take a special homomorphism s : W (X0) → W (X) and pass to s∗ :

Φ(X0) → Φ(X). Given formula u ∈ T , take a formula s∗u ∈ Φ(X). Denote

the set of all such s∗u by s∗T . Since if u ∈ ThX0
(H) then s∗u ∈ ThX(H),

the set s∗T is a filter in Φ(X) containing the elementary theory ThX(H).
We embed the filter s∗T into the ultrafilter T0 in Φ(X) which contains

the theory ThX(H). By the LG-saturation of the algebra H condition,
T0 = LKer(µ) for some point µ : W (X) → H. Thus, s∗u ∈ LKer(µ) for
each formula u ∈ T . Hence (Theorem 4.4), u ∈ TpH(µ) for each u ∈ T , and
T ⊂ TpH(µ). This gives MT-saturation of the algebra H. �

We do not know whether MT-saturation implies LG-saturation.

4.3. Correspondence between u ∈ Φ(X) and ũ ∈ Φ(X0).

Definition 4.6. A formula u ∈ Φ(X) is called correct, if there exists an
X-special formula ũ in Φ(X0) such that for every point µ : W (X) → H we
have u ∈ LKer(µ) if and only if ũ ∈ TpH(µ).

Now, we shall formulate the principal Theorem of G. Zhitomiskii (see
[48]).This fact will be essentially used in Theorem 4.8 and Theorem 4.12. It
reveals ties between two approaches to the idea of a type of a point: the one-
sorted model theoretic approach and the multi-sorted logically geometric
approach.

Theorem 4.7. [48] For every X = {x1, . . . , xn}, every formula u ∈ Φ(X)
is correct.
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4.4. LG- andMT-isotypeness of algebras. The following theorem helps
to clarify the notion of isotypeness of algebras.

Theorem 4.8. [48] Let the points µ : W (X) → H1 and ν : W (X) → H2 be
given. Then

TpH1(µ) = TpH2(ν)

if and only if
LKer(µ) = LKer(ν).

Proof. Let the points µ : W (X) → H1 and ν : W (X) → H2 be given
and let TpH1(µ) = TpH2(ν). Take u ∈ LKer(µ). Then ũ ∈ TpH1(µ) and,
thus, ũ ∈ TpH2(ν). Hence, u ∈ LKer(ν). The same is true in the opposite
direction.

Let, conversely, LKer(µ) = LKer(ν). Take an arbitrary X-special for-
mula u in TpH1(µ). Take a special homomorphism from s : W (X0) →
W (X). The morphism s∗ : Φ(X0) → Φ(X) corresponds to s. Then, using
Theorem 4.4, the formula u ∈ TpH(µ) is valid if and only if s∗u ∈ LKer(µ).
Then s∗u ∈ LKer(ν). Then u ∈ TpH(ν). �
Definition 4.9. Given X, denote by SX(H) the set of MT-types of an
algebra H, implemented (realized) by points in H. Algebras H1 and H2 are
called MT-isotypic if SX(H1) = SX(H2) for any X ∈ Γ.

Theorem 4.8 implies

Corollary 4.10. Algebras H1 and H2 in the variety Θ are MT-isotypic if
and only if they are LG-isotypic.

So, it doesn’t matter which type (LG-type or MT-type) is used in the
definition of isotypeness. Hence, by Theorem 3.9, algebras H1 and H2 in
the variety Θ are MT-isotypic if and only if they are LG-equivalent.

If algebras H1 and H2 are isotypic then they are locally isomorphic. This
means that if A is a finitely generated subalgebra in H, then there exists
a subalgebra B in H2 which is isomorphic to A. The same is true in the
direction from H2 to H1.

On the other hand, local isomorphism of H1 and H2 does not imply their
isotypeness: the groups Fn and Fm, m,n > 1 are locally isomorphic, but
they are isotypic only for n = m.

Isotypeness implies elementary equivalence of algebras, but the same ex-
ample with Fn and Fm shows that the converse is false.

In Section 2 we pointed out several problems related to isotypic algebras.
Let us give some other problems:

Problem 27. Suppose that H1 and H2 are two finitely generated isotypic
algebras. Are they always isomorphic?

In particular:

Problem 28. Let G1 and G2 be two finitely generated isotypic groups. Are
they always isomorphic?
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Problem 29. Let H1 be a finitely generated algebra and H2 be an isotypic
to it algebra. Is H2 also finitely generated?

The next problem is connected with the previously named problems on
isotypeness and isomorphism of free algebras.

Problem 30. Let two isotypic finitely-generated free algebras H1 and H2

and two points µ : W (X) → H1 and ν : W (X) → H2 be given. Let
LKer(µ) = LKer(ν). Is it true that there exists an isomorphism σ : H1 →
H2 such that µσ = ν?

4.5. LG and MT-geometries. Compare, first, different approaches to the
notion of a definable set in the affine space Hom(W (X), H).

Suppose that a variety Θ of algebras, an algebra H ∈ Θ and the finite
set X = {x1, . . . , xn} are fixed.

Consider subsets A in the affine space Hom(W (X), H) whose points have
the form µ : W (X) → H. Each point µ : W (X) → H has a classical kernel
Ker(µ), a logical kernel LKer(µ) and a type (TpH(µ)). Correspondingly, we
have three different geometries: algebraic geometry (AG), logical geometry
(LG), and the model-theoretic geometry (MTG).

For AG consider a system T of equations w ≡ w′, w,w′ ∈ W (X). For
LG we take a set of formulas T in the algebra of formulas Φ(X). For MTG
we proceed from an X-type T . In all these cases the set can be infinite.

Now,
• A set A in Hom(W (X), H) is definable in AG (i.e., A is an algebraic

set) if there exists T in W (X) such that T ′
H = A, where

T ′
H = {µ| T ⊂ Ker(µ)}.

• A set A in Hom(W (X), H) is definable in LG (i.e., A is LG-definable)
if there exists T in Φ(X) such that TL

H = A, where

TL
H = {µ| T ⊂ LKer(µ)} =

∩
u∈T

V alXH (u).

• A set A in Hom(W (X), H) is definable in MTG (i.e., A is MT-
definable) if there exists an X-type T such that TL0

H = A, where

TL0
H = {µ| T ⊂ TpH(µ)} =

∩
u∈T

V alX0
H (u).

Besides that, we have three closures: T ′′
H for AG, TLL

H for LG, and TL0L0
H

for MTG. In the reverse direction the Galois correspondence for each of
the three cases above is as follows:

T = A′
H =

∩
µ∈A

Ker(µ),

T = AL
H =

∩
µ∈A

LKer(µ),
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T = AL0
H =

∩
µ∈A

TpH(µ).

Correspondingly, we distinguish three types of equivalence relations on
algebras from the variety Θ.
Algebras H1 and H2 are algebraically equivalent if

T ′′
H1

= T ′′
H2
.

Algebras H1 and H2 are logically equivalent if

TLL
H1

= TLL
H2

.

Algebras H1 and H2 are MT -equivalent if

TL0L0
H1

= TL0L0
H2

.

A natural question is

Problem 31. Whether the notions of LG-definable and MT-definable sets
coincide?

First, we need to clarify some details. Take a special morphism s :
W (X0) → W (X) identical on the set X ⊂ X0, X ∈ Γ. We have also
s∗ : Φ(X

0) → Φ(X). Define a set of formulas s∗T = {s∗u|u ∈ T}.
Theorem 4.11. The equality TL0

H = (s∗T )
L
H holds for every X-type T .

Proof. Let µ ∈ TL0
H . Then T ⊂ TpH(µ) and every formula u ∈ T is con-

tained in TpH(µ). Besides, s∗u ∈ LKer(µ) and µ ∈ V alXH (u). We have
µ ∈

∩
u∈T V alXH (u) = (s∗T )

L
H .

Let now µ ∈ (s∗T )
L
H . Then for every u ∈ T we have µ ∈ V alXH (s∗u)

and s∗u ∈ LKer(µ). Hence, u ∈ TpH(µ). This gives T ⊂ TpH(µ) and
µ ∈ TL0

H . �
Moreover, the following theorem answers Problem 31 in the affirmative.

Theorem 4.12. Let A ⊂ Hom(W (X), H). The set A is LG-definable if
and only if A is MT -definable.

Proof. Theorem 4.11 implies that every MT -definable set is LG-definable.
Consider the converse. We use Theorem 4.7: for every formula u ∈ Φ(X)
there exists an X-special formula ũ ∈ Φ(X0) such that a point µ : W (X) →
H satisfies ũ if and only if it satisfies u. Let now the set TL

H = A be given.
Every point µ from A satisfies every formula u ∈ T . Given T take T ′

consisting of all ũ which correspond to u ∈ T . The points µ ∈ A satisfy
every formula from T ′. This means that T ′ is a consistent set of X-special
formulas. Thus T ′ is an X-type, such that A ⊂ T ′L0

H .
Let now the point ν lie in T ′L0

H . Then ν satisfies every formula ũ. Hence,
it satisfies every formula u ∈ T . Thus, ν lies in TL

H = A. This means that

T ′L0
H = A

and the theorem is proved. �
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Consider now the case when algebra H is logically homogeneous and A is
an Aut(H)-orbit over the point µ : W (X) → H. We have A = (LKer(µ))LH .
The equality LKer(µ) = LKer(ν) holds if and only if a point ν belongs to
A. The same condition is needed for the equality TpH(µ) = TpH(ν). Now,
ν ∈ (TpH(µ))L0

H by the definition of L0. Thus, A = (TpH(µ))L0
H . We proved

that the orbit A is MT-definable and LG-definable.
Recall that we defined two full sub-categories KΘ(H) and LKΘ(H) in the

category SetΘ(H). Let us take one more sub-category denoted by L0KΘ(H).
In each object (X,A) of this category the set A is an X-MT-type definable
set. The category L0KΘ(H) is a full subcategory in LKΘ(H). In view of
Theorem 4.12 categories LKΘ(H) and L0KΘ(H) coincide.
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