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This paper is devoted to the study of the surjective stability of the K,-functor for
Chevalley groups of type E,. This is a particular case of the stability problem for
Chevalley groups, which was posed by H. Bass. In this paper, surjective stability of
the K;-functor is proved under natural conditions on the dimension of the maximal
spectrum of a ring and, independently, under a special condition which is meaning-
ful from the point of view of equations defining a Chevalley group. ®© 1998
Academic Press

Key Words: Chevalley groups; K;-functor; surjective stability.

INTRODUCTION

The problem of K,-functor stability for semisimple algebraic groups was
discussed by Bass [5, p. 278]. He proposed formulating stability hypotheses
in terms of relations between the dimension of the maximal spectrum of a
ring and the rank of a maximal split torus of a group.

In the framework of Chevalley groups, this problem was studied by Stein
[27, 28], who developed an approach that considers, in the same way, both
classical and exceptional cases. Despite this, however, the problem is still
open. It consists of two, in fact, independent tasks. These are surjective
and injective stability questions.

Traditionally, injective stability was considered as a more difficult ques-
tion. However, recently it has been completely investigated. Vavilov has
shown that injective stability of the K -functor for all regular embeddings of
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root systems holds under natural (depending on embedding) conditions on the
stable rank of a ring. This result is based on the Suslin—Tulenbaev proof
[32] of the Dennis—Vaserstein decomposition [13, 14, 36].

For surjective stability the situation is as follows. It is known [4, 6, 35]
that for the embeddings 4,_, » 4, C,_, — C,, surjective stability holds
under stable rank conditions. However, the cases of the orthogonal groups
B, ,— B, D,_,— D, require stronger conditions on a ring [27, 36].
These are either the absolute stable rank condition ASR, [27], or some
special condition ¥, introduced by Vaserstein [36] for orthogonal and
unitary groups, or just the condition on the maximal spectrum of a ring
dimMax(R). The absolute stable rank condition turns out to be sufficient
also for some other cases of Chevalley group embeddings (4, —» G,, B,
C, > F,, D; = Eg, [22, 23, 27, 28)).

The aim of this paper is to prove surjective stability of the K,-functor
for the embedding of Chevalley groups of the type E; — E, under some
natural conditions on the ring. Then, for the embeddings of root systems of
the same type, the only case that remains to be studied is E; — E,.

1. PRELIMINARIES

Let @ be a reduced irreducible root system of rank /, let G(®, ) be a
simply connected Chevalley—Demazure group scheme over Z of type &
(see [9, 12]), and let T(d, ) be a split maximal torus in it. If R is a
commutative ring with 1, the value of the functor G(®, ) on R is called
the simply connected Chevalley group of type ® over R and is denoted by
G(®, R). To each root « € ® there correspond elementary (with respect
to T) root unipotent elements x (&), ¢ € R. All the elementary unipo-
tents x, (&), a € @, £ € R, generate a group E(®, R) = {(x, (&), a € D,
£ € R), which is called the elementary subgroup of G(®, R).

It is well known that if @ is an irreducible root system of rank [ > 2,
then E(®, R) is always normal in G(®, R) (see [30, 31], for the classical
groups and [2, 33, 34, 37, 38] for the Chevalley groups).

Thus, the K,-functor of Chevalley group G(®, R) is naturally defined as
the quotient group

K,(®,R) =G(®,R)/E(DP,R)

(see [1, 26-28)).

Any inclusion of root systems A € ® induces the homomorphisms of
groups G(A, R) —» G(®, R), E(A, R) — E(®, R) taking roots into roots,
and the homomorphism of the corresponding K,-functors v: K,(A, R) —
K(®, R).
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The surjective stability question is fo find conditions on the ring R,
depending on A C ®, which provide surjectivity of the homomorphism v.

Since we consider surjective stability for not necessarily infinite series of
Chevalley groups, it is better to reformulate this question as a question of
the conditions on R which provide the existence of the decomposition
G(®, R) = E(®, R)G(A, R).

Denote by (X ) the ideal generated by X if X c R; the subgroup
generated by X if X is a subset of a group; the minimal closed subsystem
of roots containing X if X C .

Recall that a commutative ring R satisfies the absolute stable rank
condition ASR,, if for any row (r,...,r,) with coordinates in R, there
exist elements ¢,,...,¢,_; € R, such that every maximal ideal of R con-
taining the ideal {r, + t;r,,...,r,_, +1¢,_,r,> also contains the ideal
{ry,...,r,>. This notion was introduced in [15] and used in [27, 28] and
then in [22, 23] for stability problems. The description of various properties
of ASR,, as well as numerous applications (for not necessarily commuta-
tive rings), can be found in [19].

It was mentioned by Bak that the absolute stable rank condition ASR,
is equivalent to the following one. Let (r,...,r,, ) be a left unimodular
vector. Then there are elements ¢,,...,¢,_, € R, such that (r, +
BFyyeoos ¥y + 1, 41, 1,1 + tr,) is unimodular for any ¢ € R.

If we assume that a row (ry,...,r,) is unimodular then the absolute
stable rank condition is transformed into the stable rank condition [4, 35].
The absolute stable rank condition satisfies the usual properties, namely
for every ideal I < R it may be lifted to R/I, and if n > m, then ASR,,
implies ASR,. Finally, it is well known that if the dimension of the
maximal spectrum dimMax(R) is n — 2, then both the conditions ASR,
and SR, are fulfilled [15, 19, 27].

2. WEIGHT DIAGRAMS AND BASIC REPRESENTATIONS

Let us fix an order on ®, and let ®*, ®~, and II = {e;, ..., a;} be the
sets of positive, negative, and fundamental roots, respectively. Our num-
bering of the fundamental roots follows that of [7]. By ,,..., w, one
denotes the corresponding fundamental weights. Let W = W(®) be the
Weyl group of the root system @, i.e., the group generated by the set of
fundamental reflections w, ,...,w,,.

Recall that an |rredUC|bIe representatlon 7 of the complex semisimple
Lie algebra L is called basic [20] if the Weyl group W = W(d) acts
transitively on the set A(sr) of nonzero weights of the representation 7.

This is equivalent to saying that if for any two nonzero weights A, v their
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difference is a fundamental root « = A — v, then w, A = v for the corre-
sponding fundamental reflection w, € W.

In this paper we can restrict ourselves to the basic representations
without zero weight. In this case, A(w) is the set of all weights of &, and
the weights A(sr) form the one Weyl orbit. Such representations are called
microweight or minuscule representations, and the list of these representa-
tions is very well known (see [8]).

To each complex representation 7 of a simple Lie algebra L of type ®
there corresponds a representation 7 of the Chevalley group G = G(®, R)
on the free R-module V' =1, =V, ®, R [20, 29]. If 7 is faithful we can
identify G with its image 7(G) = G_(®, R) under this representation and
omit the symbol 7 in the action of G on V. Thus, foran x e Gandv € V
we write xv for (x)v. If we want to specify that the group G = G(®, R)
is considered in the basic representation 7= with the highest weight w, the
notation (G(®, R), ) is used. In the sequel, w always stands for the
highest weight of a representation.

Decompose the module V" into the direct sum of its weight submodules

v=@ Y1\ reA(n).

It follows from the definition of microweight representation that all 1,
A € A(ar), are one dimensional. Matsumoto [20, Lemma 2.3] has shown
that there is a special base of weight vectors v* € VV*, A € A(w), such that
the action of the root unipotents x_(¢), « € ®, £ € R, is described by the
following simple formulas:

i. ifAeA(m), A+ a& A(w),then x (&)v* =0
i. ifA, A+ aeA(m), then x (&)t =0 + E02Fe

(*)
For any v € V' in the chosen base, we have v = X c,v*, A € A(sr), and
Matsumoto’s lemma provides explicit formulas for the action of x_(£) on
v and on its coordinates c,.

Now if g € G = G(®, R), then the vth column g, , of the correspond-
ing matrix 7(g) € (G(®, R), w), where u is the highest weight of =,
consists of the coefficients in the expansion of 7(g)e” with respect to e*,
A € A(w). We may conceive any element g € G as a matrix g =g, ,,
where A and » range over all the weights of the representation 7. Then
the columns above are obtained by freezing the second index in such a
matrix. Analogously, the rows g, . are obtained by freezing the first index
and correspond to the vectors from the dual module 1V*.

As a rule, in stability questions all the calculations use only one (say, the
first) column of the matrix. We denote by A(g) the Ath coordinate of the
first column g, ,, A € A(7), of the matrix g. As we know from (*), one
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can very efficiently perform calculations with such columns (and rows) and
calculate x,(&)g.

Moreover, we can obtain further simplification of calculations, using the
machinery of weight diagrams (see [16, 21, 24, 27, 38—40] for the detailed
description of these diagrams and references). Let us recall here the
corresponding definitions.

It is well known that a choice of a fundamental system II defines a
partial order of the weight lattice P(®) as follows: A > v if and only if
A — v is a linear combination of the fundamental roots with nonnegative
integral coefficients. Let us associate with a representation = a graph
which is in fact the Hasse diagram of the set A(w) of its weights with
respect to the above order.

We construct a labeled graph in the following way. Its vertices corre-
spond to the weights A € A(sr) of the representation 7, and the vertex
corresponding to A is actually marked by A (usually these labels are
omitted).

We read the diagram from right to left and from bottom to top, which
means that a larger weight tends to stand to the left of and higher than a
smaller one. The leftmost vertex corresponds to the highest weight u of a
representation.

The vertices corresponding to the weights A, v € A(sr) are joined by a
bond marked «; (or simply i) if and only if their difference A — v = o, € 11
is a fundamental root. We draw the diagrams in such a way that the marks
on the opposite sides of a parallelogram are equal (as a rule, at least one
of them is omitted). Thus, all paths of minimal length connecting two
vertices have the same sum of labels. This means that if there is a root,
corresponding to a pair of vertices, it can be determined by any path of
minimal length between these vertices.

Now one may conceive a vector v € V as such a weight diagram which
has an element of R attached to every node. A standard weight vector e*
has 1 in the Ath node and zeros elsewhere; an arbitrary vector v has its
Ath coordinate v* with respect to this weight base as the label at the Ath
node. The above-mentioned Matsumoto’s lemma gives a very simple rule
describing what happens with such a vector v under the action of x_(¢).
For a minuscule 7 and a fundamental root a = «;, x,(¢) adds or
subtracts (always adds for a clever choice of the weight base) év* to v”
along each edge labeled with i. For other roots one merely has to trace all
paths in the diagram which have the same labels at their edges as the root
a in its linear expansion with respect to the fundamental roots. For
example, if a = 2a, + a,, one has to look at the paths which have the
labels 1,1, 2, in any order (the order of the labels on such a path starting in
A together with the structure constants of the Lie algebra is responsible for
the sign with which x_(£) acts on v*).
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In this paper we use only microweight representations; that is, we do not
care about weight diagrams with zero weights. The details of how to
construct and operate with weight diagrams in case of the presence of zero
weight can be found in [24, 38]. Weight diagrams for the aims of stability of
the K;- and K,-functors were introduced by Stein in [27].

3. STABILITY THEOREMS FOR E; — E;,

Stability of the K, -functor is closely related to the fact known as the
Chevalley—Matsumoto decomposition theorem (see [9, 20, 27]). Let us
formulate the particular case of this theorem used for the stability prob-
lem.

Consider a basic representation 7 of the group G(®, R) with the
highest weight w. Denote by «, € Il the fundamental root, such that
n— a, is a weight, and by A the subsystem in & generated by all
fundamental roots except «,. Further, let 3 = ®\ A, 3 =P N3, I =
®™ N %, and

U2, R) ={x,(&),a €2, t €R),
V(2,R) ={x, (&), a e, t €R).

Now take a matrix g € (G(®, R), u) and suppose that g, is an invertible
element in R. Then the Chevalley—Matsumoto theorem states that g can
be expressed in the form

8 = U8,

where v € V(3, R), u € U(Z, R), g, € T(®, R)G(A, R), and all the fac-
tors are uniquely determined. Moreover, if g,, = 1 then g, € G(A, R).
The set ® is the disjoint union of sets:
d=3"UAUZI,

and, in other words, the Chevalley—Matsumoto theorem says that if g, is
invertible, then an element g of Chevalley group G(®, R) can be ex-
pressed as a product of the element from a Levy factor of the proper
parabolic subgroup G(A, R) and two factors from the unipotent radicals of
this parabolic subgroup and its opposite [38].

Thus, the Chevalley—Matsumoto theorem yields, that getting by elemen-
tary transformations a unit of the ring in the left corner of the matrix
g € (G(®, R), w), we get the surjective stability of the K;-functor for the
embedding A — &, where A and ® are of the same type.

Therefore, the problem is to transform a matrix g € (G(®, R), u) using
multiplications by elements e € (E(®, R), u) to a matrix with the invert-
ible element g, ..
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Let us agree to use the notation e € E(A — ®, R) for the element
e € E(A,R) c G(®,R) and the notation e € (E(A — ®, R), u) if we
want to specify the representation.

Denote by Eq(®, u) a set of equations that determine the orbit
G(®, R)v* of the highest weight vector v*. It is known (see [18, 41]) that
this set consists of quadratic equations.

Now we can define three types of vectors. Denote by UmM(R, ®) the set
of unimodular columns (rows) of length » = dim #; by Um (R, ®) the set
of unimodular columns (rows) of length » which satisfy the set of equa-
tions Eq(®, w); and by Um (R, w) the set of unimodular columns (rows)
of length n which can be completed up to a matrix g € (G(®, R), w). It is
clear that Unt(R, ®) ¢ Um/ (R, ®) € Um,(R, ®). The difference between
Um/ (R, ®) and Um/,(R, ®) is measured by the corresponding K-functor.

The following result can be derived from the proof of the Chevalley—
Matsumoto theorem.

ProposiTiON 1. Let (gy,...,8,) € Un, (R, ®) and g, € R*. There ex-
ists e € (E(®, R), w), such that (eg); =0, i # 1.

Consider now the weight diagram of the type (E;, w-), i.e., the diagram
of the microweight representation of G(E,, R) with the highest weight ,
(see Figure 3). Let us number the weights of the representation according
to Figure 4.

Lemva 1. Let (gy,.-., 8- -1 8 ir---+8&1) € UM, (R E,), i=
1,...,28. Suppose g, =0 and (g,, ..., 8) is unimodular. Then
(g2. caey ggg) S Umrwe(R, EG)

Proof.  In fact, we have to check that in the conditions of the lemma the
elements of the column (g,, ..., g,) satisfy Eq(Eg, wy). This fact immedi-
ately follows from the full description of the sets Eq(Eg, ws) and
Eq(E,, w,) in [40, Theorem 3]; see also [3, 11, 40].

Here we sketch another approach which is based on the elementary
recipe on how one can find equations from the sets Eq(Eg, ws) and
Eq(E,, w,) using the Chevalley—Matsumoto theorem.

Take an element g € G(E;, R) with the invertible entry g, . Then the
column (g),,, A € A, belongs to Um/, (R,E;) and its elements satisfy
Eq(E,, w,). Let us find some of these equations.

By the Chevalley—Matsumoto theorem there is the element ¢ € E(E,, R)
of the form e = TIx (&), £ € R, a runs all the roots from 3 = E, \ E;
taken in a fixed order, such that eg € G(Eg, R). This means that (eg),, = 0
for all A # u. Let I be the set of all weights A, such that w — A € 3. It is
clear that by choosing appropriate values of ¢ in the element e one can
obtain zeros on the entries (eg),,, A € I'. But all the entries (eg),,,, A € T,
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should be zeros as well. It remains to calculate their values and equalize
them to zero. This gives us 28 equations from Eq(E,, ).

Using Figures 3 and 4, we see that we have to calculate (eg);,, i =
—28,...,—1, or, suppressing w in the notation, the elements (eg);,
i=—28,..., -1

Straightforward calculations of the entries (eg);,, i = —28,..., —1, by
formula (*) and Figure 3 yield that up to the choice of signs, which is
immaterial in this case (and which can be determined using the algorithm
described in [40]), there is the following set of equations from Eg(E,, w-):

81828 T 8585 £ 8984 + 81083 + 8118> £ 878 = 0,
81827 T 81286 T 81385 + 81484 + 81583 + 81682 = 0,
818-26 T 81288 T 81387 T 81784 £ 81883 + 81082 = U,
818-25 T 81289 T 81487 T 82083 + 81785 £ 82182 =0,

81824 £ 812810 T 81587 + 81585 + 82084 T 82282 = 0,
818 23 X 812811 T 81687 £ 81085 £ 82184 £ 82083 = U,
818-220 F 81389 £ 81488 T 81786 + 82383 + 82482 = U,
818-21 T 813810 T 81588 * 81886 T 82384 T 82582 = U,
818-20 * 813811 * 81685 T 82484 + 82583 £ 81086 = 0,
818 10 £ 814810 * 81589 + 82086 £ 82385 £ 82682 = U,
818-18 T 814811 T 81689 T 82186 £ 82485 £ 82683 = U,
818-17 T 815811 T 816810 T 82286 T 82585 * 82684 = U,
81816 T 817810 T 81889 T 82088 T 82387 £ 82182 =0,
81815 T 817811 T 81080 T 82185 * 82487 + 82783 = 0,
818 14 ¥ 818811 T 810810 £ 82288 + 82587 £ 82784 = U,
818-13 T 820811 + 821810 * 82289 £ 82687 £ 82785 = U,
818-12 T 823811 T 824810 + 82589 T 82688 T 82786 = U,
81811 T 817815 T 818814 T 820813 + 82882 + 823812 = 0,
818-10 T 816817 T 810814 T 821813 T 824812 + 82883 = 0,
818-9 £ 818816 £ 810815 £ 822813 T 825812 T 82884 = U,
818-8 £ 820816 T 821815 T 820814 + 826812 £ 82885 = U,
8187 % 823816 T 824815 T 825814 T 826813 T 82886 = O,
818-6 T 820810 * 821818 T 822817 + 827812 T 82887 = U,
818-5 t 823810 * 824818 T 825817 £ 827813 T 82888 = U,
818-4 £ 823821 * 824820 T 826817 + 827814 £ 82889 = U,
8183 * 823822 T 825820 T 826818 T 828810 + 827815 = 0,
818-2 * 82482 + 825821 T 826810 T 827816 L 825811 = 0,
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plus one more complicated equation, which corresponds to the angle 27 /3
between roots—in the sense of [40, Theorem 3], where the technique of
internal modules is used for the description of the sets Eq(Eg, ws) and
Eq(E;, w,). (Let us mention that the form of the set of equalities above
agrees with the results of [17, 25], that all equations of microweight
representations come from the systems of type D,.)

Modulo g, the first 27 equations above include g;, i = 2,...,28 and
coincide with the set Eq(Egy, ws)—see [10, 40, 41]—they are exactly 27
guadratic equations defining the orbit of the highest weight vector for the
minimal representation of Eg. This implies that in the conditions of
Lemma 1 the unimodular vector (g,,..., g,5) satisfies Eq(Eg, wg) and,
therefore, (g,,..., g,) € Un, (R, Eq). 1

Consider Figure 1, which depicts the diagram of microweight represen-
tation (Eg, wg) with the numbering of weights as shown in Figure 2.

LEMMA 2.  Let the ring R satisfy the condition dimMax(R) < 4. Then for
any row a = (a)“, el asz) IS Um’mG(Es, R) there exists e € (E(Eg, R), wg),
such that {(ae), ,(ae), ) = R.

Proof. Denote by I' the set of weights A,, such that uw — A, & ®. It is
easy to see that these are the weights A;, i = 18,...,27 (the notation
i,...,j means all numbers between i and j).

Consider a = (a,, ..., @, ) € Um/, (E¢, R). Let us choose in each irre-
ducible component A; of the space MaxSpec(R) a maximal ideal 1t; which
does not belong to other components, and set u = [Tu;. The ring R/1t is
semilocal and we can find an element ¢ € (E(Eg, R), wg), such that
(ae), = 1 (mod u). Since a = (a,,..., , ) € Um,,(Eq, R), using Propo-
sition 1, we can choose e, such that (ae), = 0(mod 1), i # 1. Let ae = a;.
Applying the condition ASR; to the subrow ((a,), , ..., (ay),,, (a}), ,(ay), )
of the row a,, we can find e, € (E(A4; — Eg, R), w,), such that the row
((aey),,, ..., (ase,),, ) is unimodular. Since a, & A5 - Eg we have

(a,e,),, =0(mod 1), i=57,809,11,...,27.

FIG. 1. (Eq, wp).



EEEEEEEEEEEEE




STABILITY FOR TYPE E, 77

Let ae; = a,. Set a =(a,), >, A, €T. The row ((a,), ,...,(ay), ) is
unimodular modulo ideal a. Thus, there exist ¢,,...,#;; € R, such that
t)(ay),, + - +t7(a)), =1 —(a,), (mod a). Since u— X €D, i=
2,...,17, we can find e, € (E(Eg, Rl), wg), such that (“262)A1 =1 (mod a)
and ((a,e,), ) = a, A, € I'. Therefore, the row ((a,e,), ,(aze,), -,
(aye,), ) is unimodular. Besides, (a,e,), = 0(mod 1), i = 18,...,27. Set
((a,e,),,» = n and consider R/n. Since n + a = R where a C 1, stan-
dard argumentation with the multiplicative system § = R\ U u;, [4, 35, 36]
shows that dimMax(R)/n < 3. Let a,e, = a;. The row ((ay), , ..., (a3),,)
is unimodular modulo 1. It remains to mention that Theorem 2.1 of [27]
(case D,_, —» D,) does not require that a row (a,,...,a,) belong to
Um,(D,, R), but only that the group G(D,, R) acts on Um,,(D,, R). Since
dimMax(R) = 3 implies ASR;, there exists e, € (E(Dy = Eg, R), w,),
such that (aze;), = 1(mod n). At last, obviously, (ae,), = (a,), . There-
fore, ((asey),, (azeq), ) = R.

THEOREM 1. Let dimMax(R) < 4. Then the homomorphism
v: Ky(Eg, R) = Ky(E;, R)

is surjective.

Proof. Let g€ (G(E;, R), ;). Then (A(g),..., A_y(g) € Unt, -
(E,, R).
Let

a= <(/\6(g),As(g),---,All(g),/\13(g),---,)\28(g),
A25(8)y - Ali(8))

The row (A(g), ..., As(g), A;(g), A,(g)) is unimodular modulo a, and,
using SR,, we can find e € (E(A; = E,, R), w;), such that (A,(eg),
.., As(eg), A;(eg)) is unimodular modulo a. Since

((Ag(eg), Ag(eg), - As(eg), Aa(eg), -, Aygleg),
A_yg(eg),..., A_y(eg)) = a,

the row (A,(eg), ..., A_,(eg)) is unimodular.

Set eg =g, Now let a = {A_,(gy), ..., A_(g)>. Then {(A,(g),
..., A5(g1)) + a = R. Thus, there exist ¢,, ..., t,3 € R, such that X A,(g,)t,
=1 - A\(gy) (mod a), i =2,...,28. Denote by T' the set of weights A;,
i=2,...,28. Let us set

er = [Txg(1), Bi=mwn— A A L.
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Applying (), we have

28

M(eigr) = M(g1) + Z (&)t + u,
i=2

where u € a. Thus, A(e;g;) =1 (mod a) and the row

()\1(‘313’1): A sg(€181)s -+, A—l(elgl))

is unimodular.

Let g, = ¢e,;g, and a = {A(g,), A_(g,)). The row (A_,(g,),
...,A_,(g,)) is unimodular modulo a. From the proof of surjective stabil-
ity of the K -functor for the embedding Dy — E; (see [22]), it follows that
there exists e, € (E(Eq = E,, R), ), such that

()\—28(6282)' A_ps(er85), -, )‘—z(ezgz))
is unimodular modulo a. Since {A(e,g,), A_,(e,g,)) = a, the row
(Al(eZgZ)' A_yg(€82)  A_11(€282) -+ A_y(e,82), A—l(ezgz))
is unimodular. Then the row

(Al(eZgZ)' oA €282) 0 Agl€282) Asg(€282)  A11(€282), -+ A_1(€285))

is also unimodular.
Let g, = e,8, and a = {A,(g3), .., A1(g3), A_,5(g3)). Take the row

()\zs(gs)y A11(83)s s A—l(gs))'

Arguing as in [27] and using the condition ASR,, we can obtain e, €
(E(Dg = E;, R), »;), such that

Ayg(es85) =1 (mod a),
A_1(esg5) =0(mod a),..., A_,(es83) = 0 (mod a).
Since {Ay(e383), -+, A(esgs), A_,g(esgs)) = a, the row
(M(€383), -+ Aa(€383), A p5(€383) 1 Aog(€383))

is unimodular.
Let g, = e;g,. Let us apply condition ASR; to the elements

M(8a) s Aa(84) s A 28(84)-

There exist ¢,,...,¢;; € R, such that every maximal ideal, containing the
ideal

</\7(g4) T 1A 55(84) 1+ Aia(84) + t11"—28(84)>’
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also contains {A;(g,), ..., A_,(g,)). Let e, € (E(A; = E;, R), w;) be
the corresponding element making these transformations. Since {A,(g,),
o Ag(gl)) = (Ae gy, - -, Agle,g,)), every maximal ideal n containing
(A(gs), ..., A(gs)), where g. =e,g,, also contains the ideal a =
(A8, - Ap(g) A 55(g,)). Besides, Ay(gs) =1 (mod a). Therefore,
the row

(’\1(8’5)' o Aa(8s), )‘28(85))

is unimodular. Thus, the row (A,(gs), ..., A,4(gs)) is unimodular.
Denote a = {(A,(g:)>. By Lemma 1 we have

Ay(8s), -1 Ag(828) € Un, (Eg, R/0),

where g, € R/a. Lemma 2 provides that there exists e; € (E(E; —
E,, R), wy), such that the row (A,(e.g:), A,(ecgs)) is unimodular modulo
a. Since a, & Eq — E,, we have (A(esg;)) = a. Therefore, we have the
unimodular row

(Al(eSgS)’ Ay(es8s), All(esgS))'

Let g, = e-gs. It is clear that there exists e, € (E(E,, R), w), such that
Aegge) = 1. 1

Now we introduce the condition on a ring which generalizes Vaserstein’s
condition used in the proof of surjective stability of the K,-functor for the
case of the orthogonal groups B,_, = B,, D,_, — D, (see [36]).

Recall how Vaserstein’s condition looks for the particular case ® = D,.
A ring R satisfies the condition V, if for any unimodular row

(ay,....a,,a_,,...,a_;),

with elements in R there exist elements ¢,,...,¢,,¢
such that
1. Yhta =1,
2. (t,...,t,,t

sbprb—par

..,t_, from R,

—nr

. 1_}) € Un, (D, R).

The second condition means that elements ¢, i = 1,..., —1, satisfy the
equality X7_, #;r_, = 0.

Suppose that a ring R satisfies both the conditions SR, and V/,_,. Then
the proof of surjective stability for D,_, — D, goes as follows (compare
39).

Consider the diagram of the representation (D,, w,) with the natural
numbering of weights (see Figures 5 and 6).
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n-1 n
O——O0—0— ¢+ R e ® e o)
1 2 n-2 n-2 2 1

FIG.5. (D,, ©y).

o—o—-- --—-0—0
12 n2 N n-D-(2) 2 -

-n

FIG.6. (D,, ®,).

Let g € (G(D,,R), w;) and (g;,..., 8, &, ---» &) be its first row.
Using the condition SR,, we can find elements ¢,,...,¢, € R, such that
the row

(8218 81 851)

is unimodular, where

gi=g +1tg, i=2,...,n,
8i =& i=—n,..,—2

n
g1=8.17F Ztig—i'
i=2

Let e € (E(D,, R), w;) make these transformations and denote g’ = ge.
Analogously, using SR,, one can choose #,,...,t, € R, such that the row

(8- 8 8lns18"2)
is unimodular, where

gl =g, i=2,...,n,
g =& gy, i

II

|
S

|
)

Let the element e, € (E(D,, R), ;) make these transformations and
denote g" = g'e;. Applying V,_, to the unimodular row

(85,180 8 nrv18%2),
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one can find #5,..., ¢, ¢"

b by s

, 1" ,, such that
1L Tihtg =1-gl,
2. (..., 01" 17,) € Um, (D, _;, R).

s by by e es

Let i =w; — A, i=2,...,—2, and set

—2
e, = l_gx,ﬁi(ti).
bl

"

Denote g"” = g"e,. Calculating g7, we have

gi// _gl + Zt// " + Z (g/r +t/rg/rl)t/r
i=2

=gt Zf”gf’ t8i Z () =gi+1l-g1 =

which finishes the proof.

Let n be the dimension of the basic representation 7 with the highest
weight w.

DerINITION.  We say that the ring R satisfies the condition V,(®, R) if

for each unimodular vector (r,, ..., r,) there exist elements ¢,,...,¢, € R,
such that
1 Zl 1 l T 1’

2. (ty,...,t,) € Um’M(CD, R).

For the case ® = D, and u = w,, this condition is converted to V. The
following theorem combines the condition used by Stein and the general-
ized Vaserstein condition for the particular case of E; — E, embedding.

THEOREM 2.  Let the ring R satisfy the conditions ASRg and V,,(Eg, R).
Then the homomorphism

v: Ky(Eg, R) = K,(E;, R)
is surjective.

PI’OOf Let g S (G(E7, R)y (1)7)- Then (Al(g)y ey A,l(g)) € Um/(:,7
(E;, R). As in the proof of Theorem 1, one can get a unimodular row

(’\1(8)7 A_(8),-- ’\71(8'))7

using the condition SR,. Moreover, the row

(M(8)r-1 A6(8) s Azg(8)- -0 A_a(8))
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is also unimodular. Let a = {(A(g)), i=1,...,6,—28,..., —7. Applying
SRy to the elements A_g(g),...,A_,(g), one can find e € (E(A; —
E,. R), w,), such that (A_4(eg), ..., A_,(eg)) is unimodular modulo a, and
(A(eg)) =a,i=1,...,6,—28,..., —7. Then the row

(Aa(eg), v Ag(e8), Agg(eg), - A_z(eg))

is unimodular.

Set eg = g; and a = (A(gy), ..., As(g,)). Using the condition V, (E4, R)
with respect to the row (A_,4(g,),..., A_,(gy)), one can find (¢,,...,t,3)
€ Um,(Eg, R), such that

28
Y tir;=1—A_4(g) (mod a).
i=2

Let B; =M, — A, i=—28,...,—1,and
—28

e, = 1_[2x,ﬁl(ti).
bl

Computing A_,(g,) where g, = e, g,, we have

28
A_1(82) = A_1(81) + 1A 5(8y) + o+ Fipgh p5(gy) + X uit; + 058y,
i=2

where u; = u(t,), v, = v(¢).
Straightforward computations using () yield that u, = 0, since

(f2,....15) € U, (Eg, R)

and v, = 0 as a linear combination of u,.
Therefore,

28
A_1(82) = A_i(81) + Zti’\—i(gl) t+a
i=2

=1-A_4(g) tA_y(g) +ta=1+a,

where a € a. Since the ideal {A(g,),..., As(g,) is still a, then the row

(/\l(gz)' o A6(82), )‘—1(82))

is unimodular. It follows immediately, that the row

(/\1(82)’ o Aa(82) 0 Al 2s(82), )‘71(82))
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is unimodular. Replacing g, by appropriate e,g, = g5, ¢, € (E(Dg —
E,, R), w,), we find that the row

()\1(&)! s Aa(83) ) A 28(83), Azs(g3))

is unimodular and
Ai(g3) =0(mod a), i=-11,..., -2,

where a = {(A(g3), ..., A(g3), A_,5(g3)>. Now, arguing as in Theorem 1
and applying ASR;, we can find e, € (E(Ds — E;, R), y), such that the
row

()\1(“3383)’ o Aa(es8s), )‘—28(638’3))

is unimodular. Let g, = e;g5. Using SR, one can get a unimodular row

(Az(gs)' o Aa(8s), Azs(gs))'

where g. =¢,g, and ¢, € (E(A; = E;, R), o).
Consider now the unimodular row (A,(gs), . .., A,5(gs)). Using the condi-
tion V,, (Eq, R), we can find (¢,, ..., t,5) € Um/, (Eg, R), such that

28
2 tA(gs) =1 — M(81)-
i=2
Take the element e; € (E(E,, R), w,), which adds all the elements of

(/\z(gs)l sy Azs(gs))

to the element A,(g.) with the coefficients ¢..
Then g (esgs) = 1since (¢,,...,1,5) € Um,, (Eg, R), and e, adds all the
elements A,(gs5), i = —28,..., —1, to A(gs) with zero coefficients. I

To conclude, we formulate the theorem concerning the stability of the
K, -functor for the embedding D; — E;. The proof uses arguments similar
to those in Theorem 2 and the description of the sets FEg(D., ws) and
Eq(Eg, wg).

THEOREM 3.  Let the ring R satisfy the conditions SRy and V,,(Ds, R).
Then the homomorphism

v: Ky(Ds, R) — K,(Eg, R)

is surjective.
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