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Abstract. Let Θ be an arbitrary variety of algebras and let Θ0 be the cate-
gory of all free finitely generated algebras from Θ. We study automorphisms
of such categories for special Θ. The cases of the varieties of all groups, all
semigroups, all modules over a noetherian ring, all associative and commuta-
tive algebras over a field are completely investigated. The cases of associative
and Lie algebras are also considered. This topic relates to algebraic geometry
in arbitrary variety of algebras Θ.

1. Motivations

1.1. The main problem and automorphisms of free objects. We consider
an arbitrary variety of algebras Θ. For any Θ denote by Θ0 the category of all
free in Θ algebras W = W (X), where X is finite. In order to avoid set-theoretic
problems we view all X as subsets of a universal infinite set X0.

Our main goal is to study automorphisms of the category Θ0 and the corre-
sponding group Aut Θ0.

The study of automorphisms of the category Θ0 is tied to the study of auto-
morphisms of the semigroups EndW , W ∈ Ob Θ0. The group of automorphisms
AutW consists of invertible elements of the semigroup EndW . There is the em-
bedding AutW → Aut(EndW ). The image of AutW is the group of all inner
automorphisms of the semigroup EndW .

A great deal is known about the group AutW for different varieties Θ and
W ∈ Ob Θ0. Automorphisms of free groups are well known [13], and the same is
true for free Lie algebras [8], free associative algebras over a field (when the number
of generators is ≤ 2; see [8, 14, 7, 17]), and some other varieties. For free associative
algebras with a greater number of generators the question is still open (see Cohn’s
conjecture [8]).

The relevant question is how do the towers of automorphisms of free objects look
like. Let W be a free object and consider the tower of groups AutW , Aut2W =
Aut(AutW ), . . . ,AutnW = Aut(Aut(n−1)W ), . . . . Minimum n such that every
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automorphism of AutnW is inner is called the height of the tower. The heights are
known for the variety of semigroups, the variety of all groups [9, 10], the category
of free modules over a field or over “good” rings [1, 12], etc.

There is an embedding τW : Aut(EndW ) → Aut(AutW ). Investigation of
Ker τW and Img τW is of independent interest. Formanek [10] has shown that if Θ
is the variety of groups, then Ker τW = 1, and the group Aut(EndW ) is isomorphic
to Aut(AutW ). In the cases of modules or associative algebras the situation is
more complicated.

Thus, there is much information related to automorphisms of individual free
objects. We note that our aim is to study not these automorphisms but automor-
phisms of categories of free objects. It turns out that new notions have arisen which
make this subject quite natural and highly motivated. We give the corresponding
explanations in the next two subsections.

1.2. Geometric motivation. Our primary interest in automorphisms of cate-
gories has grown from the universal algebraic geometry (see [18, 22, 21, 20, 2, 3, 16],
etc). In order to make the exposition self-contained we recall the necessary infor-
mation. In this subsection we provide a glimpse on the motivation, and in the next
one there will be a sketch of the subject with some precise definitions. Most of the
material from 1.2 and 1.3 is collected in [18].

Let Θ be the variety of all associative, commutative algebras over the infinite
ground field P . Denote by W (X) = P [X ], X = {x1, . . . , xn}, the algebra of
polynomials with commuting variables, which is a free algebra in Θ. The classical
algebraic geometry is associated with this variety, and for any extension L of the
ground field P the algebraic sets in the affine space Ln correspond to the L-closed
ideals in P [X ]. Now suppose L1 and L2 are two extensions of the ground field P .

The key question is when do the geometries defined by L1 and L2 coincide? Let
us denote by KΘ(L) the category of all algebraic sets in Ln. This category is
regarded as an invariant which is responsible for the geometry in L.

Then the question can be reformulated as follows: when are the categories of
algebraic sets KΘ(L1) and KΘ(L2) isomorphic?

Within last years it has been figured out that one can replace the variety of
associative commutative algebras (the so-called classical variety) by an arbitrary
variety of algebras Θ and construct algebraic geometry in Θ with respect to a
distinguished algebra H in Θ. This H takes the role of the field L. Thus, let Θ be
an arbitrary variety of algebras, H1, H2 algebras in Θ, and KΘ(H1), KΘ(H2) the
corresponding categories of algebraic sets.

The principal problem for the variety Θ repeats the one for the classical case:

Problem 1.1. When do the geometries over H1 and H2 coincide, i.e., when are
the categories KΘ(H1) and KΘ(H2) isomorphic?

There is an answer to this question [18], which is formulated in terms of two
notions: geometric equivalence and geometric similarity of algebras (see 1.3).

Geometric similarity provides necessary and sufficient conditions for the cate-
gories KΘ(H1) and KΘ(H2) to be isomorphic, while geometric equivalence gives
only a sufficient condition. However, the notion of geometric equivalence is much
more explicit, transparent and well verified than the notion of geometric similarity.
Thus, the main problem is converted to the following:
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Problem 1.2. For which categories Θ does the geometric similarity either coincide
with geometric equivalence or is close to it?

We show in 1.3 that this problem is tied to the description of automorphisms of
the category of free algebras in Θ.

1.3. Basics of universal algebraic geometry. Fix an algebra H in Θ. Any
equation in W (X), |X | = n has the form w = w′, w, w′ ∈ W . Systems of equations
in W are denoted by T. They can be viewed as binary relations in W. The set of
homomorphisms Hom(W,H) is regarded as an affine space. There is the canonical
bijection Hom(W,H) ' Hn. A point µ : W → H is a solution of equation w = w′

if and only if (w,w′) ∈ Kerµ. Consider sets of points A ⊂ Hom(W,H). The Galois
correspondence between systems of equations T and sets A is given by:T

′ = A = {µ : W → H
∣∣ T ⊂ Kerµ} = T ′H ,

A′ = T =
⋂
µ∈A

Kerµ.

Definition 1.3. Algebras H1 and H2 are called geometrically equivalent if for ev-
ery finite set X and every system of equations T in W = W (X) the equality

T
′′

H1
= T

′′

H2

holds.

Definition 1.4. 1. A set A such that A = T ′ for some T is called an algebraic set.
2. A congruence T in W is called H-closed if there exists an algebraic set A such

that T = A′.

Denote by ClH(W ) the set of all H-closed congruences in W. This gives rise to
the contravariant functor ClH : Θ0 → Set. Thus, we can reformulate Definition 1.3
in terms of the functors ClH , i.e., the geometric equivalence of algebras H1 and H2

means that the functors ClH1 and ClH2 coincide.
The geometric equivalence is a quite nice property, which in many cases can be

checked effectively:

Theorem 1.5 ([21]). If algebras H1 and H2 are geometrically equivalent, then they
have the same quasiidentities.

In the classical case the if and only if statement is true. However, for arbitrary Θ
the converse statement is not valid; see [16, 11]. For special categories the situation
is even more transparent:

Theorem 1.6 ([4]). Two abelian groups H1 and H2 are geometrically equivalent if
and only if

1. They have the same exponents.
2. For every prime p the exponents of Sylow subgroups H1p and H2p coincide.

An easy, but crucial fact states that the geometric equivalence of algebras H1

and H2 gives a sufficient condition for the categories of algebraic sets KΘ(H1) and
KΘ(H2) to be isomorphic.

In order to get a necessary and sufficient condition we have to use the notion of
geometric similarity. Let Var(H1) and Var(H2) be the varieties generated by H1

and H2, respectively; for simplicity we assume that Var(H1) = Var(H2) = Θ.



4 G. MASHEVITZKY, B. PLOTKIN, AND E. PLOTKIN

Geometric similarity of algebras means that there is an isomorphism

ϕ : Var(H1)0 → Var(H2)0

with the commutative diagram

Var(H1)0 ϕ
//

ClH1
&&MMMMMMMMMMM

Var(H2)0

ClH2

��

Set

Commutativity of the diagram indicates that there is the isomorphism (not nec-
essarily equality) of the functors ClH1 and ClH2 ϕ. This isomorphism α = α(ϕ)
depends on the isomorphism of categories ϕ and is constructed in a special way.

The notion of geometric equivalence is a particular case of geometric similarity
when ϕ = 1. The principal observation [18] says that if the isomorphism ϕ is isomor-
phic as a functor to the identity functor, then geometric similarity implies geometric
equivalence. Thus, we have come to the fact which lies in the basis of investigation
of automorphisms of categories of free algebras: if in the category Θ0 every auto-
morphism is isomorphic to the identity functor and Var(H1) = Var(H2) = Θ, then
the geometries over algebras H1 and H2 coincide if and only if the algebras H1 and
H2 are geometrically equivalent.

2. Definitions

2.1. Hereditary automorphisms of categories. Let C be an arbitrary (possi-
bly small) category. Let EndC be the semigroup of all covariant endofunctors of
the category C. We use the word “endomorphisms” instead of “endofunctors”. A
functor ϕ : C → C is called an automorphism of the category C if there exists
a functor ϕ−1 : C → C such that ϕϕ−1 = ϕ−1ϕ = 1C , where 1C is the identity
functor of C. All automorphisms of the category C form a group denoted by AutC.

Two functors are called isomorphic if there exists an invertible natural transfor-
mation of functors which takes one to the other. Thus, the relation of isomorphism
of functors is defined on the semigroup EndC. This relation turns out to be a
congruence of EndC. The quotient semigroup is denoted by End0(C). The group
of invertible elements of End0(C) is denoted by Aut0(C). The group Aut0(C) is the
group of all autoequivalences of the category C which are considered up to an iso-
morphism of functors. There is the canonical homomorphism τ : AutC → Aut0 C.
The kernel of τ consists of automorphisms isomorphic to the identity functor (inner
automorphisms; see 2.2). It is not clear for what categories the homomorphism τ
is surjective.

Definition 2.1. An automorphism ϕ : C → C is called hereditary if for every
A ∈ ObC the objects A and ϕ(A) are isomorphic.

It is clear that an automorphism ϕ : C → C induces an isomorphism of the
semigroups EndA and Endϕ(A), and of the groups AutA and Autϕ(A). This
implies immediately that every automorphism of the categories of finite sets or free
semigroups is hereditary.

A finitely generated free in Θ algebra W = W (X) is hopfian if every surjection
W →W turns out to be an automorphism of W .
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Definition 2.2. A variety Θ is called hopfian if every finitely generated free algebra
in Θ is hopfian.

Denote by W0 = W (x0) the free cyclic algebra with the generator x0.

Proposition 2.3. If Θ is a hopfian variety and the algebras W0 and ϕ(W0) are
isomorphic, then ϕ is a hereditary automorphism of the category Θ0.

Definition 2.4. The category C is called automorphic hereditary if each of its
automorphisms is hereditary.

Remark 2.5. The categories of sets, free semigroups, free groups, free modules over
a noetherian ring, free associative commutative algebras are automorphic heredi-
tary. However, not every category is automorphic hereditary.

2.2. Inner automorphisms. Let ϕ be a substitution on objects of the category
C such that A and ϕ(A) are isomorphic for every A ∈ ObC. Consider a function
s which for any object A chooses an isomorphism

sA : A→ ϕ(A).

Define an automorphism ŝ : C → C by the rule:
1. ŝ(A) = ϕ(A), for every object A.
2. For every morphism ν : A→ B,

ŝ(ν) = sBνs
−1
A : ϕ(A)→ ϕ(B).

Definition 2.6. An automorphism ϕ : C → C is called inner if
1. ϕ is a hereditary automorphism.
2. For the substitution ϕ there exists a function s such that ϕ = ŝ.

The equality ŝ(ν) = ϕ(ν) = sBνs
−1
A can be written as a commutative diagram,

A
ν−−−−→ B

sA

y sB

y
ϕ(A)

ϕ(ν)−−−−→ ϕ(B)
This diagram means that the natural transformation of functors s : 1c → ϕ is

an isomorphism of functors. Thus, an automorphism ϕ : C → C is inner if and
only if ϕ is isomorphic to the identity automorphism 1c : C → C. Note that two
automorphisms ϕ1, ϕ2 : C → C are isomorphic if and only if ϕ−1

1 ϕ2 is inner.

Proposition 2.7. All inner automorphisms form a normal subgroup in AutC de-
noted by IntC.

Now one can define the group OutC of outer automorphisms of the category C
by OutC = AutC/ IntC.

Definition 2.8. The category C is called perfect if every automorphism of it is
inner.

Thus, a category C is perfect if and only if OutC = 1. Thus, if we consider
automorphisms C up to isomorphisms, a perfect C has no automorphisms except
trivial.

Proposition 2.9. Every hereditary automorphism ϕ of the category C can be pre-
sented in the form ϕ = ϕ1ϕ2, where ϕ1 is an inner automorphism and ϕ2 is an
automorphism which does not change objects.
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Let us call an automorphism ϕ which does not change objects a stable automor-
phism.

Denote by HAutC the normal subgroup of all hereditary automorphisms and
by StC the normal subgroup of all automorphisms which does not change objects
of C. Then HAutC = IntC · StC. For the automorphic hereditary categories,
HAut C = AutC and AutC = IntC · StC, respectively.

2.3. Remarks. First of all observe that if an automorphism ϕ of the category C
is stable, then it induces the automorphism ϕA of the semigroup EndA and of
the groups AutA for any object A ∈ C. Thus, we get homomorphisms StC →
Aut(EndA) and StC → Aut(AutA) and a description of lower floors of towers of
automorphisms of free objects becomes of special importance.

An object A ∈ ObC is called perfect if every automorphism of the semigroup
EndA is inner. If ϕ ∈ StC and ϕ is inner, then ϕA is an inner automorphism of
EndA. On the other hand, if ψ is an inner automorphism of EndA, then ψ = ϕA
for some ϕ ∈ StC. Hence, if A is a perfect object of C, then the homomorphism
StC → Aut(EndA) is surjective.

Note that perfectness of C does not imply that every object of C is perfect. On
the other hand, perfectness of each object is an argument in favor of the perfectness
of the category.

3. The main theorem

3.1. Category Θ0. Recall that for any variety of algebras Θ, the category Θ0 is
the category of all free finitely generated algebras in Θ.

Definition 3.1. A variety Θ is called automorphic hereditary if the category Θ0

is automorphic hereditary, i.e., if every automorphism ϕ : Θ0 → Θ0 is hereditary.
A variety Θ is called regular if for every X , Y an isomorphism W (X) 'W (Y ),

where algebras W (X),W (Y ) are free in Θ, implies |X | = |Y |.
A variety Θ is called noetherian if every finitely generated free algebra W =

W (X) is noetherian with respect to congruences.

It is clear that every noetherian variety is hopfian, and hence regular.

Definition 3.2. A variety Θ is called perfect if the category of free algebras Θ0 is
perfect, i.e., if every automorphism ϕ : Θ0 → Θ0 is inner.

A variety Θ is called almost perfect if the group Out Θ0 is finite.

3.2. Algebras with constants. The main geometrical applications require the
existence of constants in the algebras under consideration. In this section we intro-
duce the corresponding notions.

Let Θ be an arbitrary variety of algebras, and G a distinguished nontrivial alge-
bra in Θ. Consider the category ΘG whose objects have the form h : G→ H , where
H ∈ Θ and h is a morphism in Θ. Morphisms in ΘG are presented by commutative
diagrams

G
h1 //

h2   AAAAAAAA H

µ

��

H ′
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where µ, h1, h2 are morphisms in Θ. Objects of ΘG are called G-algebras and are
denoted by (H,h). Elements of G have the meaning of constants in algebras from
Θ and, adding them as nullary operations to the signature of Θ, we get the variety
of G-algebras ΘG.

A free in ΘG algebra W = W (X) has the form of the free product G ∗W0(X),
where W0(X) is a free algebra in Θ.

Examples. 1. The variety of commutative associative algebras over a field P is of
type ΘG, where Θ is the variety of associative commutative rings with 1, and G is
the field P .

2. The variety of associative algebras over a field.
3. The variety of G-groups.

The category ΘG is a subcategory in the category Θ(G) with the same objects,
while the morphisms of Θ(G) are presented by the commutative squares

G
h−−−−→ H

σ

y yµ
G

h′−−−−→ H ′

where σ ∈ EndG.
Morphisms of the category Θ(G) are called semimorphisms of the initial category

of algebras with constants ΘG.
Consider the category (ΘG)0 of free G-algebras.

Definition 3.3. An automorphism of (ΘG)0 is called semiinner if it is induced by
an inner automorphism of the category Θ(G)0.

This means that a semiinner automorphism ϕ of the category (ΘG)0 is given by
a pair (σ, s), where σ is an automorphism of the algebra G, and s is a function
which attaches to a finite set X a semiisomorphism (σ, sX) : W (X) → ϕW (X).
The automorphism σ does not depend on X .

All semiinner automorphisms of the category (ΘG)0 constitute a subgroup in
Aut(ΘG)0 denoted by SInt(ΘG)0. If this subgroup has a finite index in Aut(ΘG)0

then the category (ΘG)0 is called almost semiperfect. The variety (ΘG) is almost
semiperfect if the category (ΘG)0 is almost semiperfect.

Remark. The definitions above do not cover the case of the category of free modules
over a ring R since there is no canonical embedding of R to a module. However, the
standard definition of semiautomorphisms of a free module has the same meaning.

Let σ be an automorphism of a ring, and KX = Kx1⊕· · ·⊕Kxn a free module.
Define σX : KX → KX by the rule σX(u) = λσ1x1 + · · · + λσnxn, where u =
λ1x1 +· · ·+λnxn is an element of KX . A pair (σ, σX ) is called a semiautomorphism
of KX .

Now, we can consider the category of modules with semimorphisms (semilin-
ear maps). In this category there are inner morphisms. The morphisms of the
category of modules induced by inner morphisms of the category of modules with
semimorphisms are called semiinner morphisms of the category of modules.

Definition 3.4. A variety ΘG is called semiperfect if every automorphism of the
category (ΘG)0 is semiinner.
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Definition 3.5. G-algebras (H1, h1) and (H2, h2) are called geometrically semi-
equivalent if there exists an algebra (H,h) such that (H1, h1) and (H,h) are semi-
isomorphic and (H,h) is geometrically equivalent to (H2, h2).

Theorem 3.6 ([18]). If the geometric similarity of G-algebras (H1, h1) and (H2, h2)
is given by a semiinner automorphism, then they are geometrically semiequivalent.

3.3. The main theorem.

Theorem 3.7. 1. The categories of sets and finite sets are perfect.
2. The variety of all groups is perfect.
3. The variety of all semigroups is almost perfect.
4. The variety of all R-modules, where R is a noetherian ring, is semiperfect.
5. The variety of commutative associative algebras with unity element over an

infinite field, is semiperfect [4].
6. The variety of F -groups, where F is a free group, is semiperfect.

Corollary 3.8. 1. Let H1, H2 be two groups, and let each of them generate the
variety of all groups. The categories of algebraic sets KΘ(H1) and KΘ(H2) are
isomorphic if and only if the groups are geometrically equivalent.

2. An F -group (H,h) is called faithful if h is a monomorphism. Let H1, H2

be two faithful F -groups. Then the corresponding categories of algebraic sets are
isomorphic if and only if the F -groups are geometrically semiequivalent.

3. The same is true for modules over a noetherian ring R and for commutative
associative algebras over an infinite field.

Problem 3.9. Describe automorphisms of the categories of free associative and
free Lie algebras.

3.4. Sketch of the proof. 1. The result for the categories of sets and finite sets
is relatively easy and is based on the ideas from [24].

2. We prove that all varieties from the Main Theorem are hereditary auto-
morphic. This implies that we can study only stable automorphisms. It can
be proven that every such automorphism ϕ is a quasiinner automorphism. This
means that there is a function σ = σ(ϕ) which for every finite X takes a bijection
σX : W (X)→W (X), and such that ϕ(ν) = σY νσ

−1
X for every ν : W (X)→W (Y ).

3. Let Θ be the variety of all groups. By Formanek’s theorem [10], every
automorphism of the semigroup EndW (X) , |X | > 1, is an inner automorphism.
Using this result it can be proven that the function σ is presented in the form
σ = sτ , where sX is an automorphism of the group W (X), and τ is either the
identity function or τX(a) = a−1 for every finite X and every a ∈ W (X). Since τ is
a central function, it disappears and therefore σ̂ = ŝ. For every ν : W (X)→W (Y ),
we have ϕ(ν) = sY νs

−1
X . Hence, ϕ is an inner automorphism.

4. The case of semigroups. Let F = F (X) be a free semigroup and u =
xi1xi2 · · ·xin−1xin an element of F . Denote by ū the element ū = xinxin−1 · · ·xi2xi1 .
The map u→ ū is a bijective involution on the set F (X).

Now we can define an automorphism µ of the category Θ0 of free semigroups.
This automorphism does not change objects, and for every ν : F (X)→ F (Y ) we set
µ(ν)(x) = ν(x) for every x ∈ X . Automorphism µ is called a mirror automorphism
of the category Θ0. It is clear that µ2 = id. The mirror automorphism of the
semigroups EndF (X) is defined similarly.
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Using [15] it can be proved that any automorphism ϕ of the category Θ0 can be
presented as the product of inner and mirror automorphisms. Obviously, Out Θ0 is
isomorphic to Z2.

5. Let Θ be an arbitrary hopfian variety of algebras, and let it be generated
by a cyclic free algebra W = W0 = W (x0). Consider an automorphism ϕ of the
category Θ0 which does not change objects. Denote by ϕW0 the automorphism of
the semigroup EndW (x0) induced by the automorphism ϕ. The following theorem
holds:

Theorem 3.10. If the automorphism ϕW0 is trivial, then ϕ is an inner automor-
phism of the category Θ0.

6. Let us use the theorem above in the case of modules. Let Θ be the variety of
modules over a noetherian ring R and ϕ an automorphism which does not change
objects. Take the cyclic module Rx0. It generates the whole variety Θ. It can be
proven that ϕ induces an automorphism of the ring R. The corresponding ϕRx0

is a semiinner automorphism of EndRx0, which can be extended to a semiinner
automorphism ψ of the category Θ0. The automorphism ψ−1ϕ acts trivially in the
semigroup End(Rx0). Therefore ψ−1ϕ is inner. Hence, ϕ is semiinner.

7. The case of associative commutative algebras follows the scheme of item 6.
The same scheme works for the situation of F -groups.

8. About Problem 3.9. Consider a generalization of Theorem 3.10.
Let Θ be an arbitrary hopfian variety of algebras, and let Θ be generated by an

algebra W 0 = W (X0), where X0 is a fixed finite set. Denote by W0 = W (x0) the
cyclic free algebra. Let ν0 : W 0 → W0 be a morphism defined by the condition:
ν0(x) = x0 for every x ∈ X0.

Theorem 3.11. If the automorphism ϕ : Θ0 → Θ0 acts trivially on the semigroups
EndW 0 and EndW0 and ϕ(ν0) = ν0, then ϕ is an inner automorphism of the
category Θ0.

9. Let Θ be the variety of associative or Lie algebras over a field, F0 the free
algebra with one variable, F 0 the free algebra with two variables. Consider a full
subcategory of Θ0 which has only two objects F0 and F 0 and with morphisms
induced by the morphisms of Θ0.

The theorem above allows us to reduce the problem on automorphisms of the
category Θ0 to studying the automorphisms of this subcategory.

We note that Θ is generated by the free algebra with two variables F 0.
The notion of a mirror automorphism works in the variety of all associative

algebras Θ as well.
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