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ABSTRACT. Let © be an arbitrary variety of algebras and let ©° be the cate-
gory of all free finitely generated algebras from ©. We study automorphisms
of such categories for special ®. The cases of the varieties of all groups, all
semigroups, all modules over a noetherian ring, all associative and commuta-
tive algebras over a field are completely investigated. The cases of associative
and Lie algebras are also considered. This topic relates to algebraic geometry
in arbitrary variety of algebras ©.

1. MOTIVATIONS

1.1. The main problem and automorphisms of free objects. We consider
an arbitrary variety of algebras ©. For any © denote by ©° the category of all
free in © algebras W = W(X), where X is finite. In order to avoid set-theoretic
problems we view all X as subsets of a universal infinite set X°.

Our main goal is to study automorphisms of the category ©° and the corre-
sponding group Aut ©°.

The study of automorphisms of the category ©° is tied to the study of auto-
morphisms of the semigroups End W, W € Ob@°. The group of automorphisms
Aut W consists of invertible elements of the semigroup End W. There is the em-
bedding Aut W — Aut(End W). The image of AutW is the group of all inner
automorphisms of the semigroup End W.

A great deal is known about the group AutW for different varieties ® and
W € Ob©". Automorphisms of free groups are well known [13], and the same is
true for free Lie algebras [8], free associative algebras over a field (when the number
of generators is < 2; see [8| 14, [7, [17]), and some other varieties. For free associative
algebras with a greater number of generators the question is still open (see Cohn’s
conjecture [§]).

The relevant question is how do the towers of automorphisms of free objects look
like. Let W be a free object and consider the tower of groups Aut W, Aut? W =
Aut(Aut W),..., Aut" W = Aut(Aut("fl) W),.... Minimum n such that every
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automorphism of Aut™ W is inner is called the height of the tower. The heights are
known for the variety of semigroups, the variety of all groups [9, [10], the category
of free modules over a field or over “good” rings [} [[2], etc.

There is an embedding 7w : Auwt(End W) — Aut(Aut W). Investigation of
Ker 7y and Img 7y is of independent interest. Formanek [10] has shown that if ©
is the variety of groups, then Ker 7y = 1, and the group Aut(End W) is isomorphic
to Aut(Aut W). In the cases of modules or associative algebras the situation is
more complicated.

Thus, there is much information related to automorphisms of individual free
objects. We note that our aim is to study not these automorphisms but automor-
phisms of categories of free objects. It turns out that new notions have arisen which
make this subject quite natural and highly motivated. We give the corresponding
explanations in the next two subsections.

1.2. Geometric motivation. Our primary interest in automorphisms of cate-
gories has grown from the universal algebraic geometry (see [18, 22] 21, 20} 2] [3, 6],
etc). In order to make the exposition self-contained we recall the necessary infor-
mation. In this subsection we provide a glimpse on the motivation, and in the next
one there will be a sketch of the subject with some precise definitions. Most of the
material from 1.2 and 1.3 is collected in [I§].

Let © be the variety of all associative, commutative algebras over the infinite
ground field P. Denote by W(X) = P[X], X = {x1,...,2,}, the algebra of
polynomials with commuting variables, which is a free algebra in ©. The classical
algebraic geometry is associated with this variety, and for any extension L of the
ground field P the algebraic sets in the affine space L™ correspond to the L-closed
ideals in P[X]. Now suppose L; and Lq are two extensions of the ground field P.

The key question is when do the geometries defined by Ly and Lo coincide? Let
us denote by Kg(L) the category of all algebraic sets in L™. This category is
regarded as an invariant which is responsible for the geometry in L.

Then the question can be reformulated as follows: when are the categories of
algebraic sets Ko(L1) and Ko(Ls) isomorphic?

Within last years it has been figured out that one can replace the variety of
associative commutative algebras (the so-called classical variety) by an arbitrary
variety of algebras © and construct algebraic geometry in © with respect to a
distinguished algebra H in ©. This H takes the role of the field L. Thus, let © be
an arbitrary variety of algebras, Hy, Hy algebras in ©, and Kgo(H1), Ko(H2) the
corresponding categories of algebraic sets.

The principal problem for the variety © repeats the one for the classical case:

Problem 1.1. When do the geometries over H; and H> coincide, i.e., when are
the categories Ko(H1) and Kg(Hz) isomorphic?

There is an answer to this question [I8], which is formulated in terms of two
notions: geometric equivalence and geometric similarity of algebras (see 1.3).

Geometric similarity provides necessary and sufficient conditions for the cate-
gories Ko(H1) and Kg(H2) to be isomorphic, while geometric equivalence gives
only a sufficient condition. However, the notion of geometric equivalence is much
more explicit, transparent and well verified than the notion of geometric similarity.
Thus, the main problem is converted to the following:
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Problem 1.2. For which categories © does the geometric similarity either coincide
with geometric equivalence or is close to it?

We show in 1.3 that this problem is tied to the description of automorphisms of
the category of free algebras in ©.

1.3. Basics of universal algebraic geometry. Fix an algebra H in ©. Any
equation in W(X), |X| = n has the form w = w’, w,w’ € W. Systems of equations
in W are denoted by T. They can be viewed as binary relations in W. The set of
homomorphisms Hom(W, H) is regarded as an affine space. There is the canonical
bijection Hom(W, H) ~ H™. A point p: W — H is a solution of equation w = w’
if and only if (w,w’) € Ker p. Consider sets of points A C Hom(W, H). The Galois
correspondence between systems of equations 1" and sets A is given by:

T'=A={u:W — H|T CKerp} =Ty,
A =T= ) Kerpu.
HEA
Definition 1.3. Algebras H; and Hy are called geometrically equivalent if for ev-
ery finite set X and every system of equations 7' in W = W (X) the equality

"

TH == 7”’1_[2

1

holds.

Definition 1.4. 1. A set A such that A =T’ for some T is called an algebraic set.
2. A congruence T in W is called H-closed if there exists an algebraic set A such
that T = A’.

Denote by Clg (W) the set of all H-closed congruences in W. This gives rise to
the contravariant functor Clg : ©° — Set. Thus, we can reformulate Definition 1.3
in terms of the functors Cly, i.e., the geometric equivalence of algebras H; and Hs
means that the functors Cly, and Clg, coincide.

The geometric equivalence is a quite nice property, which in many cases can be
checked effectively:

Theorem 1.5 ([21]). If algebras Hy and Hs are geometrically equivalent, then they
have the same quasiidentities.

In the classical case the if and only if statement is true. However, for arbitrary ©
the converse statement is not valid; see [16] [IT]. For special categories the situation
is even more transparent:

Theorem 1.6 ([4]). Two abelian groups Hy and Ha are geometrically equivalent if
and only if

1. They have the same exponents.

2. For every prime p the exponents of Sylow subgroups Hi, and Hap, coincide.

An easy, but crucial fact states that the geometric equivalence of algebras H;
and Hy gives a sufficient condition for the categories of algebraic sets Kg(H1) and
Ko(H>2) to be isomorphic.

In order to get a necessary and sufficient condition we have to use the notion of
geometric similarity. Let Var(H;) and Var(Hz) be the varieties generated by H;
and Ha, respectively; for simplicity we assume that Var(H;) = Var(Hz) = O.
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Geometric similarity of algebras means that there is an isomorphism
¢ : Var(H;)° — Var(Hy)°

with the commutative diagram

Var(H;)° 2, Var(Hs)°

Cla,
ClHl

Set

Commutativity of the diagram indicates that there is the isomorphism (not nec-
essarily equality) of the functors Cly, and Cly, ¢. This isomorphism a = a(p)
depends on the isomorphism of categories ¢ and is constructed in a special way.

The notion of geometric equivalence is a particular case of geometric similarity
when ¢ = 1. The principal observation [I8] says that if the isomorphism ¢ is isomor-
phic as a functor to the identity functor, then geometric similarity implies geometric
equivalence. Thus, we have come to the fact which lies in the basis of investigation
of automorphisms of categories of free algebras: if in the category ©° every auto-
morphism is isomorphic to the identity functor and Var(H;) = Var(Hz) = ©, then
the geometries over algebras H; and Hs coincide if and only if the algebras H; and
H, are geometrically equivalent.

2. DEFINITIONS

2.1. Hereditary automorphisms of categories. Let C' be an arbitrary (possi-
bly small) category. Let End C' be the semigroup of all covariant endofunctors of
the category C. We use the word “endomorphisms” instead of “endofunctors”. A
functor ¢ : C — (' is called an automorphism of the category C' if there exists
a functor ¢! : C — C such that pp~! = ¢l = 1¢, where 1¢ is the identity
functor of C'. All automorphisms of the category C form a group denoted by Aut C'.

Two functors are called isomorphic if there exists an invertible natural transfor-
mation of functors which takes one to the other. Thus, the relation of isomorphism
of functors is defined on the semigroup End C. This relation turns out to be a
congruence of End C. The quotient semigroup is denoted by EndO(C). The group
of invertible elements of End’(C') is denoted by Aut®(C). The group Aut®(C) is the
group of all autoequivalences of the category C' which are considered up to an iso-
morphism of functors. There is the canonical homomorphism 7 : Aut C' — Aut® C.
The kernel of 7 consists of automorphisms isomorphic to the identity functor (inner
automorphisms; see 2.2). It is not clear for what categories the homomorphism 7
is surjective.

Definition 2.1. An automorphism ¢ : C' — C is called hereditary if for every
A € ObC the objects A and p(A) are isomorphic.

It is clear that an automorphism ¢ : C' — C induces an isomorphism of the
semigroups End A and End ¢(A), and of the groups Aut A and Aut@(A). This
implies immediately that every automorphism of the categories of finite sets or free
semigroups is hereditary.

A finitely generated free in © algebra W = W (X) is hopfian if every surjection
W — W turns out to be an automorphism of W.
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Definition 2.2. A variety O is called hopfian if every finitely generated free algebra
in © is hopfian.

Denote by Wy = W(xg) the free cyclic algebra with the generator .

Proposition 2.3. If © is a hopfian variety and the algebras Wy and o(Wy) are
isomorphic, then ¢ is a hereditary automorphism of the category 6°.

Definition 2.4. The category C is called automorphic hereditary if each of its
automorphisms is hereditary.

Remark 2.5. The categories of sets, free semigroups, free groups, free modules over
a noetherian ring, free associative commutative algebras are automorphic heredi-
tary. However, not every category is automorphic hereditary.

2.2. Inner automorphisms. Let ¢ be a substitution on objects of the category
C such that A and ¢(A) are isomorphic for every A € ObC. Consider a function
s which for any object A chooses an isomorphism

sa:A— p(A).

Define an automorphism § : C' — C' by the rule:
1. 3(A) = p(A), for every object A.
2. For every morphism v : A — B,

3(v) = spvsy' : p(A) — @(B).
Definition 2.6. An automorphism ¢ : C' — C'is called inner if

1. ¢ is a hereditary automorphism.
2. For the substitution ¢ there exists a function s such that ¢ = 8.

The equality §(v) = p(v) = sprs,* can be written as a commutative diagram,

A —“Y -+ B

SAl SBl
p(v)
p(A) —— ¢(B)
This diagram means that the natural transformation of functors s : 1. — ¢ is
an isomorphism of functors. Thus, an automorphism ¢ : C — C'is inner if and

only if ¢ is isomorphic to the identity automorphism 1. : C — C. Note that two
automorphisms ¢1, 2 : C' — C are isomorphic if and only if gaflgog is inner.

Proposition 2.7. All inner automorphisms form a normal subgroup in Aut C' de-
noted by Int C.

Now one can define the group Out C' of outer automorphisms of the category C

by Out C' = Aut C/ Int C.

Definition 2.8. The category C' is called perfect if every automorphism of it is
inner.

Thus, a category C' is perfect if and only if Out C' = 1. Thus, if we consider
automorphisms C' up to isomorphisms, a perfect C' has no automorphisms except
trivial.

Proposition 2.9. FEvery hereditary automorphism @ of the category C' can be pre-
sented in the form @ = 1@, where p1 is an inner automorphism and pg is an
automorphism which does not change objects.



6 G. MASHEVITZKY, B. PLOTKIN, AND E. PLOTKIN

Let us call an automorphism ¢ which does not change objects a stable automor-
phism.

Denote by HAut C' the normal subgroup of all hereditary automorphisms and
by St C' the normal subgroup of all automorphisms which does not change objects
of C. Then HAutC = IntC' - St C. For the automorphic hereditary categories,
HAut C = AutC and Aut C = Int C' - St C, respectively.

2.3. Remarks. First of all observe that if an automorphism ¢ of the category C
is stable, then it induces the automorphism @4 of the semigroup End A and of
the groups Aut A for any object A € C. Thus, we get homomorphisms StC —
Aut(End A) and St C' — Aut(Aut A) and a description of lower floors of towers of
automorphisms of free objects becomes of special importance.

An object A € ObC is called perfect if every automorphism of the semigroup
End A is inner. If ¢ € StC and ¢ is inner, then ¢4 is an inner automorphism of
End A. On the other hand, if ¢ is an inner automorphism of End A, then ) = ¢4
for some ¢ € St C. Hence, if A is a perfect object of C, then the homomorphism
St C' — Aut(End A) is surjective.

Note that perfectness of C' does not imply that every object of C is perfect. On
the other hand, perfectness of each object is an argument in favor of the perfectness
of the category.

3. THE MAIN THEOREM

3.1. Category 0. Recall that for any variety of algebras O, the category ©° is
the category of all free finitely generated algebras in ©.

Definition 3.1. A variety © is called automorphic hereditary if the category ©°
is automorphic hereditary, i.e., if every automorphism ¢ : 0% — 00 is hereditary.
A variety © is called regular if for every X, ¥ an isomorphism W(X) ~ W(Y),
where algebras W (X), W(Y) are free in O, implies | X| = |Y].
A variety © is called noetherian if every finitely generated free algebra W =
W (X) is noetherian with respect to congruences.

It is clear that every noetherian variety is hopfian, and hence regular.

Definition 3.2. A variety O is called perfect if the category of free algebras QY is
perfect, i.e., if every automorphism ¢ : ©° — @9 is inner.
A variety O is called almost perfect if the group Out @Y is finite.

3.2. Algebras with constants. The main geometrical applications require the
existence of constants in the algebras under consideration. In this section we intro-
duce the corresponding notions.

Let © be an arbitrary variety of algebras, and G a distinguished nontrivial alge-
bra in ©. Consider the category ©F whose objects have the form h : G — H, where
H € © and h is a morphism in ©. Morphisms in ©F are presented by commutative
diagrams
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where 1, hi, ho are morphisms in ©. Objects of ©F are called G-algebras and are
denoted by (H, h). Elements of G have the meaning of constants in algebras from
© and, adding them as nullary operations to the signature of ©, we get the variety
of G-algebras ©¢.

A free in ©Y algebra W = W (X) has the form of the free product G x Wy(X),
where Wy (X) is a free algebra in ©.

Examples. 1. The variety of commutative associative algebras over a field P is of
type ©Y, where O is the variety of associative commutative rings with 1, and G is
the field P.

2. The variety of associative algebras over a field.

3. The variety of G-groups.

The category ©F is a subcategory in the category ©(G) with the same objects,
while the morphisms of ©(G) are presented by the commutative squares

G#H

o’l J{p,
a M
where o € End G.
Morphisms of the category ©(G) are called semimorphisms of the initial category

of algebras with constants ©¢.
Consider the category (©%)° of free G-algebras.

Definition 3.3. An automorphism of (©%)? is called semiinner if it is induced by
an inner automorphism of the category ©(G)°.

This means that a semiinner automorphism ¢ of the category (%) is given by
a pair (o,s), where o is an automorphism of the algebra G, and s is a function
which attaches to a finite set X a semiisomorphism (o,sx) : W(X) — oW (X).
The automorphism ¢ does not depend on X.

All semiinner automorphisms of the category (0%)° constitute a subgroup in
Aut(09)° denoted by SInt(©%)0. If this subgroup has a finite index in Aut(©%)°
then the category (%) is called almost semiperfect. The variety (%) is almost
semiperfect if the category (©%)? is almost semiperfect.

Remark. The definitions above do not cover the case of the category of free modules
over a ring R since there is no canonical embedding of R to a module. However, the
standard definition of semiautomorphisms of a free module has the same meaning.

Let o be an automorphism of a ring, and KX = Kz, ®---® Kz, a free module.
Define ox : KX — KX by the rule ox(u) = A{z1 + -+ + A, where u =
AZ1+- -+ A2y is an element of K X. A pair (0, 0x) is called a semiautomorphism
of KX.

Now, we can consider the category of modules with semimorphisms (semilin-
ear maps). In this category there are inner morphisms. The morphisms of the
category of modules induced by inner morphisms of the category of modules with
semimorphisms are called semiinner morphisms of the category of modules.

Definition 3.4. A variety O is called semiperfect if every automorphism of the
category (©%)° is semiinner.
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Definition 3.5. G-algebras (Hy,h1) and (Ha, ho) are called geometrically semi-
equivalent if there exists an algebra (H, h) such that (Hi, hy) and (H, h) are semi-
isomorphic and (H, h) is geometrically equivalent to (Ha, hs).

Theorem 3.6 ([18]). If the geometric similarity of G-algebras (Hy, h1) and (Ha, hs)
is giwen by a semiinner automorphism, then they are geometrically semiequivalent.

3.3. The main theorem.

Theorem 3.7. 1. The categories of sets and finite sets are perfect.
2. The variety of all groups is perfect.
8. The variety of all semigroups is almost perfect.
4. The variety of all R-modules, where R is a noetherian ring, is semiperfect.
5. The variety of commutative associative algebras with unity element over an
infinite field, is semiperfect [4].
6. The variety of F-groups, where F is a free group, is semiperfect.

Corollary 3.8. 1. Let Hy, Hy be two groups, and let each of them generate the
variety of all groups. The categories of algebraic sets Ko(Hy) and Ko (Hz) are
isomorphic if and only if the groups are geometrically equivalent.

2. An F-group (H,h) is called faithful if h is a monomorphism. Let Hy, Ho
be two faithful F-groups. Then the corresponding categories of algebraic sets are
isomorphic if and only if the F-groups are geometrically semiequivalent.

3. The same is true for modules over a noetherian ring R and for commutative
associative algebras over an infinite field.

Problem 3.9. Describe automorphisms of the categories of free associative and
free Lie algebras.

3.4. Sketch of the proof. 1. The result for the categories of sets and finite sets
is relatively easy and is based on the ideas from [24].

2. We prove that all varieties from the Main Theorem are hereditary auto-
morphic. This implies that we can study only stable automorphisms. It can
be proven that every such automorphism ¢ is a quasiinner automorphism. This
means that there is a function o = o(p) which for every finite X takes a bijection
ox : W(X) — W(X), and such that ¢(v) = oyvoy' for every v: W(X) — W(Y).

3. Let © be the variety of all groups. By Formanek’s theorem [10)], every
automorphism of the semigroup End W(X) , |X| > 1, is an inner automorphism.
Using this result it can be proven that the function o is presented in the form
o = sT, where sx is an automorphism of the group W(X), and 7 is either the
identity function or 7y (a) = a~! for every finite X and every a € W(X). Since 7 is
a central function, it disappears and therefore 6 = §. For every v : W(X) — W(Y),
we have p(v) = syvsy'. Hence, ¢ is an inner automorphism.

4. The case of semigroups. Let F = F(X) be a free semigroup and u =
Tiy Xiy -+ Ty, _, oy, an element of F'. Denote by u the element @ = x;_ x;,_, -+ Ti, @4, -
The map u — @ is a bijective involution on the set F'(X).

Now we can define an automorphism g of the category ©° of free semigroups.
This automorphism does not change objects, and for every v : F(X) — F(Y) we set
p(v)(x) = v(z) for every x € X. Automorphism s is called a mirror automorphism
of the category @°. It is clear that u? = id. The mirror automorphism of the
semigroups End F(X) is defined similarly.
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Using [T5] it can be proved that any automorphism ¢ of the category ©° can be
presented as the product of inner and mirror automorphisms. Obviously, Out ©° is
isomorphic to Zs.

5. Let © be an arbitrary hopfian variety of algebras, and let it be generated
by a cyclic free algebra W = Wy = W (xp). Consider an automorphism ¢ of the
category ©° which does not change objects. Denote by ¢y, the automorphism of
the semigroup End W (z) induced by the automorphism . The following theorem
holds:

Theorem 3.10. If the automorphism @, is trivial, then ¢ is an inner automor-
phism of the category @Y.

6. Let us use the theorem above in the case of modules. Let © be the variety of
modules over a noetherian ring R and ¢ an automorphism which does not change
objects. Take the cyclic module Rzq. It generates the whole variety ©. It can be
proven that ¢ induces an automorphism of the ring R. The corresponding ¢rs,
is a semiinner automorphism of End Rxg, which can be extended to a semiinner
automorphism v of the category ©°. The automorphism ¢!y acts trivially in the
semigroup End(Rxg). Therefore ¢!y is inner. Hence, ¢ is semiinner.

7. The case of associative commutative algebras follows the scheme of item 6.
The same scheme works for the situation of F-groups.

8. About Problem 3.9. Consider a generalization of Theorem 3.10.

Let © be an arbitrary hopfian variety of algebras, and let © be generated by an
algebra W0 = W(X?), where X° is a fixed finite set. Denote by Wy = W (zg) the
cyclic free algebra. Let vy : W° — Wy be a morphism defined by the condition:
vo(x) = g for every z € XV.

Theorem 3.11. If the automorphism ¢ : @0 — OO0 acts trivially on the semigroups
End W° and End Wy and ¢(v9) = vo, then ¢ is an inner automorphism of the
category OY.

9. Let © be the variety of associative or Lie algebras over a field, Fy the free
algebra with one variable, F? the free algebra with two variables. Consider a full
subcategory of ©° which has only two objects Fy and F® and with morphisms
induced by the morphisms of ©0.

The theorem above allows us to reduce the problem on automorphisms of the
category OV to studying the automorphisms of this subcategory.

We note that © is generated by the free algebra with two variables F©.

The notion of a mirror automorphism works in the variety of all associative
algebras © as well.
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