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a b s t r a c t

We obtain the following characterization of the solvable radicalR(G) of any finite group G:
R(G) coincides with the collection of all g ∈ G such that for any 3 elements a1, a2, a3 ∈ G
the subgroup generated by the elements g, aiga−1

i , i = 1, 2, 3, is solvable. In particular,
this means that a finite group G is solvable if and only if in each conjugacy class of G every
4 elements generate a solvable subgroup. The latter result also follows from a theorem of
P. Flavell on {2, 3}′-elements in the solvable radical of a finite group (which does not use
the classification of finite simple groups).

© 2008 Elsevier B.V. All rights reserved.

1. Introduction 1

1.1. Main results 2

Our goal is to prove

Q1

3

Theorem 1.1. The solvable radical of a finite group G coincides with the collection of all g ∈ G satisfying the property: for any 3 4

elements a, b, c ∈ G the subgroup generated by the conjugates g, aga−1, bgb−1, cgc−1 is solvable. 5

This statement may be viewed as a theorem of Baer–Suzuki type with respect to the solvability property, in light of 6

Theorem 1.2 (Baer–Suzuki). The nilpotent radical of a finite group G coincides with the collection of all g ∈ G satisfying the 7

following property: for any a ∈ G the subgroup generated by g, aga−1 is nilpotent. 8

Theorem 1.1 implies 9

Corollary 1.3. A finite group G is solvable if and only if in each conjugacy class of G every four elements generate a solvable 10

subgroup. 11

Remark 1.4. As pointed out by the referee, in [13, Cor. E] Flavell established the assertion of Theorem 1.1 under the 12

additional assumption that g is a {2, 3}′-element, i.e. he proved that a {2, 3}′ element g ∈ G belongs to the solvable radical of 13

G if and only if every four conjugates of g generate a solvable group. In contrast with our approach, his result does not rely on 14

the classification of finite simple groups. Flavell’s theorem together with Burnside’s pαqβ-theorem also implies Corollary 1.3 15

which can thus be proven not using the CFSG. 16

Remark 1.5. The characterization of the solvable radical given in Theorem 1.1 is the best possible: in the symmetric groups 17

∧
Sn (n ≥ 5) any triple of transpositions generates a solvable subgroup. 18
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Definition 1.6. Let k ≥ 2 be an integer. We say that g ∈ G is a k-radical element if for any a1, . . . , ak ∈ G the subgroup1

H = 〈a1ga−1
1 , . . . , akga−1

k 〉 is solvable.2

Recall that a finite groupG is called almost simple if it contains a unique normal simple group L such that L ≤ G ≤ Aut (L).3

The main step in our proof of Theorem 1.1 is4

Theorem 1.7. Let G be a finite almost simple group. Then G does not contain nontrivial 4-radical elements.5

The statement of Theorem 1.1 remains true for arbitrary linear groups.6

Theorem 1.8. The solvable radical of a linear group G coincides with the collection of all g ∈ G satisfying the following property:7

for any 3 elements a, b, c ∈ G the subgroup generated by the conjugates g, aga−1, bgb−1, cgc−1 is solvable.8

Proof. The passage from Theorem 1.1 to Theorem 1.8 is quite standard, cf. [22]. For the sake of completeness we give it9

below.10

First of all, every element of the radical R(G) is a k-radical element for any k since R(G) is a characteristic subgroup of G.11

Weshall prove the opposite inclusion, i.e. the set S(G) of all 4-radical elements is contained inR(G). LetH be the subgroup12

generated by S(G). It is enough to show that H is solvable. Take a finitely generated subgroup Hn = 〈a1, . . . , an〉, where13

ai ∈ S(G), i = 1, . . . , n. It is well known that any finitely generated subgroup of a linear group is residually finite [31].14

Therefore,Hn can be embedded into a
∧
Cartesian productD of finite groupsGj, each of those is generated by 4-radical elements15

and is thus solvable by Theorem 1.1. Moreover, the solvability class of Gj is bounded by the rank of the linear group G. Since16

the class of solvable groups of fixed solvability class is closed under
∧
Cartesian products, we conclude thatD is solvable, hence17

so isHn.We nowobserve that every finitely generated subgroup ofH lies in someHn and is thus solvable. Thismeans thatH is18

locally solvable. It remains to apply a theoremof Zassenhaus [41] saying that any locally solvable linear group is solvable. �19

Our main results can be restated is follows.20

Definition 1.9. Let G be a finite nonsolvable group, and let x ∈ G \R(G). We define βG(x) as the smallest integer ` such that21

the conjugacy class of x contains ` elements generating a nonsolvable subgroup of G.22

We shall often drop the subscript G.23

Definition 1.10. Let G be a finite nonsolvable group. We define24

BS(G) := max
x∈G\R(G)

β(x).25

We call this number the Baer–Suzuki width of G.26

With this terminology, our Theorem 1.7 says that the Baer–Suzuki width of any finite almost simple group is at most 4.27

Definition 1.9 should be compared with28

Definition 1.11 ([25]). Let G be a finite almost simple group, with L = F∗(G) the unique minimal normal subgroup of G, and29

let x ∈ G be a
∧
non-identity element. Then α(x) is defined as the minimal number of L-conjugates of x which generate the30

group 〈L, x〉.31

Clearly, if G is a finite almost simple group and 1 6= x ∈ G, we have β(x) ≤ α(x).32

Another obvious remark (which will, however, be important for induction arguments) is that if H is a subgroup of G and33

x ∈ H , then βG(x) ≤ βH(x).34

1.2. Historical perspective, analogues and generalizations35

The whole story goes back to a pioneering paper by Baer [4] whose influence on the present article is two-fold. First,36

basing on a theorem of Zorn [42] characterizing the class of finite nilpotent groups in terms of the Engel identities, Baer37

obtained a description of the nilpotent radical N(G) of a finite group G as the collection of the Engel elements of G. This38

description gave rise to an attempt to use recent characterizations of finite solvable groups in terms of explicit identities in39

two variables [6–8] for getting a similar explicit description of the solvable radical R(G) [5, Conjecture 2.12]. On the other40

hand, the same theoremof Baer yielded another description of the nilpotent radicalwhich, for convenience,we reformulated41

above as Theorem 1.2. This assertion admits many equivalent reformulations some of which are commonly known as the42

Baer–Suzuki theorem (a few years after the paper [4] appeared, Suzuki discovered a new proof of this result [38] which43

played an important role in structure theory of finite groups; a very short proof was later found in [1]). Numerous analogues44

and generalizations of this result are known, both in the context of finite [24] and infinite
∧
[2,36,32] groups. Although a direct45

analogue of this statement for finite solvable groups cannot hold (say, because two involutions generate a dihedral group46

which is solvable), Flavell proved that there is an absolute constant kwith the property: R(G) coincides with the collection47

of y ∈ G such that any k conjugates of y generate a solvable subgroup; moreover, one can choose k = 10 [12]. (Note that his48

Please cite this article in press as: N. Gordeev, et al., A description of Baer–Suzuki type of the solvable radical of a finite group, Journal of Pure and Applied
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proofs do not use the classification of finite simple groups). In
∧
[17,18] we improved on Flavell’s theorem, proving that one 1

can choose k = 8, and stated a conjecture that one can choose k = 4 (which is certainly sharp). Our proof went through yet 2

another description of R(G) in terms of commutators and heavily relied upon the classification of finite simple groups (see 3

the above cited papers for details). In the present paper we prove this conjecture (Theorem 1.1).1 4

Let us note another result which is more close to the original Baer–Suzuki theorem. Restrict ourselves to considering 5

elements of prime order greater than 3. For such an element x one can prove a stronger statement: 6

Theorem 1.12. Let G be a finite group. An element x of prime order p > 3 belongs to R(G) if and only if for any y ∈ G the 7

subgroup
〈
x, yxy−1

〉
is solvable. 8

As above, it is enough to prove that for any element x of prime order p > 3 in an almost simple groupGwehaveβ(x) = 2. 9

The proof is given in [19]. 10

Let us note here another parallel between the nilpotent and the solvable cases. Namely, there is yet another description 11

of R(G) [22] in the style of a theorem of Thompson [39]: R(G) coincides with the collection of all y ∈ G such that for every 12

x ∈ G the subgroup 〈x, y〉 is solvable. In such a form this statement does not admit a direct analogue in the nilpotent case. 13

However, one can reformulate this description as follows. For any x, y ∈ G denote by
〈
y〈x〉

〉
the minimal normal subgroup 14

in 〈x, y〉 containing y. Then R(G) can be described as the collection of y ∈ G such that for every x ∈ G the subgroup
〈
y〈x〉

〉
is 15

solvable. In this form, a direct analogue holds in the nilpotent case: 16

Proposition 1.13. Let G be a finite group. The nilpotent radical N(G) of G coincides with the collection of all y ∈ G such that for 17

any x ∈ G the subgroup
〈
y〈x〉

〉
is nilpotent. 18

Proof. Let y ∈ N(G). Take an arbitrary x ∈ G and consider H = N(G) ∩ 〈x, y〉. We have H ≤ N(G), so H is nilpotent. On the 19

other hand, H is a normal subgroup in 〈x, y〉 and y ∈ H . Since
〈
y〈x〉

〉
is the minimal normal subgroup containing y, we have 20〈

y〈x〉
〉
≤ H . Since H is nilpotent,

〈
y〈x〉

〉
is nilpotent too. 21

Conversely, suppose that y has the property that the subgroup
〈
y〈x〉

〉
is nilpotent for any x ∈ G. Evidently, for any x ∈ G 22

the commutator [x, y] belongs to
〈
y〈x〉

〉
. Since

〈
y〈x〉

〉
is nilpotent, the Engel series [[x, y], y, . . . , y] terminates at 1. Thus y is an 23

Engel element and therefore, according to the above mentioned theorem of Baer, belongs to N(G). � 24

The Baer–Suzuki theorem allows one to improve this characterization in the best possible way: instead of considering 25

the subgroup
〈
y〈x〉

〉
, it is enough to consider the subgroup 〈y, yx〉 because its nilpotency for any x ∈ G already guarantees 26

y ∈ N(G). 27

The following result of Flavell [14] lies in between the nilpotent and solvable cases and is of the same flavour: 28

Theorem 1.14 (Flavell). Let x be an element of the finite group G. Then
〈
xG

〉
is solvable of Fitting height at most 2 if and only if 29

the subgroup
〈
x〈y〉

〉
has this property for all y ∈ G. 30

This theorem provides a beautiful example of a class of groups where local and global properties coincide (see [23, 31

Def. 5.4]). 32

In light of the approach in [23], we dare propose a further generalization, in spirit of problems of Burnside type. 33

Recall that a class of groups X is called a radical class if in every group G there is a maximal normal subgroup X(G) 34

belonging to X. One can impose various conditions on X which guarantee the existence of X(G). For example, a class X of 35

finite groups closed under homomorphic images, normal subgroups and extensions is a radical class inside the class of all 36

finite groups. 37

Definition 1.15. Let X be a radical class of finite groups. The Baer–Suzuki width of X is defined as the smallest integer 38

n := BS(X) with the property: for every finite group G ∈ X, the X-radical X(G) coincides with the set of elements g ∈ G 39

such that for every x1, . . . , xn ∈ G the subgroup 〈gx1 , . . . , gxn〉 belongs to X. If such an n does not exist, we set BS(X) := ∞. 40

We have BS(N ) = 2 for N the class of finite nilpotent groups (Baer–Suzuki) and BS(S) = 4 for S the class of finite 41

solvable groups (Theorem 1.1). 42

Problem 1.16. Study other radical classes of finite groups for which BS(X) < ∞. 43

1.3. Notation and conventions 44

Whenever possible, wemaintain the notation of [18] whichmainly follows [37,9,10]. In particular, we adopt the notation 45

of [10] for twisted forms of Chevalley groups (so unitary groups are denoted by PSUn(q2) and not by PSUn(q)). However,

1 R. Guralnick informed us that this statement, as well as Theorem 1.12, was independently proved in his unpublished joint work with P. Flavell and
S. Guest [15]. We shall present the proof of Theorem 1.12 in [19].
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the classification of outer automorphisms follows [21, p. 60], [20, p. 78]. In order to avoid misunderstandings we recall1

this classification. Let us call the subdivision of automorphisms of Chevalley groups into inner, diagonal, field, and graph2

automorphisms in the sense of [37], [9], the usual one.3

In the classification of finite simple groups a slightly different subdivision of automorphisms is used. Let G be an adjoint4

Chevalley group, untwisted or twisted (the cases where G is a Suzuki or a Ree group are treated separately). Denote by5

Aut (G) the group of automorphisms of G. Then ([21, Definition 2.5.13]):6

1. Inner-diagonal automorphisms coincide with usual inner-diagonal automorphisms.7

2. Field automorphisms are as follows:8

2.1. If G is untwisted, then a ‘‘field’’ automorphism is an Aut (G)-conjugate of a usual field automorphism.9

2.2. If G=
d G is a twisted group, then a ‘‘field’’ automorphism is an Aut (G)-conjugate of a usual field automorphism of10

order relatively prime to d.11

2.3. If G is a Suzuki or a Ree group, then a ‘‘field’’ automorphism is an Aut (G)-conjugate of a usual field automorphism.12

3. Graph automorphisms are as follows:13

3.1. If G is untwisted, then a ‘‘graph’’ automorphism is an Aut (G)-conjugate of a graph-inner-diagonal usual14

automorphism with nontrivial graph part, except for the cases B2, F4, G2 with the characteristics of the ground field15

p = 2, 2, 3, respectively, in which cases there are no ‘‘graph’’ automorphisms.16

3.2. If G=
d G is a twisted group, then a ‘‘graph’’ automorphism is an element of Aut (G) whose image modulo the group17

of inner-diagonal automorphisms has order divisible by d.18

3.3. If G is a Suzuki or a Ree group, then there are no graph automorphisms.19

4. Graph-field automorphisms are as follows:20

4.1. If G is untwisted, then a ‘‘graph-field automorphism’’ is an Aut (G)-conjugate of a usual graph-field automorphism21

where both components are nontrivial, except for the cases B2, F4, G2 with the characteristics of the ground field p = 2, 2, 3,22

respectively, in which cases all conjugates of usual graph-field automorphisms with nontrivial graph part are considered as23

‘‘graph-field’’ automorphisms.24

4.2. If G=
d G is a twisted group, then there are no graph-field automorphisms.25

4.3. If G is a Suzuki or a Ree group, then there are no graph-field automorphisms.26

In particular, in this sense a ‘‘graph’’ automorphism may be a composition of an automorphism of the Dynkin diagram27

with an inner-diagonal automorphism, or (in the case of a twisted form dL of a simple group L) a field automorphism of order28

divisible by d.29

We also use some other conventions from [21, pp. 410–413] without special notice.30

2. Strategy of proof31

Actually, the proof grounds on a further refinement of methods and results from [18,25].32

We first reduce Theorem 1.1 to Theorem 1.7, exactly in the same way as in [18, Section 2].33

Although this reduction is fairly standard, we sketch its main steps below. Let S(G) be the set of all 4-radical elements of34

the group G. Obviously, R(G) lies in S(G) and we have to prove the opposite inclusion. We can assume that G is semisimple35

(i.e.
∧
R(G) = 1), and we shall prove that G does not contain nontrivial 4-radical elements. Assume the contrary and consider36

a minimal counterexample, i.e. a semisimple group of smallest order with S(G) 6= {1}.37

Recall that any finite semisimple group G contains a unique maximal normal centreless completely reducible (CR)38

subgroup (by definition, CR means a direct product of finite non-abelian simple groups) called the CR-radical of G (see [35,39

3.3.16]). We call a product of the isomorphic factors in the decomposition of the CR-radical an isotypic component of G.40

Denote the CR-radical of G by V . This is a characteristic subgroup of G.41

Since G is minimal, it has only one isotypic component. Any g ∈ G acts as an automorphism g̃ on V = H1 × · · · × Hn,42

where all Hi, 1 ≤ i ≤ n, are isomorphic
∧
non-abelian simple groups.43

Suppose that g 6= 1 is a 4-radical element. The next step shows that g cannot act on V as a non-identity element of the44

symmetric group Sn.45

Denote by σ the element of Sn corresponding to g̃ .46

By definition, the subgroup Γ = 〈g, xigx−1
i 〉, i = 1, . . . , 4, is solvable for any xi ∈ G. Evidently, the subgroup47

〈[g, x1], [g, x2]〉 lies in Γ .48

Suppose σ 6= 1, and so σ(k) 6= k for some k ≤ n. Take x̄1 and x̄2 of the form x̄i = (1, . . . , x(k)
i , . . . , 1), where x(k)

i 6= 1 lies49

in
∧
Hk (i = 1, 2). Then we may assume (x̄i)σ = (x(k)

i , 1, . . . , 1), and so [g, x̄i] = (x̄i)σ x̄−1
i = (x(k)

i , 1, . . . , (x(k)
i )−1, . . . , 1).50

As Hk is simple, it is generated by two elements, say a and b. On setting x(k)
1 = a, x(k)

2 = b, we conclude that the group51

generated by [g, x̄1] and [g, x̄2] cannot be solvable because the first components of these elements, a and b, generate the52

simple group Hk. Contradiction with solvability of Γ .53

So we can assume that a nontrivial 4-radical element g ∈ G acts as an automorphism of a simple group H . Then we54

consider the extension of the group H with the automorphism g̃ . Denote this almost simple group by G1. By Theorem 1.7,55

G1 contains no nontrivial 4-radical elements. Contradiction with the choice of g̃ .56

Let G be an almost simple group, L ≤ G ≤ Aut (L). If G = L is simple, Theorem 1.7 is an immediate consequence of57

[18, Theorem 1.15]. Indeed, this Theorem states that for any x ∈ L there exist 3 elements a, b, c such that the commutators58
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[x, a], [x, b], [x, c] generate a nonsolvable subgroup. Hence the subgroup
〈
x, xa, xb, xc

〉
is nonsolvable too. Thus we only have 1

to consider outer automorphisms x of L. The case where L is an alternating group is straightforward (Section 3). If L is a group 2

of Lie type, we consider the separate cases where x is an inner-diagonal (Section 5), field (Section 6), graph, or graph-field 3

automorphism (Section 7). The first casewas treated in [18] (see the discussion at the end of Section 4 of this paper for groups 4

of small Lie rank), so we only need to complete the induction arguments. Field, graph, and graph-field automorphisms are 5

treated using their classification. Herewemainly follow the approach of [25], as we dowhen considering the groups of small 6

Lie rank as the base of induction in Section 4. The remaining case of sporadic groups is treated in Section 8. 7

3. Alternating groups 8

Theorem 3.1. Let L = An be the alternating group on n letters, n ≥ 5, and let L ≤ G ≤ Aut (L). Then BS(G) ≤ 4. 9

Proof. We first exclude the group G = A6 since this is the only non-abelian simple alternating group for which the group 10

of outer automorphisms Out(G) is equal not to Z2 but to Z2 × Z2. In the notation of [11] we have A6 ≤ G ≤ Aut (G) for: 11

G = S6 = A6 : 2a, G = PGL2(9) = A6 : 2b, G = M10 = A6 : 2c , and G = Aut (A6) = A6.22, where a, b, c are the 12

involutions in Z2 × Z2. In all these cases the statement of the theorem is checked by a direct MAGMA computation. So we 13

assume n 6= 6, and G is either An or Aut (An) = Sn. For G = An see [18]. If G = Sn and x is an automorphism of prime 14

order, we may assume that x is an involution. If x is a transposition, we have β(x) = 4, so the estimate in the statement 15

of the theorem is sharp. For an arbitrary involution we proceed by induction. For n ≤ 6 we establish the result by a direct 16

computation. Let now n > 6. If x fixes at least one letter, we conclude by induction. If not, n = 2m is even and x is conjugate 17

to y = (12)(34)(56) . . . (2m−1, 2m). Thenwe can find a1, . . . , a4, lying in the subgroup S6 < Sn fixing the last n−6 letters, 18

such that the group generated by aiza−1
i , i = 1, . . . 4 (where z = (12)(34)(56)), is not solvable. Hence the group generated 19

by aiya−1
i , i = 1, . . . 4, is nonsolvable too. � 20

4. Groups of Lie type of small rank 21

Theorem 4.1. Let G be an almost simple group of Lie type of Lie rank at most 2. Then BS(G) ≤ 4. 22

Proof. For x ∈ L, the result immediately follows from [18, Theorem1.11], sowe only have to consider outer automorphisms. 23

We follow very closely the arguments of [25]. Since we do not pretend to make the estimate of BS(G) sharp, in our case-by- 24

case analysis we only have to consider those x for which the estimate α(x) ≤ 4 is not established in [25]. 25

Remark 4.2. For all almost simple groups of Lie type of Lie rank at most 2 over the fields with 2 or 3 elements the statement 26

of Theorem 4.1 is checked by explicit MAGMA computations. 27

As usual, we may and shall assume that x is an element of prime order. 28

Groups of Lie rank 1. 29

In the case L = PSL2(q), q ≥ 4, [25, Lemma 3.1] shows that it is enough to consider a field automorphism x of order 2 of 30

PSL2(9). In that case we have 〈L, x〉 = S6, and 4 conjugates of x generate S5, so β(x) = 4. If L = PSU3(q2), q > 2, the result 31

follows from [25, Lemma 3.3]. If L is a Suzuki or a Ree group, we have α(x) ≤ 3 by [25, Prop. 5.8]. 32

Groups of Lie rank 2. 33

The case L = PSL3(q) is established in [25, Lemma 3.2]. 34

Let now L = PSp4(q). Although [25, Theorem 4.1(f)] does not provide the needed estimate, we can use the arguments 35

mutatis mutandis. The cases q = 2 and q = 3 are treated by a direct computation, so assume q > 3. 36

Let x be a field automorphism. Then x normalizes SL2(q). So, x is a field automorphism of SL2(q) and by [25, Lemma 3.1] 37

we have α(x) ≤ 4. 38

If x is an inner-diagonal automorphism, the proof literally follows [18] for the group 〈L, x〉, see also Section 5. 39

If x is an involutory graph-field automorphism, then α(x) ≤ 4 ([25]) and we are done. 40

If L = G2(q), [25, Theorem 5.1] gives only α(x) ≤ 5, so we have to analyze the arguments. The case q = 2 is treated 41

directly, so assume q > 2. If x is a field automorphism, then again x normalizes SL2(q) and we are done. 42

If x is an involutory graph automorphism (which exists if q = 3a with a odd), then α(x) ≤ 4 (ibid.). 43

Let us now go over to twisted groups. 44

Let L = PSU4(q2). In that case [25, Lemma 3.4] gives the required estimate α(x) ≤ 4 for all x except for an involutory 45

graph automorphism and a transvection for q = 2. The latter case is treated by a direct computation, so suppose we are in 46

the first case. 47

Let first q be odd. Since the case q = 3 can be treated by a direct computation, assume q > 3. According to the 48

classification of graph automorphisms (see [21, Table 4.5.1]), either x normalizes (and does not centralize) SU3(q2) (and 49

we can use the above considerations for the groups of Lie rank 1), or CL(x) = PSp4(q). In the latter case the argument of [25] 50

yieldsα(x) ≤ 6, sowe have to reconsider it. One can choose a conjugate of x acting on S = SU2(q2)◦SU2(q2) by interchanging 51

the components. Let a, b denote a pair of generators of the first copy of SU2(q2). Then the subgroup in 〈S, x〉 generated by 52
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two commutators [x, a] and [x, b] contains the first copy of SU2(q2) and is thus nonsolvable. Hence the subgroup generated1

by x, axa−1, bxb−1 is nonsolvable too.2

If now q is even, then there are two classes of such automorphisms. In the first case x normalizes (but does not centralize)3

SU2(q2), and we can use the result for groups of Lie rank 1 (because q > 2). In the second case, one can find a conjugate of x4

acting on S by interchanging the components, and the above argument works because q > 2.5

The case G = PSU5(q2) will be considered in Section 7, along with the groups of higher rank.6

It remains to consider 2F4 and 3D4. In the first case, let us look at the arguments in the proof of [25, Theorem 5.1]. Let7

first L=
2 F4(q2)′. If q = 2, the estimate α(x) ≤ 4 is given in [25, Prop. 5.5] (and may be confirmed by a straightforward8

computation), so assume q > 2. Since x is a field automorphism, it normalizes a parabolic subgroup P . We then arrive at the9

rank 1 case and can proceed as in Section 6 (or as in the beginning of the proof of [18, Theorem 7.1]).10

Let now L=
3 D4(q3). A convenient account of its properties is presented in [16, Section 3], see also [20, 9-1], [26]. The11

group L=
3 D4(q3) possesses field and graph automorphisms. Since a field automorphism acts nontrivially on SL2(q3), we12

have to consider only graph automorphisms. There are two classes of such automorphisms. Denote their representatives13

by g1 and g2, respectively [26]. For the first one, we have CL(g1) ∼= G2(q), and there is a subgroup L1 = SL2(q3) of L14

on which g1 acts as a field automorphism [29, Lemma 5.3], so the result follows from Theorem 4.1. In the second case,15

CL(g2) = PGL±

3 (q) [21, Table 4.7.3A], if p 6= 3, q ≡ ±1(mod 3). One can choose g2 in the form g2 = tg1 where t is (the inner16

automorphism corresponding to) an element of order 3 lying in CT (g1), T standing for a maximal torus in L [20, p. 104].17

According to [16, Lemma 3.11(3)], we have t ∈ L1 = SL2(q3), so g2 also normalizes and does not centralize L1, and we are18

done by Theorem 4.1. If p = 3, then g2 normalizes (and does not centralizes) a subgroup of type A2. This case is considered19

above. �20

5. Inner-diagonal automorphisms21

We shall use the same approach as in [18].22

Let σ be a diagonal automorphism corresponding to the Borel subgroup B = HU where H is a maximal split torus of G23

such that σ(h) = h for every h ∈ H . Further, let H̃ = 〈σ ,H〉. Now replace the simple groups G with the group G̃ = 〈σ ,G〉.24

Note that the group G̃ has the ‘‘Borel subgroup’’ B̃ = H̃U with the similar properties as for the group G (for instance, the25

Bruhat decomposition).26

Let x be an inner-diagonal automorphism of G. Then we may regard x as an element of G̃. One can easily check that the27

arguments of [18] used in the case of an inner automorphism of a simple group also hold for the case of the group G̃. Thus,28

we get our statement in the same way as in Theorem 1.11 of [18].29

6. Field automorphisms30

Let |q| > 3. Since x evidently normalizes but does not centralize a rank 2 group, the result follows from Theorem 4.1.31

Let |q| = 2 or |q| = 3. We choose an appropriate rank 2 or rank 1 group normalized by x. The result follows from explicit32

MAGMA computations.33

7. Graph and graph-field automorphisms34

Theorem 7.1. Let L be a finite simple group of Lie type, and let x be a graph or graph-field automorphism of L of prime order.35

Then β(x) ≤ 4.36

Proof. As in Section 4, we closely follow [25].37

7.1. Linear groups38

Let L = PSLn(q), n ≥ 4. The graph and graph-field automorphisms of prime order were classified in [3, Section 19] and39

[28, 3.7]. As in [25, p. 535], we shall use the matrix description given in [29, pp. 285–286]. They are all of order 2. We denote40

by τ themap sending amatrix to its inverse-transpose. If n is odd, there is only one conjugacy class of graph automorphisms41

represented by τ . If n is even and q is odd, there are 3 classes represented by τ J , τ J+, and τ J−, where42

J =



0 −1
1 0

.
.

.
0 −1
1 0

 , J+ =



0 1
1 0

.
.

.
0 1
1 0

 ,43
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J− =



0 −1
1 0

.
.

.
0 −1
1 0

µ
1


(where − µ/2 is non-square). 1

Their centralizers are of type PSpn(q), PSO+
n (q), and PSO−

n (q), respectively [21, Table 4.5.1]. If n and q are even, there are two 2

classes represented by τ J and τ Ju, where 3

u =


1 1
0 1

.
.

.
1

 . 4

Their centralizers are of type PSpn(q) and CPSpn(q)(t) (where t stands for a transvection in PSpn(q)), respectively [3, (19.9)]. If 5

x is a graph-field automorphism, then q = q20 is a square, and x can be represented as x = τφ whereφ is a field involution [29, 6

loc. cit.]. 7

In all cases, x leaves invariant the subgroup fixing the decomposition V = A ⊕ B where A has codimension 1 or 2 in V 8

(cf. [25, p. 535]), i.e. SLn−1(q) or SLn−2(q) (for the graph automorphisms) or SLn−1(q0) (for the graph-field automorphism), 9

therefore we can use induction. Indeed, for q > 3 the result immediately follows from Theorem 4.1, and for q = 2, 3 from 10

straightforward computations with the groups PSL4(2), PSL5(2), PSL3(3) and PSL4(3). 11

7.2. Unitary groups 12

Let L = PSUn(q2), n ≥ 5. In this case, there are no graph-field automorphisms. As in the previous subsection, we use 13

the classification of graph automorphisms of prime order [3, Section 19], [28, 3.7]. If n is odd, such an automorphism is 14

unique (up to conjugation), and we can represent it by a field involution. Such an involution normalizes SUn−1(q2) (cf. [29, 15

p. 288], [25, p. 536]), and we proceed by induction or use Section 6. Let now n = 2m be even. If q is odd, there are 3 16

classes of graph automorphisms, with centralizers of type PSpn(q), PSO+
n (q), and PSO−

n (q), respectively [21, Table 4.5.1]. We 17

analyze these cases following [25, pp. 536–537]. In the first case, arguing as in the proof of Theorem 4.1, we can choose 18

a conjugate of x acting on S = SUm(q2) ◦ SUm(q2) by interchanging the components. Choose a pair of elements (c, d) 19

generating the first component. Then the subgroup generated in 〈S, x〉 by two commutators [x, c], [x, d] contains (the first 20

copy of) SUm(q) and thus cannot be solvable (because m ≥ 3). Therefore, the group generated by x, cxc−1 and dxd−1 is 21

nonsolvable too, andβ(x) = 3. In the remaining two cases, x normalizes (but does not centralize) SUn−1(q2), andwe proceed 22

by induction. If q is even, there are two conjugacy classes of graph automorphisms, one of which normalizes but does not 23

centralize SUn−1(q2), and the other acts on S = SUm(q2) ◦ SUm(q2) by interchanging the components, so we argue as in the 24

odd case. 25

(An alternative induction argument uses the case analysis of [29, Lemma 3.14].) 26

7.3. Symplectic groups 27

If n > 2, then there are no graph or graph-field automorphisms with the single exception L = PSp4(q). This group was 28

already treated in Theorem 4.1. 29

7.4. Orthogonal groups 30

In this case a graph automorphism of order 2 is conjugate to an inner-diagonal automorphism [29, p. 287], [27, p. 399]. 31

More graph automorphisms only exist for L = PSO+

8 (q). Here x is of order 3, and there are two possibilities [25, Lemma 32

3.15], [25, p. 541]: either x normalizes but does not centralize G2(q) (and we can apply Theorem 4.1), or x is conjugate to 33

the standard triality. In the latter case it is shown in [25, loc. cit.] that there exists a conjugate of G2(q) normalized but not 34

centralized by x, and we are done. 35

Let now x be a graph-field automorphism, so L = PSO+
n (q), q = q20. If x is of order 2, then there is a unique class of such 36

an involution which normalizes but does not centralize On−1(q0) [25, p. 541]. If x is of order 3, then n = 4, and we proceed 37

exactly as for graph automorphisms. 38
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7.5. Exceptional groups1

Having Theorem 4.1 at our disposal, wemay assume the Lie rank of L is greater than 2. If L = F4(q), then there is a unique2

(up to a conjugation) automorphism x of order 2, and in this case q = 2a, a is odd, CL(x) =
2 F4(q2). This x is conjugate to3

some element acting as an inner involution of 2F4(q2) [25, Prop. 5.5]. We finish by applying Theorem 4.1.4

If L = E6(q) or 2E6(q), then x normalizes but does not centralize some subgroup of type F4(q) [25, Prop. 5.2, 5.3], and we5

are reduced to the above considered case.6

For all other groups, there are no graph or graph-field automorphisms.7

Theorem 7.1 is proved. �8

Remark 7.2. In the cases of field and graph-field automorphisms one can produce an alternative induction proof based on9

a recent theorem of Nikolov [34] which implies that any such automorphism normalizes a quasisimple subgroup of type An10

defined over some subfield of the ground field.11

8. Sporadic groups12

Since the simple groups were treated in [18], we only have to consider the almost simple sporadic groups. Of 26 sporadic13

groups, only 12 have the nontrivial automorphism group (of order 2): M12, M22, HS, J2, McL, Suz, He, HN , Fi22, Fi′24, O
′N , J3.14

Those having only one conjugacy class of outer involutions x, are very easy to treat: indeed, a simple look at the lists of15

maximal subgroups of L and G = Aut (L) = L : 2 gives an almost simple subgroup H < L normalized but not centralized16

by x. There are 7 such cases: 1) L = M12, H = PSL2(11); 2) L = He, H = PSp4(4); 3) L = J2, H = PSU3(32); 4) L = McL,17

H = PSU3(52); 5) L = HN , H = A12; 6) L = O′N , H = A6; 7) L = J3, H = PSL2(16) : 2.18

In the cases M22, HS and Suz, where there are two conjugacy classes of outer involutions, we use [25, Proof of Lemma19

7.6]: for any such involution x it is proved that α(x) ≤ 4. Hence β(x) ≤ 4, as needed.20

The group G = Fi24 also has two nonconjugate outer involutions (with classes 2C and 2D in the notation of [11]). An21

involution from the class 2C is a 3-transposition and thus belongs to Fi23 (and also to PSO7(3)) whereas a representative of22

2D belongs to PSO+

8 (3) [30, Table 10.5], and we are done.23

It remains to consider G = Fi22 : 2. This group has three conjugacy classes of outer involutions (2D, 2E, 2F in the24

notation of [11]). Consider a subgroup H = G2(3) in Fi22. According to [40, Table 4], there are 3 conjugacy classes of such25

subgroups, one normalized (but not centralized) by an outer automorphism and two others interchanged. Therefore, for an26

outer automorphism normalizing H , the result follows from Theorem 4.1. According to [33], given one outer involution x,27

each of two others can be obtained from x by multiplying by an inner involution t commuting with it, so each of two other28

outer involutions also normalizes but does not centralize a subgroup of type G2(3) (note that G2(3) is not contained in the29

centralizer of any outer involution), and we are done.30

Acknowledgements31

Gordeevwas supported in part by the INTAS grantN-05-1000008-8118 andRFBR grantN-08-01-00756-A. Kunyavskiı̆and32

Plotkin were supported in part by the Ministry of Absorption (Israel), the Israel Academy of Sciences grant 1178/06, and the33

Minerva Foundation through the EmmyNoether Research Institute ofMathematics. A substantial part of this workwas done34

during the visit of Kunyavskiı̆and Plotkin toMPIM (Bonn) in 2007 and discussed by all the
∧
coauthors during the international35

conference hosted by the Heinrich-Heine-Universität (Düsseldorf). The support of these institutions is highly appreciated.36

We are very grateful to R.M. Guralnick and N.A. Vavilov for useful discussions and correspondence. We also express our37

thanks to the anonymous referee for very valuable comments.38

References39

[1] J. Alperin, R. Lyons, On conjugacy classes of p-elements, J. Algebra 19 (1971) 536–537.40

[2] M. Aschbacher, The 27-dimensional module for E6 , IV, J. Algebra 131 (1990) 23–39.41

[3] M. Aschbacher, G.M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976) 1–91.42

[4] R. Baer, Engelsche Elemente Noetherscher Gruppen, Math. Ann. 133 (1957) 256–270.43

[5] T. Bandman, M. Borovoi, F. Grunewald, B. Kunyavskiı̆, E. Plotkin, Engel-like characterization of radicals in finite dimensional Lie algebras and finite44

groups, Manuscripta Math. 119 (2006) 365–381.45

[6] T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavskiı̆, G. Pfister, E. Plotkin, Two-variable identities for finite solvable groups, C.R. Acad. Sci. Paris, Ser.46

I 337 (2003) 581–586.47

[7] T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavskiı̆, G. Pfister, E. Plotkin, Identities for finite solvable groups and equations in finite simple groups,48

Compos. Math. 142 (2006) 734–764.49

[8] J.N. Bray, J.S. Wilson, R.A. Wilson, A characterization of finite soluble groups by laws in two variables, Bull. London Math. Soc. 37 (2005) 179–186.50

[9] R.W. Carter, Simple Groups of Lie Type, John Wiley & Sons, London etc., 1972.51

[10] R.W. Carter, Finite Groups of Lie Type. Conjugacy Classes and Complex Characters, John Wiley & Sons, Chichester etc., 1985.52

[11] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.53

[12] P. Flavell, A weak soluble analogue of the Baer–Suzuki Theorem, preprint, available on the homepage of the author at, http://web.mat.bham.ac.uk/P.54

J.Flavell/research/preprints.55

[13] P. Flavell, On the Fitting height of a soluble group that is generated by a conjugacy class, J. London Math. Soc. (2) 66 (2002) 101–113.56

[14] P. Flavell, A characterisation of F2(G), J. Algebra 255 (2002) 271–287.57

Please cite this article in press as: N. Gordeev, et al., A description of Baer–Suzuki type of the solvable radical of a finite group, Journal of Pure and Applied
Algebra (2008), doi:10.1016/j.jpaa.2008.06.006

http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints
http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints


UN
CO

RR
EC

TE
D
PR

OO
F

JPAA: 3814

ARTICLE  IN  PRESS
N. Gordeev et al. / Journal of Pure and Applied Algebra xx (xxxx) xxx–xxx 9

[15] P. Flavell, S. Guest, R. Guralnick, A solvable version of the Baer-Suzuki theorem (in preparation).Q2 1

[16] D. Frohardt, K. Magaard, Fixed point ratios in exceptional groups of rank at most two, Comm. Algebra 30 (2002) 571–602. 2

[17] N. Gordeev, F. Grunewald, B. Kunyavskiı̆, E. Plotkin, On the number of conjugates defining the solvable radical of a finite group, C. R. Acad. Sci. Paris, 3

Sér. I 343 (2006) 387–392. 4

[18] N. Gordeev, F. Grunewald, B. Kunyavskiı̆, E. Plotkin, A commutator description of the solvable radical of a finite group, Groups, Geom. Dyn. 2 (2008) 5

85–120. 6

[19] N. Gordeev, F. Grunewald, B. Kunyavskiı̆, E. Plotkin, A theorem of Baer–Suzuki for elements of large order in the solvable radical of a finite group (in 7

preparation). 8

[20] D. Gorenstein, R. Lyons, The Local Structure of Finite Groups of Characteristic 2 Type, in: Mem. Amer. Math. Soc., vol. 42, Number 276, Amer. Math. 9

Soc., Providence, RI, 1983. Q3 10

[21] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Number 3, in: Math. Surveys andMonographs, vol. 40, no. 3, Amer. 11

Math. Soc., Providence, RI, 1998. 12

[22] R. Guralnick, B. Kunyavskiı̆, E. Plotkin, A. Shalev, Thompson-like characterization of radicals in groups and Lie algebras, J. Algebra 300 (2006) 363–375. 13

[23] R. Guralnick, E. Plotkin, A. Shalev, Burnside-type problems related to solvability, Internat. J. Algebra and Computation 17 (2007) 1033–1048. 14

[24] R.M. Guralnick, G.R. Robinson, On extensions of the Baer–Suzuki theorem, Israel J. Math. 82 (1993) 281–297. 15

[25] R.M. Guralnick, J. Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003) 519–571. 16

[26] P. Kleidman, The maximal subgroups of the Steinberg triality groups 3D4(q) and their automorphism groups, J. Algebra 115 (1988) 182–199. 17

[27] R. Lawther, M.W. Liebeck, G. Seitz, Fixed point ratios in actions of finite exceptional groups of Lie type, Pacific J. Math. 205 (2002) 393–464. 18

[28] M.W. Liebeck, The classification of finite simple Moufang loops, Math. Proc. Cambridge Philos. Soc. 102 (1987) 33–47. 19

[29] M.W. Liebeck, J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces, 20

Proc. London Math. Soc. (3) 63 (1991) 266–314. 21

[30] S.A. Linton, R.A. Wilson, The maximal subgroups of the Fischer groups Fi24 and Fi′24 , Proc. London Math. Soc. (3) 63 (1991) 113–164. 22

[31] A.I. Malcev, On faithful representations of infinite groups of matrices, Mat. Sb. 8 (1940) 405–422; English transl. in Amer. Math. Soc. Transl. Ser. 2 45 23

(1965) 1–18. 24

[32] A.S. Mamontov, An analog of the Baer–Suzuki theorem for infinite groups, Siberian Math. J. 45 (2004) 327–330. 25

[33] J. Moori, Action tables for the Fischer group F̄22 , in: K.N. Cheng, Y.K. Leong (Eds.), Group Theory (Proc. Singapore Group Theory Conf., June 8–19, 1987), 26

Walter de Gruyter, Berlin–New York, 1989, pp. 417–435. 27

[34] N. Nikolov, A product decomposition for the classical quasisimple groups, J. Group Theory 10 (2007) 43–53. 28

[35] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1995. 29

[36] A.I. Sozutov, On a generalization of the Baer–Suzuki theorem, Siberian Math. J. 41 (2000) 561–562. 30

[37] R. Steinberg, Lectures on Chevalley Groups, Yale University, 1967. 31

[38] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2-closed, Ann. Math. 82 (2) (1965) 191–212. 32

[39] J. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968) 383–437. 33

[40] R.A. Wilson, On maximal subgroups of the Fischer group Fi22 , Math. Proc. Cambridge Philos. Soc. 95 (1984) 197–222. 34

[41] H. Zassenhaus, Beweis eines Satzes über diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 (1938) 289–312. 35

[42] M. Zorn, Nilpotency of finite groups, Bull. Amer. Math. Soc. 42 (1936) 485–486. 36

Please cite this article in press as: N. Gordeev, et al., A description of Baer–Suzuki type of the solvable radical of a finite group, Journal of Pure and Applied
Algebra (2008), doi:10.1016/j.jpaa.2008.06.006


	title.0
	section.1
	subsection.1.1
	subsection.1.2
	subsection.1.3

	section.2
	section.3
	section.4
	section.5
	section.6
	section.7
	subsection.7.1
	subsection.7.2
	subsection.7.3
	subsection.7.4
	subsection.7.5

	section.8
	section.9
	section.10


	ikona: 
	1: 
	2: 
	3: 
	4: 
	8: 

	animtiph: 
	1: 
	2: 
	3: 
	4: 
	5: 
	6: 
	7: 
	8: 
	9: 
	10: 

	TooltipField: 


