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Abstract. We give a brief survey of recent results on word maps on simple groups and polynomial maps
on simple associative and Lie algebras. Our focus is on parallelism between these theories, allowing one to
state many new open problems and giving new ways for solving older ones.

There were different times: a time to throw stones, a
time to divide and subtract. Now it is a time to add
and multiply. Circumstances force us to focus on
adding and multiplying.

From an interview of Mikhail Silin, first vice-rector
on research of Gubkin Russian State University of

Oil and Gas to the newspaper “Vestnik of
Murmansk”, December 4, 2009

1. Introduction

In this paper we discuss word maps
w : Gd → G, (1)

induced on any group G by a group word w = w(x1, . . . , xd) in x1, x
−1
1 , . . . , xd, x

−1
d (= an element of the

free group Fd). We also consider polynomial maps

P : Ad → A, (2)

induced on any associative (or Lie) algebra over a field k (or a ring R) by an associative (or Lie) polynomial
P = P (X1, . . . , Xd) in d variables (= an element of the free associative (or Lie) algebra).

Both (1) and (2) are evaluation maps: one substitutes d-tuples of elements of the group G (algebra
A) instead of the variables and computes the value by performing all group (algebra) operations. We are
interested in surjectivity of maps (1) and (2), or, more generally, in description of their images. In lowbrow
terms, we are interested in solvability of equations of the form

w(x1, . . . , xd) = g, (3)
or

P (X1, . . . , Xd) = M, (4)

for every right-hand side, or for some “typical” right-hand side, or whether every element of the group
(algebra) admits a representation as a product (sum) of finite number values of the word (polynomial) map,
etc.

This setting is a particular case of the following one. Let Θ be a variety of algebras, H be an algebra in
Θ, W (X) be a free finitely generated algebra in Θ with generators x1, . . . , xd. Fix w ∈ W (X) and consider
the word map w : Hd → H. Varying Θ and H ∈ Θ, we arrive at the problem of solvability of equations
in different varieties over different algebras. In this note we restrict ourselves to the varieties of groups,
associative algebras, and Lie algebras.

Whereas in the group case the theory has been intensely developing and led to several spectacular results,
including answering some old-standing questions, on the ring-theoretic side much less is known, though some
new approaches to not less old questions have been recently found. Our main goal in this survey, which does
not pretend to be comprehensive, is to emphasize parallels between the two theories. We hope that this may
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bring cross-fertilization effects in near future. With an eye towards such a unification, we put here more
questions than answers.

The interested reader is referred to the monograph [Se] and surveys [Sh1], [Ni], [BGK] in what concerns
the group case. Some references on the algebra case can be found in [KBMR], [BGKP]. We leave aside
extremely interesting questions on the number of solutions of equations (3), (4) (or, in other words, on the
structure of the fibres of maps (1), (2)). See [BGK] for an overview of some results in this direction.

2. Value sets

Given a word map (1), it is important to distinguish between the following objects:

• the value set in strict sense: w(G) = {g ∈ G : ∃(g1, . . . , gd) w(g1, . . . , gd) = g};
• the symmetrized value set w(G)± consisting of the elements of w(G) and their inverses;
• the verbal subgroup 〈w(G)〉 of G generated by w(G).

Respectively, given a polynomial map (2) of k-algebras, we distinguish between the value set P (A) = {a ∈
A : ∃(a1, . . . , ad) P (a1, . . . , ad) = a} and the vector space 〈P (A)〉 spanned by P (A) over k.

It is usually much easier to describe 〈w(G)〉 and 〈P (A)〉 than the actual value sets.

2.1. Surjectivity. We start with the group case and ask whether word map (1) is surjective. More precisely,

• given a class of groups G, we want to describe words w for which map (1) is surjective;
• given a class of words W, we want to describe groups G for which map (1) is surjective.

In each of these set-ups arising problems range from very easy to extremely difficult, depending on the
choice of the class. Here are some examples. Let us start with the first approach and take G to be the
variety of all groups. Then the needed description is given by [Se, Lemma 3.1.1], where such words are
called universal: they are all of the form w = xe1 . . . xed

d w′ where w′ is a product of commutators and
gcd(e1, . . . , ed) = 1. Here is a parallel question for associative algebras:

Question 1. What are polynomials P such that the map P : Ad → A is surjective for all associative algebras
A?

When we restrict the class G, we arrive at more interesting and difficult questions. Answers heavily depend
on this choice. For instance, a theorem of Rhemtulla (see [Se, Theorem 3.1.2]) says that if G consists of the
free groups (and maybe also of some free products adjoined), then the behaviour of any non-universal word
is very far from surjectivity: in the terminology explained below, any such word is of infinite width for any
group of G. That is why in this survey we prefer to stay away from equations in free (and close to free)
groups; see, e.g., [CRK], particularly the introduction, for a comprehensive bibliographical survey of vast
literature on this fascinating theory.

We mainly focus on another extreme case of simple groups which can also be viewed as a building block
for some more general theory. Here is our first question.

Question 2. Let G be the class of simple groups G of the form G = G(k) where k = k̄ is an algebraically
closed field and G is a semisimple adjoint linear algebraic group. Is it true that for all w 6= 1 word map (1)
is surjective?

Remarks 1. (i) If we drop the assumption k = k̄, or allow G to be not of adjoint type (i.e., consider
quasisimple groups), there are easy counter-examples to surjectivity [My], [Bo]. On the other hand,
if G = SU(n) and w(x, y) is any word not belonging to the second derived subgroup of F2, then the
induced word map is surjective for infinitely many n [ET].

(ii) If G is some infinite family of finite simple groups, then any power word w = xn gives rise to the
word map which is not surjective for infinitely many groups (those whose order is not prime to n).
A conjecture of Shalev, asserting that such phenomenon may arise only for power maps, turned out
to be over-optimistic, see [JLO] for a counter-example.

(iii) Going over to analogues of Question 2 for finite-dimensional simple associative and Lie algebras
over an algebraically closed field, one immediately gets obvious obstructions: there are nontrivial
(associative and Lie) polynomials that vanish identically; in addition, an associative polynomial
map of matrix algebras may take only central or trace-zero values; even apart from these obvious
obstructions, there are counter-examples to surjectivity, see [BGKP] and [KBMR]; if the ground field
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is not algebraically closed, the situation is even more complicated (for example, it is an interesting
question which of the surjectivity results of [KBMR], obtained over quadratically closed fields, survive
over R). Nevertheless, some of techniques developed for associative polynomials may turn out to be
useful for attacking Question 2, see Remarks 3 and 4 below.

The opposite direction for studying surjectivity is more tricky, even if the class of words W consists of
only one word. The first non-universal word to be considered is commutator.

2.1.1. Commutator: Ore and beyond. Let w = xyx−1y−1 ∈ F2. The obvious necessary condition for the
surjectivity of map (1) is 〈w(G)〉 = G, i.e., G must be perfect. It is very far from being sufficient, even
within the class of finite groups, see, e.g., [Is]. Making the further assumption that G is simple, one can say
something much more positive, namely that map (1) is surjective in each of the following cases:

(i) G is finite (Ore’s problem, whose long history has been finished in [LOST1]);
(ii) G = S∞, the infinite symmetric group [Or], [DR] (more generally, any non-power word is surjective

on S∞ [Ly]);
(iii) G = G(k), where G is a semisimple adjoint linear algebraic group over an algebraically closed field

k [Ree] (and for many other similar cases, such as semisimple Lie groups, etc., see [VW]);
(iv) G is the automorphism group of some “nice” topological or combinatorial object (e.g., the Cantor

set), as listed in [DR]; see also [BM].

In connection with (iv), it is worth quoting I. Rivin (see http://mathoverflow.net/questions/77398/
how-did-ores-conjecture-become-a-conjecture): “It is a conjecture I attribute to myself, but probably
goes back to the ancients, that in every reasonable simple group every element is a commutator”. Of course,
the whole point here is in the word “reasonable”: as any meaningful principle, Rivin’s principle is subject
to breaking, see Section 3.4 for counter-examples. In a positive direction, we suggest the following question:

Question 3. For each of the infinite simple groups listed in [DR], is it true that any word map is surjective
(or, at least, has a “large” image)? (In other words, is it true that in each such group one can solve word
equations with “generic” right-hand side?)

We also note that the Ore property is not just a standing alone phenomenon in group theory. It has many
interesting applications in algebraic topology (see [DR] and references therein) and birational geometry [Ku].

Remarks 2. There are several ways to go beyond Ore.

(i) First, representing 1 6= g ∈ G in the form g = [x, y], one may require to make the choice of x as
“uniform” as possible. A typical result of such kind is a theorem of Gow [Gow]: every finite simple
group G of Lie type contains a regular semisimple conjugacy class C such that each semisimple g ∈ G
can be represented in the form g = [x, y] with x ∈ C. A similar result in the case where G is a split
semisimple Chevalley group over an infinite field follows from the prescribed Gauss decomposition
[EG]. The case where G is not split seems open.

(ii) One can require that x, y satisfy some additional properties. For example, in [DR] Ore’s theorem
on the infinite symmetric group has been strengthened by choosing x and y so that they generate
a transitive subgroup of S∞. It would be interesting to get similar results in the other cases listed
above. For instance, one can ask how big can the subgroup 〈x, y〉 ⊂ G be. Note that we cannot
guarantee 〈x, y〉 = G, there are counter-examples among alternating groups (we thank A. Shalev for
this remark).

(iii) Another well-known generalization is Thompson’s conjecture asserting the existence of a conjugacy
class C in every simple group G such that C2 = G. This problem has a positive solution for the split
semisimple algebraic groups [EG]. However, it is still open for finite simple groups, in spite of the
major breakthrough made in [EG] (see also [YCW] and some more recent results (see, e.g., [BGK]
for relevant references)). The case of the infinite symmetric group has been settled in [Gr]. It is a
natural question whether there is a “gap” between Ore’s and Thompson’s conjectures, i.e., whether
there is a simple group where Ore’s conjecture holds and Thompson’s does not. N. Gordeev pointed
out that such a group exists: take G = A∞, the finitary alternating group. Then evidently each
element of G is a commutator but in every fixed conjugacy class C of G any element moves a fixed
number N of points, hence any product of two elements of C moves at most 2N points. Therefore
C2 6= G.
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(iv) In the case where L is a “classical” Lie algebra (i.e., the Lie algebra of a Chevalley group G over
a sufficiently large field), most of the statements discussed above admit easy analogues when the
bracket stands for the Lie operation. Say, the analogue of Ore’s conjecture has been established in
[Br], and an analogue of Gow’s theorem can easily be obtained looking at the linear map ϕx : L → L,
y 7→ [x, y]: its kernel is the centralizer of x, and one can conclude that in the representation g = [x, y]
the element x can be chosen from a fixed G-orbit (with respect to the adjoint action of G on L).
Further, for the Lie algebras of such kind the analogue of Thompson’s conjecture also holds true
[Gorde]. However, all such generalizations seem unknown for non-split simple classical Lie algebras,
simple Lie algebras of Cartan type in positive characteristic, and for infinite-dimensional Lie algebras.
The first case to be explored is that of Kac–Moody algebras (as well as Kac–Moody groups, where
the prescribed Gauss decomposition is known [MP]).

(v) Let now A be an associative algebra, and the polynomial under consideration be the additive com-
mutator P (X, Y ) = XY − Y X. Let [A,A] denote the subalgebra additively generated by the values
of P . If A 6= [A,A], there is no hope for the surjectivity of the map P : A2 → A. This happens
whenever A is finitely generated over Q or, more generally, if A is any (not necessarily finitely gen-
erated) PI-algebra [Be], [Mes]. So reasonably interesting questions only arise for the kernel of the
reduced trace map (trace zero matrices, for brevity). If A = Mn(D), where D is a division algebra
over a field and n ≥ 2, then every trace zero matrix is an additive commutator [AR]. If, however,
n = 1, the question is open (except for the special case of a central division algebra of prime degree
over a local field [Ros]), and it is hard to believe in an easy affirmative answer (that would imply the
affirmative solution of an old open problem on the cyclicity of any central simple algebra of prime
degree p over a field of characteristic p, see [Ros] for details). From discussions with L. Rowen we
got an impression that one should rather expect a negative answer, and a counter-example could
arise in the algebra of generic matrices (see below). This shows that the questions posed in (iv) for
non-split simple Lie algebras are probably answered in the negative. Note that a too straightforward
attempt to extend the theorem of Amitsur–Rowen to Mn(R), where R is an arbitrary ring, fails in
general [RR2], [Ros], [Mes]. As to infinite-dimensional simple algebras, the questions seem to be
totally unexplored, to the best of our knowledge.

2.1.2. Engel words. Apart from the commutator, there are some other interesting words for which the surjec-
tivity is known in several cases; see, e.g., [BGK] for some relevant references. Here we only want to mention
the most natural generalization of the commutator, the family of Engel words en(x, y) = [[[x, y], y] . . . y].
Their surjectivity has been only established for groups G = PSL(2, q) (under some assumptions on n and
q) [BGG], G = SU(n) [ET], G = PSL2(C) [Kl], [BGG] and for simple classical Lie algebras [BGKP]. An
answer to the following question would be a natural continuation of [Ree].

Question 4. Let G be a connected semisimple adjoint linear algebraic group over an algebraically closed
field. Is it true that every Engel word induces a surjective map G2 → G?

2.2. Dominance: the Deligne–Sullivan trick and Amitsur’s theorem. We start with a theorem of
Borel [Bo] providing a sketch of a somewhat new approach (the proof given in [La] is essentially the same
as in the original paper). Our proof is based on using the generic division algebra (see [Fo2] for details on
this important object, including the history of its creation). Let F be a field (for simplicity, assumed of
characteristic zero), let n be a positive integer, let xk

ij (1 ≤ i, j ≤ n, k ∈ N) be independent commuting
indeterminates. The F -subalgebra of Mn(F [xk

ij ]) generated by the matrices Xk = (xk
ij) is called a ring of

generic matrices. Denote it by R = F{X}. It is a domain [Am2], and its ring of fractions Q(R) is a central
division algebra of dimension n2 over its centre Z(Q(R)) [Am1]. The centre Z(R) of R consists of the central
polynomials (and is hence nontrivial for every n [Fo1],[Ra]). The centre C(Q(R)) is the field of quotients of
C(R). It is a long-standing open problem whether the field C(Q(R)) is a purely transcendental extension of
F , see the surveys [Fo2], [LB], [ABGV].

Theorem 1. [Bo] Let w ∈ Fd (d ≥ 2) be a nontrivial word, and let G be a connected semisimple algebraic
group over a field F . Then the induced morphism w : Gd → G of underlying algebraic varieties is dominant
(i.e., its image is Zariski dense).

Proof. We present a sketch of proof in the case where F is of characteristic zero. Several parts of the proof
are exactly the same as in the original one. First, as dominance is compatible with any extension of the
ground field, we may and will assume F to be algebraically closed of infinite transcendence degree. Next, we
may assume that G is simple of type An (the reduction to the simple case and the passage from SLn to the
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other types are as in [Bo]). Further, it is enough to prove the dominance for the case where w is a product of
commutators. Indeed, suppose that the theorem is proven for such words, and let w : Gd → G be an arbitrary
word map. Consider the map w̃ : G2d → G defined as follows: w̃(x1, y1, . . . , xd, yd) := w([x1, y1], . . . , [xd, yd]).
Then the image of w̃ is dense, hence so is the image of w. Thus henceforth we assume w ∈ [Fd,Fd].
Furthermore, it is enough to prove the dominance for the map

w : (GLn)d → SLn. (5)

Indeed, the image of this map coincides with w(SLn) because every g ∈ GLn can be replaced with g/ det(g).

Let us now argue by induction on the rank. The case of rank 1 is treated exactly as in [Bo]. The key point
is the induction step. Assume that map (5) is dominant for the rank n − 1 and prove that it is dominant
for the rank n. As in the original proof, it is enough to prove the existence of a matrix C in the image of w
such that none of its eigenvalues equals 1.

To this end, it suffices to prove that the image contains a generic matrix with this property. Indeed, as
soon as this is established, by specialization arguments (which are legitimate because of the assumption on
the transcendence degree of F ) we obtain a non-empty Zariski open set of needed matrices.

To prove the existence of a generic matrix with the required property, assume the contrary. Let C denote
a generic matrix from the image of w. Since it has an eigenvalue 1, the characteristic polynomial pC(t) is
divisible by t − 1, so pC(t) = (t − 1)p1(t). The Cayley–Hamilton theorem then gives (C − In)p1(C) = 0,
which is in a contradiction with Amitsur’s theorem stating that the ring of generic matrices is a domain. ¤
Remark 3. In the proof presented above, the core induction argument is based on Amitsur’s theorem,
instead of the Deligne–Sullivan argument used in the original proof (which is based on going over to an
anisotropic form of G and dates back to the unitary trick of Weyl). We believe that this interrelation
between matrix groups and algebras is very important, and its potential is not exhausted. In particular,
such an approach may be useful for proving the surjectivity of the word map for semisimple groups over
algebraically closed fields and, more generally, for getting a more precise description of the image of the word
map.

Let w =
∏

j a±1
i(j). Consider the values of w on invertible matrices, which will be denoted by the letters ai,

i = 1, . . . , k. The matrix ai satisfies the Cayley–Hamilton equation

an
i − ξ1(ai)an−1

i + · · ·+ (−1)lξl(ai)an−l
i + · · ·+ (−1)nξn(ai) = 0 (6)

where ξl is the lth characteristic coefficient of the matrix ai. In particular, ξ1 = tr, ξn = det. In the zero
characteristic case, the ξl are expressed via traces of powers. Equation (6) can be rewritten in the form

(
n−1∑

l=1

(−1)n−lan−l
i ξl−1(ai)) det(ai)−1 = a−1

i .

Set ψ(ai) =
∑n−1

l=1 (−1)n−lan−l
i ξl−1(ai) and rewrite the product w =

∏
j a±1

i(j), replacing a−1
i(j) with ψ(ai(j))

and leaving the factors ai(j) unchanged. We will obtain a polynomial (in the signature enlarged by the
characteristic coefficients, in other words, a polynomial with forms), which is a product of polynomials in
one variable.

There are some optimistic considerations regarding the study of images of such polynomials. Let us
look at the construction of homogeneous polynomials whose image does not coincide with the whole space
[KBMR]. Let P be an arbitrary matrix polynomial, and let c ∈ k. Consider the product

F = (λ1(P )− cλ2(P ))(λ2(P )− cλ1(P ))P = ((1 + c2 + 2c) det(P )− c tr(P )2)P.

It vanishes if the ratio of the eigenvalues λi(P ) equals c±1 or they are both zero. Therefore the image of F
does not contain nonzero matrices with such a ratio of eigenvalues, and this construction is essential for the
nature of the problem. If we are given a nontrivial product of polynomials in one variable in which several
variables enter, then a requirement on the resulting relation between eigenvalues cannot be determined by
one factor (if its determinant is not equal to zero). Of course, ψ is obtained by canceling the determinant,
but nevertheless there is some ground for optimism regarding making Borel’s theorem more precise.

Remark 4. Let us give an example of a more complicated argument showing the existence of a unipotent
element in the image of a multilinear polynomial P in the space of matrices of second order (assuming it has
a noncentral value with nonzero trace).

So let P (X1, . . . , Xn) be a multilinear polynomial, and assume the contrary, i.e., P has no unipotent
values. Fix all variables except for X1. Then PX2,...,Xn(X1) = P (X1, . . . , Xn) is a linear in X1 function,
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meeting the discriminant surface at points of total multiplicity 2. Since we assume the absence of unipotent
values, each such point is either scalar or nilpotent. If one point, X0

1 , is a nonzero scalar, and the other,
X1

1 , is nilpotent, then at the point X0
1 + X1

1 we obtain a matrix proportional to a unipotent one with some
coefficient λ 6= 0, and then at the point (X0

1 + X1
1 )/λ we shall obtain a unipotent value.

Further, if at both points we have a scalar value, then the original value of P is scalar, and if both values
are nilpotent, then the original value has zero trace. Therefore, if the value of P (X1, . . . , Xn) is not scalar
and has nonzero trace, then while moving any coordinate we observe coincidence of the intersection points
with the discriminant surface, i.e., tangency to the discriminant surface.

Then one can extract square root of the discriminant (λ1−λ2)2. In other words, q = λ1(P (X1, . . . , Xn))−
λ2(P (X1, . . . , Xn)) is a polynomial in entries of X1, . . . , Xn. The group SL2 acts by simultaneous conju-
gations on the Xi and is connected. Then, under such an action, q is mapped to ±q, and connectedness
guarantees the invariance of q, by the first fundamental theorem (established in [Pr] in characteristic zero
and in [Do] in positive characteristic).

Since q is a polynomial in characteristic values of the products of the Xi, so are λ1(P ), λ2(P ) because
λ1(P ) + λ2(P ) = tr(P ).

By the Cayley–Hamilton theorem, (P −λ1(P ))(P −λ2(P )) = 0 which also contradicts Amitsur’s theorem
on zero divisors. Hence P does have unipotent values.

We hope that such kind of reasoning can be helpful in getting a more precise description of the image of
the word map in the set-up of Borel’s theorem.

Remark 5. Note that an idea of using generic matrices has been recently used, in a slightly different
context of “universal localization”, in [HSVZ1] and [Step], for getting subtle information on commutators in
Chevalley groups over rings.

Remark 6. There are results of Borel’s flavour, stating that for some infinite groups G any “generic”
element g ∈ G falls into the value set of any non-power word w [Ma], [DT].

Remark 7. In the case of Lie algebras, an analogue of Borel’s theorem for Lie polynomials P which are not
identically zero, was established in [BGKP] for semisimple Chevalley algebras (modulo several exceptions
over fields of small characteristic), under the additional assumption that P is not an identity of sl(2). It is
not clear whether this assumption can be removed. The answer heavily depends on whether one can extend
a construction of so-called 3-central polynomials (see, e.g., [Row, Theorem 3.2.21]) to the Lie case. (Recall
that a polynomial P is called n-central is Pn is central but P is not.) If such polynomials exist, they provide
an example of a map which is not dominant. Probably, multilinear Lie polynomials with such a property do
not exist, and in this case one can drop the assumption mentioned above.

Remark 8. The case of associative algebras is much more tricky. First, one has to take into account the
obvious obstructions to dominance, and assume that the polynomial P is non-central and contains at least
one value with nonzero trace. Even under these assumptions, there are counter-examples to dominance for
maps on M2(K); to avoid them, one has to make additional assumptions on P (say, to assume that it is
semi-homogeneous). This assumption is not enough for 3×3-matrices. One can show that if P is a nonscalar
polynomial such that not all its values on A = M3(K) are 3-scalar or traceless, then its value set P (A) is
dense in A (moreover, if N is the set of non-diagonalizable matrices, then P (A)∩N is dense in N). If P (A)
lies in sl3(K) and contains a matrix which is not 3-scalar, then P (A) is dense in sl3(K).

If P is assumed multilinear, the main open question is the validity of the Kaplansky–L′vov conjecture
which states that the image of P is either 0, or K, or sln(K), or Mn(K). As a first step, we would suggest
to look at a downgraded version of this conjecture where we weaken it by allowing the image to be a dense
subset of either sln(K), or Mn(K). As above, one of the key problems is the existence of n-central multilinear
polynomials. This problem is related to subtle properties of division algebras and is not discussed in this
survey. See [KBMR] for some details.

To sum up, we present a list of questions which seem to be a good starting point.

Question 5. Let P : M2(K)d → M2(K).

(i) If P is multilinear, what are its possible images for K = R? In particular, does the Kaplansky–L′vov
conjecture hold in this case?

(ii) Let K be quadratically closed and P be an arbitrary (not necessarily homogeneous) polynomial. Is
it true that its value set is either the set {F ([x, y])} of values of a traceless polynomial, or the whole
M2(K) (up to Zariski closure)?
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For arbitrary n ≥ 3 we ask weaker questions.

Question 6. Let P : Mn(K)d → Mn(K) be a multilinear polynomial.

(i) Can it be n-central?
(ii) Suppose that P is not n-central. Is it true that its image is then dense provided it contains a matrix

with nonzero trace? Can it contain non-diagonalizable matrices?

Similar questions can be asked for traceless polynomials.

Remark 9. Being even more modest, one can start with multilinear Lie polynomials, asking similar ques-
tions. Even the case of algebras of small rank is open. Let us mention an analogue of the Kaplansky–L′vov
conjecture.

Question 7. Let L be a Chevalley Lie algebra, and let P be a multilinear Lie polynomial. Is it true that
the image of P on L is either 0, or L?

Remark 10. Even a further downgrading might be of interest, in view of eventual generalizations of Makar-
Limanov’s Freiheitsatz [ML] to the case of positive characteristic: given a polynomial map P : Mn(K)d →
Mn(K) such that n À deg P , can one bound from above the codimension of its image by a “reasonable”
function in n?

2.3. Words with small image. If G is a finite simple group, the verbal subgroup 〈w(G)〉 equals either 1
or G. However, for any G one can expect the existence of w such that the actual image w(G) is fairly small
(though different from 1). Such examples were recently constructed in [KN] and [Le].

Question 8. (N. Nikolov) Let G be a finite simple group, and let X ⊂ G be a union of conjugacy classes.
Does there exist w such that w(G) = X?

Note that a similar question for polynomials on matrix algebras over finite rings was answered in the
affirmative in [Ch].

3. Width

3.1. General words and polynomials. In the situation where map (1) is not surjective (or this is not
known), but 〈w(G)〉 = G, one can ask how many elements of w(G) (or of w(G)±) are needed to represent
every element of G. (In the case where 〈w(G)〉 6= G, one represents every element of 〈w(G)〉.) The smallest
such number is called the w-width of G. We denote it by wdw(G). If G does not have finite w-width, it is
said to be of infinite w-width. The reader can find comprehensive discussions of this notion in [Se], [Ni] (see
also [BGK] for a survey of some more recent developments in the case where G is a finite simple group). We
focus here, as above, on parallels with the case of associative algebras.

First note that as soon as we establish, for some topological group G, any kind of Borel’s dominance
theorem, in the sense that the image of w contains a dense open subset, we immediately conclude by a
standard argument that wdw(G) ≤ 2. Thus this is the case if G is (the group of points of) a connected
semisimple algebraic group over an algebraically closed field. For arbitrary algebraic groups over fields, one
can still prove their finite width with respect to any nontrivial word and any element of the verbal subgroup
[Mer]. If, however, we go over to algebraic groups over arbitrary rings, the situation changes dramatically,
see the next section.

In the class of finite simple groups, dominance arguments do not make much sense. However, the observa-
tion made in [La] that word maps still have, in a sense, a large image when viewed within an infinite family
of finite simple groups, gave rise to a series of wonderful results on uniform word width, christened by Shalev
“Waring type properties”. Making the long story short, we just mention the papers [LS], where the existence
of such a uniform bound was established, and [LST1], [LST2], where, as a culmination of efforts of many
people, the uniform bounds wdw(G) ≤ 2 (resp. wdw(G) ≤ 3) have been established for all sufficiently large
finite simple (resp. quasisimple) groups and all words w 6= 1. See [BGK] for more references and details.
Note that quite recently Shalev with his collaborators extended many results of this type to some simple
algebraic groups over p-adic integers, see [Sh2] for a list of relevant questions. In the case of polynomial
maps of algebras, we propose a notion parallel to word width in the group case.
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Definition 1. Let P (X1, . . . , Xd) be an associative (resp. Lie) polynomial, let A (resp. L) be an associative
(resp. Lie) algebra over a ring R, let P : Ad → A (resp. P : Ld → L) denote the induced map, and let VP

be the R-module spanned by the image of P . If there exists a positive integer m such that every element
v ∈ VP can be represented as a sum of m values of P , we call the least m with such property the P -width of
the algebra and denote it wdP (A) (resp. wdP (L)). Otherwise, we say that the algebra is of infinite P -width.

We are not aware of any general results concerning this notion, beyond those that follow from the sur-
jectivity or dominance (see, however, next sections for some particular cases). The following question seems
conceptually important.

Question 9. Let k be an infinite field. Let A denote the class of finite-dimensional central simple k-algebras.
Let P denote the class of associative polynomials such that none of them is central for some A ∈ A. Is it
true that all A ∈ A are of finite P -width for all P ∈ P? If yes, is it true that supP∈P,A∈A wdP (A) < ∞?

This question makes sense in more restrictive set-ups, when either some class of polynomials or some
class of algebras, or both, are fixed (and may be narrow enough, even consisting of one element, see some
examples below). Similar questions may be posed for Lie polynomials on finite-dimensional simple Lie
algebras. Finally, in both cases (associative and Lie) one can also consider infinite-dimensional simple
algebras, finitely or infinitely generated. All this seems completely unexplored. Below we consider a couple
of more concrete settings.

3.2. Commutator width. The case of the width of various groups G with respect to w = xyx−1y−1 got
much attention in the literature. Without pretending to giving a comprehensive survey (various aspects are
reflected in [Se], [Ni], [HSVZ2], [BGK]), we only present some references.

• As mentioned above, the finite simple groups have commutator width 1. As to finite quasi-simple
groups, it is at most 2, and all the cases when it actually equals 2 are listed [LOST2].

• As mentioned above, if G is a Chevalley group over an infinite field, its commutator width is at
most 2, in view of Borel’s theorem. However, this breaks down for Chevalley groups over rings,
which tend to have very few commutators (the type of behaviour called “anti-Ore” in [HSVZ1]). In
view of examples of groups of infinite commutator width [DV], we can also call it “anti-Waring”.
The situation improves if we go over to infinite matrices: most Chevalley groups of “infinite rank”
return to Waring (if not to Ore) behaviour: it is known that their commutator width is at most 2
[HS], [DV]; similar results were recently obtained for other groups of infinite matrices, see [GH] and
references therein. This gives rise to a natural question:

Question 10. Is it true that the groups of commutator width at most 2 listed in [DV] are of finite word
width with respect to any nontrivial word w? Is the image of w “large” (i.e., do we have any analogue of
Borel’s theorem)?

Here are some parallel results and questions for the additive commutator P (X, Y ) = XY − Y X in
associative algebras.

• The commutator width of a matrix algebra A = Mn(R) over any ring is at most two ([AR] for the
case where R is a division algebra, [Ros] for an arbitrary commutative ring R, [Mes] in general).

• Moreover, in the representation M = [X, Y ] + [Z, T ] one can fix X and Z which are good for every
M ∈ A (in [AR] only Z was fixed, and this was strengthened in [RR1], [Ros] and [Mes] using
genericity arguments).

This gives rise to the following notion, slightly resembling the notion of one-and-a-half-generation of simple
groups [Stei], [GK].

Definition 2. Let A be an associative algebra of commutator width m. If there exist X1, . . . , Xs ∈ A such
that every M ∈ A can be represented in a form

M = [X1, Y1] + · · ·+ [Xs, Ys] + [Zs+1, Ys+1] + · · ·+ [Zm, Ym],

and s is maximal with this property, we say that A is of fractional commutator width m− s
2m .

Thus the matrix algebras are of fractional commutator width one and a half (the result of [AR] gave only
one and three-quarters).

One can define fractional commutator width for groups in a similar fashion and ask the following question.



EQUATIONS IN SIMPLE GROUPS AND ALGEBRAS 9

Question 11. Which of the groups G having commutator width 2 are of fractional commutator width one
and a half? one and three-quarters?

One can start with Chevalley groups of infinite rank [DV] and 14 finite quasisimple groups of width 2
from the list of [LOST2].

One can define fractional width for more general words and polynomials. We leave this to the interested
reader.

3.3. Power width. Again, we only briefly quote some results on power width in groups. For finite simple
groups, the story which started with establishing the existence of uniform finite width in [MZ], [SW] led to
almost conclusive results in [GM] where for many powers it was proved that this width equals 2. The uniform
width for general finite groups was established in [NS]. For infinite groups (e.g., for Chevalley groups over
rings), the problem is almost unexplored. As in the commutator case, some pathologies have been discovered
(see the next section).

For matrix algebras Mn(R), we only mention the pioneering paper [Va] where the problem of representing
a matrix over a commutative ring as a sum of dth powers was considered, and some general results of finite
power width flavour were obtained (see [KG] for the history of the problem and more references), and [Pu2]
for some results for matrices over noncommutative rings, in particular, for central simple algebras.

3.4. Monsters. It was unknown for a long time whether there exists a simple group of commutator width
greater than 1. The first counter-example [BG] appeared in the context of symplectic geometry and gave
a simple (infinitely generated) group of infinite commutator width. Later on, using various contexts, there
were constructed simple groups of infinite commutator width which are finitely generated ([Mu1], using small
cancellation theory) or finitely presented ([CF], among quotients of Kac–Moody groups); among groups
appearing in [Mu1], there are those of arbitrary large finite commutator width. In [Mu2], there were con-
structed simple groups of infinite square width (and hence infinite commutator width, because of the equality
[x, y] = x2(x−1y)2(y−1)2, showing that finite commutator width implies finite square width). We refer the
interested reader to [GG] for a walk along the zoo of monsters with such anti-Ore and anti-Waring behaviour
(and some conceptual explanations of such phenomena), which grew up in differential-geometric environment,
following the spirit of [BG]; they are fed up using some advanced techniques, including quasi-morphisms and
quantum cohomology.

It is an interesting question whether such monsters exist among Lie algebras. The case of finite-dimensional
algebras of Cartan type over fields of positive characteristic was already mentioned above. As to infinite-
dimensional algebras in characteristic zero, discussions with E. Zelmanov give a hint that there are infinitely
generated simple Lie algebras of infinite width and finitely generated ones of arbitrary large finite width.
Elaborating such examples could give a clue to understanding the situation with associative algebras.

As a final remark, we should mention that apart from Lie algebras, little is known on the problems
discussed in this paper in the case of non-associative algebras; see, however, [Gordo] and [Pu1] for some
particular results of this flavour. In our opinion, it would be interesting to study the image of more general
polynomial maps for some classical examples, such as Cayley octonions, simple quadratic Jordan algebras,
simple exceptional Jordan algebras HC3, and the like.
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yavskĭı and Plotkin were supported in part by the Minerva Foundation through the Emmy Noether Re-
search Institute of Mathematics. Some questions raised in this paper were formulated after discussions with
N. L. Gordeev, L. H. Rowen, A. Shalev, N. A. Vavilov and E. I. Zelmanov to whom we are heartily grateful.

References

[Am1] S. A. Amitsur, On rings with identities, J. London Math. Soc. 20 (1955), 464–470.
[Am2] S. A. Amitsur, The T-ideals of the free ring, J. London Math. Soc. 20 (1955), 470–475.
[AR] S. A. Amitsur, L. H. Rowen, Elements of reduced trace 0, Israel J. Math. 87 (1994), 161–179.
[ABGV] A. Auel, E. Brussel, S. Garibaldi, U. Vishne, Open problems on central simple algebras, Transform. Groups 16 (2011),

219–264.
[BGG] T. Bandman, S. Garion, F. Grunewald, On the surjectivity of Engel words on PSL(2, q), Groups Geom. Dyn., 6

(2012), 409–439.
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