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TWO-VARIABLE IDENTITIES IN GROUPS AND LIE ALGEBRAS
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We study two-variable Engel-like relations and identities characterizing finite-dimensional solvable Lie algebras and,
conjecturally, finite solvable groups and introduce some invariants of finite groups associated with such relations.
Bibliography: 29 titles.

1. MOTIVATION

Our primary interest in the problems discussed in the present paper came from a paper by Segev [25], where
the Margulis—Platonov conjecture had been related to some properties of the commuting graph of a finite simple
group. (Given a finite group F, its commuting graph I'(F') has vertices indexed by the elements of F' different
from 1; z,y € F are joined by an edge if and only if they commute.) In a more recent paper [26], the expected
properties of this graph have been proved.

In its simplest form, the Margulis—Platonov conjecture asserts that if G is any (absolutely almost) simple linear
algebraic group defined over a number field k, then the group of rational points G(k) contains no noncentral
normal subgroups if and only if the same is true for all groups G(k,), where v runs over all places of k and k,
stands for the completion of k at v (see [22, 9.1]). The most difficult case of this conjecture is that of anisotropic
groups of type A,. In the case of the inner forms, Potapchik and Rapinchuk [24] reduced the conjecture to
a purely algebraic statement that the multiplicative group of any finite-dimensional division k-algebra has no
non-Abelian finite simple quotients. For this purpose, Segev proved [25] that if D is a finite-dimensional division
algebra over an arbitrary field and F is a finite simple non-Abelian group whose commuting graph I'(F') is either
balanced (see [25] for the definition) or is of diameter greater than 4, then F' cannot be a quotient of D*. In [26],
it is proved that the commuting graph of any finite non-Abelian simple group is either balanced or of diameter
greater than 4. This completes the proof.

All the above shows that T'(F') is a powerful invariant of F. After Segev’s lecture on this topic, B. Plotkin
suggested two natural generalizations of the commuting graph of a group. Namely, it is natural to consider
graphs of nilpotency and solvability of an arbitrary group G. To define them, we need to formulate conditions
of nilpotency and solvability as two-variable relations between the elements of G. This is done in Sec. 2. In
Sec. 3, we consider Lie-algebraic analogs of these conditions. In Sec. 4, we focus on the case of linear algebraic
groups and groups of their rational points. In Sec. 5, we return to the case of finite groups, which was the main
motivation for this paper.

1

Notation. If G is a group and z,y € G, let [x,y] = 27y lay. If L is a Lie algebra and z,y € L, we use the

same symbol [z, y] for the Lie product.

2. NEW INVARIANTS OF FINITE GROUPS

Our primary goal is to introduce some new invariants of a group G associated with two-variable relations
between elements of G.

Definition 2.1. Let G be an arbitrary group, and let p be a binary relation on G. We define a (directed) graph
[t =T}(G) (the p-graph of G) as follows: the vertices of I't are indexed by the elements of G different from 1,
and vertices g and h form an edge directed from g to h if and only if g # h and gph holds. We denote by I' the
nondirected graph obtained from I't by forgetting orientation and deleting multiple edges.

Remark. If p is symmetric, we only consider the nondirected graph I',(G).

Example. If p is the commuting relation (i.e., gph if and only if gh = hg), we obtain the commuting graph of
G studied in [25].

First we consider “nilpotency relations.” Denote Engel words by v = vi(x,y) = [z,y], v2a = [v1,¥],...,0n =
['Un—l, y], e
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Definition 2.2. Let G be an arbitrary group. We say that elements g,h € G are in n-Engel relation v, if
vn(g,h) = 1. Elements g and h are said to be in nilpotency relation v if they are in n-Engel relation for some n.

Recall that a finite group G is nilpotent if and only if the identity v,(x,y) = 1 holds in G for some n, or, in
terms of the above definition, if and only if grh holds for all g,h € G. Note that vy = 1 implies v; = 1 for all
>k

Definition 2.3. The graphT',(G) (respectively, I'} (G)) is called the nilpotency graph (respectively, the directed
nilpotency graph) of G. The diameters of these graphs are denoted by d,(G) and df (G), respectively. (If there
are vertices g and h with no path from g to h, the diameter is defined to be infinite.)

Problem 2.4. To investigate nilpotency graphs of finite simple groups and to estimate their diameters.
We now turn to “solvability relations.” Here we immediately encounter the following problem.

Problem 2.5. Find a sequence of words {e,(z,y)}52, in two variables x and y such that a finite group G is
solvable if and only if for some n the identity e, =1 holds in G.

Remark. Similarly to the nilpotency case, we require that the identity e, = 1 would imply ¢; = 1 for all [ > k.
With such a sequence at our disposal, we could define the solvability relation in G and the corresponding
graphs by repeating, word for word, Definitions 2.2-2.3.
There is strong evidence that Problem 2.5 has a positive solution, and finite solvable groups can be charac-
terized by two-variable identities.

Theorem 2.6 (see [28, 8]). Let G be a finite group in which every two elements generate a solvable subgroup.
Then G is solvable.

However, Theorem 2.6 does not provide any explicit two-variable laws for finite solvable groups. We present
several candidates for such e,’s.

Definition 2.7. Let {e,(z,y)}>2, be defined by one of the following three formulas:

€

—

= [z,y],
el = ler,x], e =le1,y], e2=]lel, €], ..

€n = [en,x], 6% = [emy]’ entl = [e;ue;lz]’ (1)

~

e1 = [x,y],e0 = [werz ™ yery . enar = [zenr T yeny ], (2)

el =uz,¢e] =y,e; =€}, ef],...
e%—&-l = [[eiw eg]’ eiz]’ €Z+1 = [[egw eiz]’ eg]’ En4+1 = [e%-&-l? eg-&-l]’ s
We call sequences (1)—(3) reasonable.

Note that for all reasonable sequences, e, = 1 implies ¢; = 1 for all [ > k.

Remark. There is a natural way to produce reasonable sequences generalizing (2). Namely, let w be a word in
z,y, 21, y~ . Define

ey =w, el = [ze¥z yely '], ...
A clever choice of w might lead to a sequence with good properties. We shall discuss the matter in detail in our
forthcoming paper.

Definition 2.8. Fix a reasonable sequence {e;}. Let G be an arbitrary group. We say that elements g,h € G
are in relation o, (with respect to {e;}) if e, (g, h) = 1. Elements g and h are said to be in solvability relation o
if and only if they are in relation o,, for some n. We call the o-graph T'»(G) (respectively, T'f (G)) the solvability
graph (respectively, the directed solvability graph) of G.

To justify the above definition, one must prove the following analog of the Engel property.

2973



Conjecture 2.9 (B. Plotkin). Let {e;} be a reasonable sequence. A finite group G is solvable if and only if for
some n the identity e, = 1 holds in G.

Clearly, if G is solvable of derived length n, then e,, = 1 holds in G.

Remark. There is another way to define nilpotency and solvability relations: g,h € G are in relation v
(respectively, o) if and only if the subgroup of G generated by g and h is nilpotent (respectively, solvable). Such
relations have the advantage of being symmetric and the disadvantage of being less constructive. We do not
consider them in the present paper. We refer the reader to [23] for yet another definition of the solvability graph
and another relationship with abstract algebraic geometry over groups.

There are several results concerning the characterization of solvable groups in terms of two-variable identities
[19, 20, 5]. Namely, it was proved in [19, 20] that if a finite group G satisfies the identity vy = v, for some
n, where {v;} is the sequence of Engel words, then G is solvable. However, it is easy to find a solvable group
satisfying no identity of the form v, = v,. For example, as G we take a finite nilpotent group of class 3 such
that the identity v = 1 does not hold in G. Since v3 = 1, the group G cannot satisfy any identity of the form
v9 = V. However, G is solvable.

In [5], it was proved that the identity vs = v, can hold in certain finite simple groups such as PSL(2,4),
PSL(2,8), etc. Let us also mention a pioneering result of N. Gupta [10]: any finite group satisfying the identity
v1 = v, is Abelian.

At this point, let us introduce some new invariants of finite groups. Our first remark is that, given any infinite
sequence of distinct words in m variables {w;(z1,...,2m)}2, any finite group G satisfies a law of the type

we(x1, .y 2m) S wi(z1, .., Tm).

for some k and [. (Indeed, the set of values of the w;’s is finite.)
The next definition goes back to [11]. It generalizes the notion of Engel depth (cf., [4, 5]).

Definition 2.10. A pair (k,1) for which the identity vy (z,y) = v(z,y) holds, with minimal k + [, is called the
Engel invariant of G.

Remark. To justify the above definition, one needs to check that the pair (k,[) with the required properties
is unique. Indeed, suppose we have two Engel identities in G: u, = v; and v, = v, with Kk < m <n <[ and
k+ 1 =m + n minimal with this property.

We have vy, (2,y) = vy(x,y) for all z,y. Plug in v;_,(x,y) instead of x. We obtain vj—p4m(z,y) = vi(z,y)
for all z,y. Hence vg(z,y) = vj—pnim(x,y) for all z,y. Therefore, because of the minimality of k + I, we have
k+(l—n+m)>k+1,ie,m—n>0,a contradiction. The Engel invariant is thus well defined.

This remark also shows that the number & in Definition 2.10 coincides with the Engel depth of G as defined in
[4, 5]. However, the second parameter [ is also important as the following beautiful result shows [11, Theorem 4.3]:
with the notation of Definition 2.10, if £ + [ is odd then G is solvable.

Problem 2.11. To compute Engel invariants for special classes of finite groups.

In [18], Engel invariants were computed in some groups, classes of groups, and varieties of groups: some groups
of small order; the class of dihedral groups D), where p is an odd prime; the solvable locally finite varieties of
groups AiA; for k and | powers of one and the same prime number p, and for k and [ coprime integers; infinite
series of simple groups (the alternating groups A, for n > 5 and the special projective groups PSL(2, g) for some
of the first groups in the series).

One may consider analogs of Definition 2.10 and Problem 2.11 with the Engel sequence replaced by one of
the reasonable (in the sense of Definition 2.7) sequences.

Definition 2.12. Let {e;} be a reasonable sequence. A pair (k,l) for which the identity e (x,y) = e/(x,y)
holds, with minimal k + [, is called a o-invariant of G. If there are several such pairs, we choose among them
the pair with minimal k and define it to be o(G).

Problem 2.13. To compute o-invariants for special classes of finite groups.

3. LIE-ALGEBRAIC ANALOGS

On replacing commutators by Lie products (and 1 by 0), we obtain sequences similar to (1)—(3) for Lie
algebras. We also call them reasonable. Here the situation is much more clear (at least, in the finite-dimensional
case). We restrict our consideration to the Lie analog of sequence (1).
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Theorem 3.1. Let L be a finite-dimensional Lie algebra over an infinite field k of characteristic p > 5. Let {e;}
be defined by formulas (1). Then L is solvable if and only if for some n the identity e, =0 holds in L.

Proof. Obviously, if L is solvable, then it satisfies an identity of the form e, (z,y) = 0, because for any X,Y € L
the value e, (X,Y") belongs to the corresponding term of the derived series. Conversely, let L satisfy the identity
en = 0. First assume that k is algebraically closed. If L is not solvable, then L% = L/rad(L) is semisimple and
nonzero (here rad(L) denotes the solvable radical of L, i.e., its maximal solvable ideal). If char(F) = 0, denote
by {E4, Ho, E_o} the standard basis of sly. Then [Eo, E_,] = Ho, [Ho, Eo) = 2E,, and [Hy, E_,] = —2F_,.
Set © = E, and y = E_,. Then

e1 = H,, ¢} =2E,¢ =-2E_,,

€y = —4Ha,...,

i.e., e, = mH, with m # 0. Thus, for any n we have e,(E,, E_,) # 0.

Now let char(k) = p > 5. First assume that L is restricted (see [27, 2.1] for the definition; we refer to the
same work for all background material in modular Lie algebras). Then we can use the classification theorem
of [2] in order to mimic the proof in characteristic zero. To be more precise, [2] says that all simple restricted
Lie algebras are given by the list predicted by the Kostrikin—Shafarevich conjecture. One can then verify that
each such algebra contains sly. For the algebras of classical type this is obvious. As to the algebras of Cartan
type, one must consider them as graded Lie algebras (see [27, Chapter 4]) and note that the zero component
Ly contains sly. Indeed, S(n;1)g = sl, ([27, Proposition 3.3.4]), H(2r;1)¢ = spa, ([27, Proposition 4.4.4]),
K(2r + 1;1)¢ contains spo, ([27, Exercise 4.5.3]), and W (n; 1) = gl,, ([27, Proposition 2.2.4]). In this last case,
for n = 1 one must consider the algebra L_; @& Ly ® L1; one can show that it is isomorphic to sls.

If L is not restricted, one needs more subtle arguments.

Lemma 3.2. Every simple Lie algebra L defined over a field of characteristic p > b contains a subalgebra S
with quotient isomorphic to sly.!

Proof. Assume the contrary. Let L denote a counterexample of minimal dimension to the lemma. Let L° denote
a maximal subalgebra of L. We wish to show that L° is solvable. If not, then L% = L°/rad(L°) is a nonzero
semisimple Lie algebra. By [1, Theorem 9.3], L contains a simple algebra S. Let S; = 7~*(S) be the preimage
of S with respect to the natural projection m: L° — L; we have S;/kerm = S. Since dimS < dim L, there
is a subalgebra 7' C S and an ideal J in T such that T/J = sly. Denote 71 = 7~ *(T) and J; = 7~ 1(J). We
have T1/J1 2 sla, a contradiction. We have thus proved that L° is solvable. By [29, Corrollary 1.4], L must
be isomorphic either to sly or to the Zassenhaus algebra W (1;m). In the first case, we are done. In the second
case, L is graded, and we set S = L_1 @& Ly ® L. Each of the three components is one-dimensional, and a
straightforward computation using the table of structure constants shows that S22 sls. The lemma is proved. [J

Let us continue the proof of the theorem. We have a Lie algebra L satisfying the identity e, (z,y) = 0. We wish
to prove that L is solvable. Assume the contrary. Then, arguing as in the proof of Lemma 3.2 (i.e., considering
L/rad(L) and using [1, Theorem 9.3]), we conclude that L has a simple subalgebra S. From Lemma 3.2 it
follows that S (and hence L) has a subfactor isomorphic to sk. Since identities remain true in sub- and quotient
algebras, e, = 0 must hold in sls, a contradiction. We have thus proved the “if” part of the theorem in the case
where k is algebraically closed.

Now let k be an arbitrary infinite field, and suppose that L is a Lie algebra over k satisfying an identity
w(z,y) = 0, where w stands for one of the e,’s. We wish to prove that the identity w(z,y) = 0 also holds in
the Lie algebra L = L ®, k defined over an algebraic closure k of k. Indeed, let {E1,...,E} denote a k-basis of
L. On writing arbitrary z,y € L with respect to this basis, z =Y a;E;, y = > 3; E;, we translate the identity
w(z,y) = 0 into identities of the form

Pi(al,...,ad,ﬁl,...,ﬁd):O, iZl,...,d,

where P, are polynomials. Since all the values of each P; are zero and k is infinite, we conclude that the F, are
zero polynomials (see, for example, [15, Chapter IV, §1, Corollary 1.7]). Now let #,7 € L be arbitrary elements.
On writing them with respect to the same basis {F;} (with coefficients from k) and plugging them into the
expression for w(Z,y), we obtain the same polynomials P, as the coefficients of the E;. But we have already
proved that they are zero. Hence w(Z, %) = 0.

TA. Premet informed us that one can modify the proof to be valid for all p > 2.
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The theorem is proved. [

Note one more result in the same spirit (cf. [10, 11, 19, 20, 5] for the group case). Recall that {v;} is the
Engel sequence, v;(x,y) = [[[x,y],y] .. .y] (for brevity, we denote this expression by [z, y;]).

Proposition 3.3. Let L be a finite-dimensional Lie algebra over a field of characteristic different from 2 such
that the identity vy, = v; holds in L. Then L is solvable. Moreover, if L satisfies v; = v;, then L is Abelian.

Proof. As in the preceding theorem, we can reduce this to the case where the ground field is algebraically closed.
First consider the characteristic zero case. Again, if L is not solvable, then I’ = L/rad(L) is nonzero and
contains sly. Set = H, and y = E,. We have v; = 2E,, vo = 4E,, ... ; thus v, = v; leads to 2FE, = 2'F,, a
contradiction. In the positive characteristic, we just reproduce the arguments from Theorem 3.1.

Now let v;1 = v;. We proceed by induction on dim L. If dimL = 1, then L is Abelian. Suppose that all
subalgebras of dimension less than n = dim L are Abelian. By the first part of the proposition, L is solvable.
Hence L' = [L, L] is of dimension less than n and therefore is Abelian. We must prove that L' = 0. Take any
[,2] € L'. By assumption, [z,z] = [z,2]. Let z = [z,y]. Then [z, [z, y]] = [z,[z,y];] = 0 since L’ is Abelian.
Therefore, [[z,y], 2] = 0 and hence [[y, z], z] = 0 and [y, z;] = 0. Applying our assumption once again, we obtain
[y, 2] = 0, so that L' = 0 and thus L is Abelian. O

Remark. As in the case of finite groups, one can note that the identity v = v; gives only a sufficient condition
for a finite-dimensional Lie algebra to be solvable.

4. IDENTITIES IN LINEAR GROUPS

One of the most promising approaches to the proof of Conjecture 2.9 is related to the study of identities in
finite linear groups. To be more precise, the following question seems to be critical: let {¢} denote one of the
reasonable sequences (see formulas (1)—(3)), and let G = PSL(2, p), p > 3; is it true that neither of the formulas
for e, is an identity in G?7 (See the next section for more details.) It is known [21; 17, Corollary 52.12] that any
finite group G has a finite basis of identities, but for PSL(2, p) explicit bases are known only for p < 13 (see [6]
and the references therein). Clearly, the identities in PSL(2, p) heavily depend on p, because PSL(2,7Z) has no
identities at all. Thus, looking at G = PSL(2,-) as a group scheme, one can say that different values of G have
different identities. On the other hand, if an affine group scheme G is assumed to be either Abelian, or nilpotent,
or solvable, then all its values inherit the corresponding identities. Therefore, given a linear group G C GL(n, k)
isomorphic to the group G(k) of k-rational points of an affine group scheme G, it is important to distinguish its
“structural” identities (i.e., coming from G) from those arising from the special choice of k.

Now we make all above considerations more precise. First introduce some notation. Given an affine group
scheme G, we denote

w:G x G — G, multiplication,
i:G — G, inversion,

e:€ — G, unit (where £ = {e} is the final object in the category of affine group schemes),

e ¢:G — G, constant morphism, ¢(g) = e, (i.e., G — & 5 G, where G — £ is a unique morphism
from G to &),

id: G — G, identity,

t:G x G — G x G, transposition, i.e., t = (pr2,pri).

We wish to define the commutator w:G x G — G. Let fi:G x G x G X G — G be the composition (G x G) x
i xi,idxid i
(G xG) X1 G x G G. We then define u as the composite morphism u: G x G (B3 idi )g xGxGxG5G.
Observation. A group scheme G is commutative if and only if u = c.
Remark. Of course, one can express the commutativity condition without using commutators, just saying that
pot=p.
We now want to generalize the above construction. We define, by induction,

e1=u=[z,y] =2y tay,...

[[ena l‘], [en, y]], .

€n+1
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More formally, we first define €, = [e,, z] and €]l = [e,,y] as follows:

e;:gxg(e"’—pil)ng&Q
eligxg Y ggtg,

Then e, 41 is defined as the composite morphism

ens1:Gx G g g Mg,

The other two reasonable sequences (see formulas (2)—(3)) can be defined in a similar way.

Proposition 4.1. Let G be a connected affine algebraic group over a field k. Then G is solvable if and only if
e, = ¢ for some n > 1.

Proof. Necessity. We prove by induction that the image of e, lies in the nth derived subgroup D"G of G. For
n =1 this is obvious. Since D"G is a normal subgroup in G, by the induction hypothesis each of the €, and e/
maps G x G into D"G. Hence e,,1 maps G x G into D"1G.

Sufficiency. First note that the condition e, = ¢ is equivalent to the fact that all groups G(A), where A
is any k-algebra, satisfy the identity e,(x,y) = 1. This property is thus hereditary with respect to sub- and
factor groups. Suppose that G satisfies e, = ¢ but is not solvable. In view of the above remark, the quotient
Gred = G/G", where G" stands for the unipotent radical of G, is a nontrivial reductive group satisfying e, = c.
Furthermore, its derived group G* = [G™¢ G"4] is a nontrivial semisimple group satisfying the same property.
Hence the k-group SL; as a subgroup of G must satisfy the same law. Its quotient PSL; thus also satisfies
en = ¢. Therefore, the identity e,(z,y) = 1 must hold in all groups PSLa(A) where A is a k-algebra, which is
impossible [14]. O

Now we pass on to a “structural” analog of the Engel law. Define v; = uw and, by induction,

oni1:Gx G G g g,

Proposition 4.2. Let G be a connected affine algebraic group over a field k. Then G is nilpotent if and only if
v, = ¢ for somen > 1.

Proof. Let C"G denote the nth term of the lower central series. Then v, maps G X G into C™G. This proves the
“only if” part. Now let v,, = ¢. Then, as in the proof of Proposition 4.1, we conclude that G is solvable. Hence
G = G(k) is solvable (here k stands for a (fixed) algebraic closure of k). According to [7, IV, 4.1.5], we only
need to prove that G is nilpotent. Since G is solvable and connected, it is isomorphic to a semidirect product
T x U, where T is a torus and U is nilpotent. If T = {e} or U = {e}, then G is nilpotent. Hence we may
assume that dim7 > 1 and dimU > 1. If T is central in G, then G is nilpotent [3, 10.6(3)]. If not, U contains a
one-dimensional subgroup U; that does not commute with T. Since k is algebraically closed, U; is isomorphic to
the additive group G,. Hence T acts on Uj as follows: ¢t ~tut = \(t)u, where u € Uy, t € T, and \: T — G, is a
character of T (cf. [3,10.10]). Thus, t " 'u=' = A(¢)"*u~" and t"tu~tu = \(¢)™!, consequently [u,t] = A(t) # 1
for u # 1 and ¢t # 1. By induction, we obtain v, (u,t) # 1 for any n, which is a contradiction. O

5. THE MAIN CONJECTURE

In this section, we return to Conjecture 2.9. Our first observation is that by standard arguments one can
restrict the consideration to a finite number of series of finite simple groups. To be more precise, one can easily
derive Conjecture 2.9 from the following conjecture.

Conjecture 5.1. Let G be one of the following groups:
. PSL(2,p) (p=5 orp==+2 (mod 5),p # 3),

. PSL(2,2?),

. PSL(2,3?) (p odd),

. Sz(2P) (p odd),

. PSL(3,3).

Uk W N~
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Let {e;} be one of the sequences (1)—(3). Then neither of the identities ¢, = 1 holds in G.

Indeed, in accordance with [28], the list in Conjecture 5.1 is precisely the list of minimal finite nonsolvable
groups (that is, the groups every subgroup of which is solvable). On our way to proving Conjecture 5.1, we
proceed by a case-by-case computer investigation. In order to prove that ¢, = 1 is not a law in G, it is
enough to show that for some k < [ the equation e (x,y) = e;(x,y) has a nontrivial solution (zg,y0) € G x G
(nontrivial means that e (xo,y0) = e;(xo,y0) # 1; by the construction of the sequences, it suffices to check that
the right-hand side is not equal to 1).

The case G = PSL(3, 3) is the easiest one. Say, if the ¢, are taken from sequence (1), the matrices

0 0 1 1 0 1
o = 0 1 1, y Yo = 0 2 0
2 1 1 0 0 2

give a solution to the equation ej7 = e, and thus e, = 1 is not a law in PSL(3, 3).

For G = PSL(2,p), a computer search gives a solution to e; = e4 (where the e; are taken from the sequence
(seq. 2)) for all p < 1000 except for p = 293 (as in chess, e2 — e4 usually wins!). The equation e3 = e5 has a
solution in PSL(2, p) for all p < 1000, and this result remains true for all p < 1500, except, possibly, for p = 1163,
for which calculations take too much time.

See the Appendix for more details concerning numerical experiments.

To conclude, we present the following model case that can be viewed as a testing ground for proving Conjec-
ture 5.1.

Proposition 5.2. Let the sequence {e;} be given by formulas (1). If the identity e; = 1 holds in a finite group
G, then G is solvable.

Proof. As above, it is enough to prove that the identity es = 1 does not hold in the minimal nonsolvable groups.
For G = PSL(3, 3) it is proved above. Now let G = PSL(2, q). Take

(o) =)

with ¢ # 0. Then ez(z,y) = A(t) can be viewed as a polynomial matrix in the indeterminate ¢. Its entry A o
equals —2t3(t + 1) f(t), where f(t) = 8 + 7 — 6 — 415 — 8t* — 5¢3 + ¢2 4 4t + 2. Since A; 2(t) can only vanish
at t =0, t = —1, and at the roots of f(t), we conclude that for odd ¢ > 11 the identity & = 1 cannot hold in
PSL(2,q). For ¢ =5 and ¢ = 7 we have A; 2(1) # 0. Thus, we have proved the proposition for G = PSL(2, p)

and G = PSL(2, 37).
[t 1
Y=\1 o)

Next consider the case G = PSL(2,2). Take
(01
=\ 1)
As above, we have ex(z,y) = B(t), a polynomial matrix in one variable ¢ running over the finite field F,, ¢ = 27,
with By o = t(t® +1). One can easily see that By 2(t) cannot vanish at all t € F,.
It only remains to consider the case of Suzuki groups G = Sz(q). We recall (see, for example, [13, Chapter XI,
§3]) that as a subgroup of GL(4, ¢) the group G is generated by the matrices

1 0 0 O
a® 1 0 0
S(a76)_ ﬁ a 1 0 9 a7/8€IFQD
O52.2-',-1 + Ozzﬂ + ﬁQz a1+z +ﬁ oz 1
¢ 0 0 0
0 ¢=* o0 0 .
M(C) = 0 CO Cz—l 0 ) C Ean

0 0 0 (=
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and J =

—_ O O O
o~ OO
o o = o
SO O

Here z = 2"5. Now we take z = J and y = S(1,t). As above, a straightforward computation (using MAPLE)
gives ez(z,y) as a polynomial matrix C(t). Its entry Cy1(¢) equals £22(¢* + 1). The number of roots of t* + 1 in
F, does not exceed z, which is strictly smaller than ¢ — 1, and thus Cjy 1(¢) cannot vanish at all ¢t € F,. O

Remark. Probably, one can characterize neither finite nilpotent groups of a fixed class nor finite solvable groups
of a fixed derived length by means of two-variable identities. For example, there exists a nonmetabelian solvable
group G such that all its 2-generator subgroups are metabelian [16, 9].

APPENDIX

We present here some results of computer experiments. In Table 1, for each p < 200 we exhibit one solution
(z,y) to the equation ex(x,y) = es(x,y), where the e; are taken from sequence (2). In the next two tables for
p < 80 we present the number of solutions of the above equation for sequences (1) and (2), respectively.

TABLE 1: Solutions to e; = e4 (formulas (1))

D 4 Y p €T Yy
HRIIERIEEINERIEED)
NERNIEEIN IR EE))
IO HEDHIOHIEH)
2 [0 D) [ (Cro—e) [ 29 [ D (6 38)
3L [ (YD [(Z5 ) [37 [ (V) [ (i —%)
TR E IR D)
HAIERIE IR E )
59 (9D [ (R ah 61 [ (Vo[ (28 —F)
67 (OGP —B) [ 7 (s | (55 55)
B1O) [ GEFE) 119 (05| (68 =Y)
83 | (D30) [ (Za0=5) 189 [ (D39) | (&t =oH)
97 1 (V) [ (=5 Zis) [ 101 [ (Vo) [ (299 57)
103 | (7)) [ (D 107 (V) [ (X -8)
109 | (Y59 1 (4 25) (113 ] (D7) [ (239 =%)
RTIOD [(CHRR) [1B1[ O [ (¥ %)
B7 (D (BB (B[ (D [ (P —F)
149 | (V) [ Gz 1151 [ (V) | (557 %8)
157 [ (O D) [ (R =8) J163 [ (950 [ (25 -h)
167 | (970 [ (Z53-7) 1173 [ (D37 | (Z53—%7)
179 [ (3 53) [ (255 %) [ 181 [ (D) | (290 3°)
NINEIIEEIIEANENEED
197 [ (920 [ (Z% o3) 11991 (9D [ (7 =%)

TABLE 2: Numbers of solutions to ex = e4 (formulas (1))

P ) 7 11 13 | 17 | 19 | 23 29 31 37
Ni| O 84 | 96 | 300 | 668 | 80 88 | 360 | 760 | 440
p | 41 | 43 | 47 53 | 89 | 61 67 71 73 79
N | 664 | 848 | 1312 | 428 | 712 | 480 | 1616 | 1432 | 1168 | 1904
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TABLE 3: Numbers of solutions to ex = e4 (formulas (2))

D 5 7 11 | 13 17 119 | 23 | 29 | 31 37
Ny | 22 | 16 | 134 | 28 | 36 |304 | 136 | 526 | 670 | 296
p | 41 | 43 | 47 | B3 | 59 | 61 | 67 | 71 73| 79
No | 990 | 590 | 760 | 428 | 1064 | 728 | 402 | 1136 | 584 | 2050
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