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0.1. Informal introduction. The paper is devoted to the centenary of a
friend, a wonderful person and an outstanding mathematician Lev Arkadievich
Kaluzhnin. The senior author and L.A.Kaluzhnin were friends for many
years. It was a time of mathematical, cultural, intellectual conversations,
a time wherein spiritual themes lived in a peaceful agreement with jokes,
kids and other topics of daily life. L. Kaluzhnin was a sharp mathematician
and a wise man. He was Chair of Department of Algebra and Mathe-
matical Logic in Kiev University. He created a scientific school in Kiev.
Many of well-known mathematicians are proud to say that they belong
to community of L.Kaluzhnin’s mathematical ”children” and ”grandchil-
dren”. Among them O.Ganyushkin, Yu.Bodnarchuk, F.Lazebnik, M.Klin,
R.Poeschel, V.Sushchanskii, V.Vyshenskii, V.Ustimenko, and many others.

0.2. Introduction. The paper deals with relations between model theo-
retic types and logically geometric types. It can be viewed as a complement
to the previous paper of G. Zhitomirski ([15]) devoted to the same sub-
ject. We discuss the fact that the notion of isotypic algebras can be equally
defined through model theoretic types and logically geometric types. This
bilateral insight gives rise to a lot of applications in algebra, geometry and
computer science.

0.3. Introduction to Universal Geometry. In this Section we provide
the reader with some account of notions which will be used explicitly and
implicitly in Section 0.4 devoted to types. A more detailed background can
be found, for example, in [6], [12], [10], [8], [7], [14], etc.

First of all, speaking of Algebraic Geometry, we mean Universal Geome-
try, i.e., geometry in an arbitrary variety of algebras Θ. If H is an algebra
in Θ and X = {x1, . . . , xn} is a set of variables, then we have a point
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µ : X → H over H, which also can be written as a = (a1, . . . , an), where
ai = µ(xi). Passing to a free in Θ algebra W = W (X), we represent the
same point as a homomorphism µ : W (X) → H. Here we are able to
speak of a kernel of a point Ker(µ). It is the equality relation w ≡ w′,
w,w′ ∈ W (X) which is considered as an element of the algebra of formulas
Φ(X). As for Φ(X), we assume that it is a Boolean algebra extended by
the quantifier operations ∃x, x ∈ X and by all possible equalities w ≡ w′,
w,w′ ∈ W (X).

We will consider several categories. We fix an infinite set of variables
X0. Let Γ be a system of all finite subsets X in X0. Denote by Θ0 the
category of all W (X), X ∈ Γ, with morphisms as homomorphisms s :
W (Y )→W (X). As usual, such a category can be viewed as a multi-sorted
algebra whose domains are objects of Θ0 and morphisms are multy-sorted

operations. Consider also the category (and the multi-sorted algebra) Φ̃Θ

of all algebras of formulas Φ(X), X ∈ Γ with the morphisms s∗ : Φ(Y ) →
Φ(X) induced by morphisms s : W (Y )→ W (X).

For each formula v ∈ Φ(Y ) we have s∗v = u ∈ Φ(X). Transitions
W (X)→ Φ(X) and s→ s∗ are organized in such a way that they induce a

covariant functor Θ0 → Φ̃Θ.
Now we shall define affine spaces. These are the sets Hom(W (X), H)

of all points µ : W (X) → H. To every s : W (Y ) → W (X) we associate
s̃ : Hom(W (X), H)→ Hom(W (Y ), H), acting by s̃(µ) = µs : W (Y )→ H,
i.e., µs(w) = µ(s(w)) for µ : W (X)→ H.

The correspondence W (X) → Hom(W (X), H) and s → s̃ determines a
contravariant functor Θ0 → Θ∗(H), where Θ∗(H) is the category of affine
spaces. It can be proved that these categories are a dual if and only if the
algebra H generates the whole variety Θ.

Further on we will work with an individual affine space Hom(W (X), H).
Let Bool(W (X), H) be its Boolean, that is the Boolean algebra of all
subsets A in Hom(W (X), H). We want to equip this Boolean algebra
with quantifier operations and equalities. First of all, define B = ∃xA,
where A ∈ Bool(W (X), H) setting: µ ∈ B if we have ν ∈ A, such that
µ(x′) = ν(x′) for each x′ ∈ X, x′ ̸= x. Universal quantifier ∀x is defined via
∀xA = ¬(∃x(¬A)).

For every equality w ≡ w′ in Φ(X) determine the set [w ≡ w′]H in
Bool(W (X), H). It is the set of all points µ : W (X) → H, satisfying the
formula w ≡ w′, that is wµ ≡ w′µ. This means that (w,w′) ∈ Ker(µ). The
elements [w ≡ w′]H are called equalities in Bool(W (X), H).

Boolean algebra Bool(W (X), H) with additional operations called quan-
tifiers and equalities, provides the example of an extended Boolean algebra.
Denote the constructed extended Boolean algebras of sets by HalXΘ (H).
One can define extended Boolean algebras axiomatically. For instance, the
algebra Φ(X) has the same signature of operations as HalXΘ (H) and also
gives an example of an extended Boolean algebra.
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Algebras Φ(X) and HalXΘ (H) are defined in such a way that for every
H ∈ Θ we have the value homomorphism V alXH : Φ(X) → HalXΘ (H). It
takes equalities to equalities, i.e., V alXH (w ≡ w′) = [w ≡ w′]H . One can
show that for any u ∈ Φ(X) the set of all points satisfying the formula u
is the set V alXH (u). In particular, the point µ : W (X) → H satisfies the
formula u = s∗v, v ∈ W (Y ), s : W (Y ) → W (X), if and only if the point
s̃(µ) = µs satisfies the formula v.

Let us pass to the category HalΘ(H). Objects of this category are alge-
bras HalXΘ (H). Morphisms have the form

s̃ : HalXΘ (H)→ HalYΘ(H),

where s : W (Y )→ W (X). Here, for A ⊂ Hom(W (X), H) we have s̃(A) =
B ⊂ Hom(W (Y ), H), where B is the set of all s̃(µ) = µs, µ ∈ A.

For some reason redenote the category HalΘ(H) by
←−−−
HalΘ(H). Then the

category
−−−→
HalΘ(H) has the same objects as

←−−−
HalΘ(H) and opposite mor-

phisms s∗ defined by s∗ = s̃−1 : HalYΘ(H) → HalXΘ (H). More precisely, if
B = V alYH(T2) ⊂ HalYΘ(H), then define s∗(B) = s̃−1(B) = A ⊂ HalXΘ (H)
as the set of points µ such that s̃(µ) lies in B. According to definition s∗
acts on equalities by the rule s∗[w ≡ w′]H = [sw ≡ sw′]H and preserves
Boolean operations. We come up with the diagram

(0.1)

Φ(Y ) -s∗ Φ(X)

?
V alYH ?

V alXH

HalYΘ(H) -s∗=s̃−1

HalXΘ (H).

Commutativity of 0.1 means that if v ∈ Φ(Y ), u = s∗v ∈ Φ(X), A =
V alXH (u), B = V alYH(v), then V alXH (s∗v) = s∗V alYH(v). The latter equality

represents the fact that V alH : Φ̃Θ →
−−−→
HalΘ is the homomorphism of multy-

sorted Halmos algebras. In fact, we have also anti-homomorphism Φ̃Θ →←−−−
HalΘ.

Let us define the Galois correspondence between sets of formulas T in
Φ(X) and sets of points A in Hom(W (X), H). For each point µ : W (X)→
H denote by LKer(µ) the logical kernel of point µ. It consists of the
formulas u ∈ Φ(X) such that µ ∈ V alXH (u). One can say that µ satisfies
every formula from LKer(µ). Logical kernel of a point is always a Boolean
ultrafilter in Φ(X) which is invariant with respect to existential quantifier
and is not invariant with respect to universal quantifier.

Let now T be a set of formulas in Φ(X). Determine the set A = TL
H in

Hom(W (X), H) by the rule: a point µ : W (X) → H is contained in A if
and only if T ⊂ LKer(µ). In other words, A =

∩
u∈T V alXH (u). Every set

A of such kind is called definable.
Let, further, A ⊂ Hom(W (X), H) be given. We set: T = AL

H =∩
µ∈A LKer(µ). In other words, u ∈ T if and only if A ⊂ V alXH (u). Here

T is a (Boolean) filter in the algebra Φ(X), and we have a Boolean algebra
Φ(X)/T . A filter T of such kind is called H-closed.
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Let us pass now to the types of points in Model Theory in an arbitrary
Θ.

0.4. Definitions of types. The notion of a type is one of the key notions
of Model Theory. In what follows we will distinguish between model the-
oretical types (MT -types) and logically geometric types (LG-types). Both
kinds of types are oriented towards some algebra H ∈ Θ, where Θ is a fixed
variety of algebras.

Generally speaking, a type of a point µ : W (X)→ H is a logical charac-
teristic of the point µ. Model-theoretical idea of a type and its definition is
described in many sources, see, in particular, [1] [3], [5]. We consider this
idea from the perspective of algebraic logic (cf., for example, [12]) and give
all the definitions in the corresponding terms.

Proceed from the algebra of formulas Φ(X0), where X0 is an infinite set of
variables. It is obtained from the algebra of pure first-order formulas over
equalities w ≡ w′, w,w′ ∈ W (X0) by Lindenbaum-Tarski algebraization
approach (see, for example, [6], [7]). Φ(X0) is an X0-extended Boolean
algebra, which means that Φ(X0) is a Boolean algebra with quantifiers ∃x,
x ∈ X0 and equalities w ≡ w′, where w,w′ ∈ W (X0). Here, W (X0) is
the free over X0 algebra in Θ. All these equalities generate the algebra
Φ(X0). Besides, the semigroup End(W (X0)) acts on the Boolean algebra
Φ(X0) and we can speak of a polyadic algebra Φ(X0) (see, [2]). However,
the elements s ∈ End(W (X0)) and the corresponding s∗ are not included
in the signature of the algebra Φ(X0).

Since Φ(X0) is a one-sorted algebra, one can speak, as usual, about free
and bound occurrences of the variables in the formulas u ∈ Φ(X0).

Remark 0.1. One can replace the variety Θ by the variety ΘH , where H is
a fixed algebra of constants (see [7] for details). Then we can assume that
elements of Φ(X) and Φ(X0) may contain constants from H.

Define further X-special formulas in Φ(X0), X = {x1, . . . , xn}. Take
X0\X = Y 0.

Definition 0.2. A formula u ∈ Φ(X0) is X-special if each of its free vari-
ables occurs in X and each bound variable belongs to Y 0.

A formula u ∈ Φ(X0) is closed if it does not have free variables. Only
finite number of variables occur in each formula.

Denoting an X-special formula u as u = u(x1, . . . , xn; y1, . . . , ym) we
solely mean that the set X consists of variables xi, i = 1, . . . n, and those
of them who occur in u, occur freely.

Definition 0.3. Let H be an algebra from Θ. An X-type (over H) is a set
of X-special formulas in Φ(X0), consistent with the elementary theory of
the algebra H.

We call such type an X-MT -type (Model Theoretic type) over H. An X-
MT -type is called complete if it is maximal with respect to inclusion. Any
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complete X-MT -type is a Boolean ultrafilter in the algebra Φ(X0). Hence,
for every X-special formula u ∈ Φ(X0), either u or its negation belongs to
a complete type.

Definition 0.4. An X-LG-type (Logically Geometric type) (over H) is a
Boolean ultrafilter in the corresponding Φ(X), which contains the elemen-
tary theory ThX(H).

So, any X-MT -type lies in the one-sorted algebra Φ(X0). Any X-LG-

type lies in the domain Φ(X) of the multi-sorted algebra Φ̃.
We denote the MT -type of a point µ : W (X)→ H by TpH(µ), while the

LG-type of the same point is, by definition, its logical kernel LKer(µ).

Definition 0.5. Let a point µ : W (X)→ H, with ai = µ(xi), be given. An
X-special formula u = u(x1, . . . , xn; y1, . . . , ym) belongs to the type TpH(µ)
if the formula v = u(a1, . . . , an; y1, . . . , ym) is satisfied in the algebra H.

The type TpH(µ) consists of all X-special formulas satisfied on µ. It is a
complete X-MT -type over H.

By definition, the formula v = u(a1, . . . , an; y1, . . . , ym) is closed. Thus,
if it is satisfied on a point, then it is satisfied on the whole affine space
Hom(W (X), H).

Note also that in our definition of an X-MT -type the set of free variables
in the formula u is not necessarily the whole X = {x1, . . . , xn} and can be
a part of it. In particular, the set of free variables can be empty. In this
case the formula u belongs to the type if it is satisfied in H.

Beforehand, the algebra Φ̃ was built basing on the set Γ of all finite
subsets of the set X0. In fact, one can take the system Γ∗ = Γ

∪
X0

instead of Γ and construct the corresponding multi-sorted algebra. Then,
to each homomorphism s : W (X0) → W (X) it corresponds a morphism
s∗ : Φ(X0) → Φ(X) and, vice versa, s : W (X) → W (X0) induces s∗ :

Φ(X) → Φ(X0). In this setting the extended Boolean algebra HalX
0

Θ (H)

and the homomorphism V alX
0

H : Φ(X0) → HalX
0

Θ (H) are defined in the

usual way. A point µ : W (X0)→ H satisfies u ∈ Φ(X0) if µ ∈ V alX
0

H (u).

Remark 0.6. One should underline several distinctions between one-sorted
and multi-sorted cases. If we consider a sublagebra Φ(X) ⊂ Φ(X0), then we
mean an identical embedding. In the multi-sorted case Φ(X) can be mapped
in Φ(X0) by quite different ways. A particular map is determined by a
choice of a morphism s∗. This is why we will distinguish below embeddings
by special morphisms s∗.

Besides that, Φ(X0), treated as a one-sorted algebra, has the signature
of a polyadic algebra. On the other hand, Φ(X0), treated as a domain of

Φ̃, has the signature of a multi-sorted Halmos algebra. This means that the
elements of the form s∗(w ≡ w′) are present in the second case while they
are not present in the first one.
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0.5. Transition from TpH(µ) to LKer(µ). We would like to relate the
X −MT -type of a point to its LG-type.

Definition 0.7. Given an infinite setX0 and a finite subsetX = {x1, . . . , xn},
a homomorphism s : W (X0)→ W (X) is called special if s(x) = x for each
x ∈ X, i.e., s is identical on the set X. Homomorphism s gives rise to the
morphism of extended Boolean algebras

s∗ : Φ(X
0)→ Φ(X).

Theorem 0.8. [13], cf., [15]. For each special homomorphism s, each
special formula u = u(x1, . . . , xn; y1, . . . , ym) in Φ(X0) and every point
µ : W (X) → H, we have u ∈ TpH(µ) if and only if s∗u ∈ LKer(µ).
Here, u is considered in one-sorted algebra Φ(X0), while s∗u lies in the

domain Φ(X) of the multi-sorted Φ̃ = (Φ(X), X ∈ Γ∗).

This theorem can be viewed as a criterion which relates one-sorted and
multi-sorted cases.

0.6. Correspondence between u ∈ Φ(X) and ũ ∈ Φ(X0).

Definition 0.9. A formula u ∈ Φ(X) is called X-correct, if there exists an
X-special formula ũ in Φ(X0) such that for every point µ : W (X)→ H we
have u ∈ LKer(µ) if and only if ũ ∈ TpH(µ).

Now, we shall formulate the principal theorem. This theorem is implicit
in [15]. Here we need to formulate it explicitly and provide a proof. We will
first notice that all equalities are correct and then show that the system of

all correct formulas over all sorts X is closed in the signature of algebra Φ̃.

Theorem 0.10. (cf., [15]) For every X = {x1, . . . , xn}, every formula u ∈
Φ(X) is correct.

Proof. First of all, each equality w ≡ w′, w,w′ ∈ W (X) is a correct formula.

Indeed, define ˜(w ≡ w′) by ˜(w ≡ w′) = (w ≡ w′).
Take two correct formulas u and v, both from Φ(X). Show that u ∧ v,

u ∨ v and ¬u are also correct. We have ũ and ṽ. Define

ũ ∧ v = ũ ∧ ṽ,

ũ ∨ v = ũ ∨ ṽ,

¬̃u = ¬ũ.
By definition, we have u ∈ LKer(µ) if and only if ũ ∈ TH

p (µ) for every
point µ : W (X) → H. The same is true with respect to v and ¬u. Let
u ∨ v ∈ LKer(µ) and, say, u ∈ LKer(µ). Then ũ ∈ TpH(µ), and, hence,
ũ ∨ ṽ = ũ ∨ v ∈ TpH(µ). Conversely, let ũ ∨ v = ũ ∨ ṽ ∈ TpH(µ). Suppose
that ũ ∈ TpH(µ). Then u ∈ LKer(µ), that is u∨v ∈ LKer(µ). The similar
proofs work for the correctness of the formulas u ∧ v and ¬u. In the latter
case one should use the completeness property of a type: ¬u ∈ TpH(µ) if
and only if u /∈ TpH(µ).
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Our next aim is to check that if the formula u ∈ Φ(X) is correct, then
the formula ∃xu ∈ Φ(X) is also correct.

Beforehand, note that it is hard to define free and bounded variables
in the algebra Φ(X). This is because of the multi-sorted nature of Φ(X)
and presence of the formulas including operations of the type s∗ in it. So,
the syntactical definition of ∃xu ∈ Φ(X) is a sort of problem and we will
proceed from the semantical definition of this formula.

Recall that, a point µ : W (X) → H satisfies the formula ∃xu ∈ Φ(X) if
and only if there exists a point ν : W (X)→ H such that u ∈ LKer(ν) and
µ coincides with ν for every variable x′ ̸= x, x′ ∈ X.

Indeed, a point µ : W (X)→ H satisfies ∃xu ∈ Φ(X) if µ ∈ V alXH (∃xu) =
∃x(V alXH (u)) (see Section 0.3). Denote the set V alXH (u) in HalXΘ (H) =
Bool(W (X), H) by A. Then µ belongs to ∃xA. Using the definition of exis-
tential quantifiers in HalXΘ (H) (Section 0.3) and the fact that u ∈ LKer(ν)
if and only if ν ∈ V alXH (u), we arrive to the definition above.

Since u is correct, there exists an X-special formula ũ ∈ Φ(X0),

ũ = ũ(x1, . . . , xn, y1, . . . , ym), xi ∈ X, yi ∈ Y 0 = (X0 \X),

such that ũ ∈ TpH(µ) if and only if u ∈ LKer(µ), where µ : W (X)→ H.
Define

∃̃xu = ∃xũ.

The formula ∃xũ is not X-special since x is bound (we assume that x
coincides with one of xi, say xn). Take a variable y ∈ Y 0, such that y is
different from each xi ∈ X, i = 1, . . . , n, and yj, j = 1, . . . ,m

Define ∃yũy to be a formula which coincides with ∃xũmodulo replacement
of x by y. So, ∃yũy = v(x1, . . . , xn−1, y, y1, . . . , ym) has one less free variable
and one more bound variable than ∃xũ.

Consider endomorphism s ofW (X0) taking s(x) to y and leaving all other
variables from X0 unchanged. Let s∗ be the corresponding automorphism of
the one-sorted Halmos algebra Φ(X0). Then s∗(∃xũ) = ∃s∗(x)s∗(ũ) = ∃yũy.

Redefine

∃̃xu = ∃yũy.

Thus, in order to check that ∃xu is correct, we need to verify that for
every µ : W (X) → H the formula ∃xu lies in LKer(µ) if and only if
∃yũy ∈ TpH(µ).

Let ∃xu lies in LKer(µ). Thus, there exists a point ν : W (X)→ H such
that u ∈ LKer(ν) and µ coincides with ν for every variable x′ ̸= x, x′ ∈ X.
Consider Xy = {x1, . . . , xn−1, y}.

We have points µ : W (X)→ H, µ′ : Xy → H where µ′(xi) = µ(xi) = ai,
and µ′(y) is an arbitrary element b in H. We have also ν : W (X)→ H and
ν ′ : Xy → H, where ν ′(xi) = ν(xi), and ν ′(y) = ν(xn). So, ν and ν ′ have
the same image. Denote it by (a1, a2, . . . , an−1, an), ai ∈ H, i.e., ν ′(y) = an.
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Take

ũy = ũ(x1, . . . , xn−1, y, y1, . . . , ym).

Since the formula ũ(a1, . . . , an−1, b, y1, . . . , ym) is closed for any b, then either
it is satisfied on any point µ′, or no one of µ′ satisfies this formula. We
can take b = an, that is, µ′ = ν ′. Since ν and ν ′ have the same image,
and u is correct, the point ν ′ satisfies ũy. Then ν ′ satisfies ∃yũy. Hence,
∃yũ(x1, . . . , xn−1, y, y1, . . . , ym) is satisfied on any µ′ regardless of the choice
of b. This means that ∃yũy ∈ TH

p (µ′) for every µ′. We can take µ′ to be µ.

Then ∃̃xu ∈ TpH(µ).

Conversely, let ∃̃xu ∈ TpH(µ). Take a point ν : W (X) → H such that
ν(xi) = µ(xi), i = 1, . . . , n− 1, ν(xn) = µ(y). We have ũ ∈ TH

p (ν). Since
ũ is correct, then u lies in LKer(ν). The points µ and ν coincide on all xi,
i ̸= n. Thus, ∃xu belongs to LKer(µ).

It remains to check that the operation s∗ respects correctness of formulas.
Let X = {x1, . . . , xn}, Y = {y1, . . . , ym} and a morphism s : W (Y ) →
W (X) be given. Take the corresponding s∗ : Φ(Y ) → Φ(X). Given v ∈
Φ(Y ) consider u = s∗v in Φ(X). We shall show that if v is Y -correct then
u is X-correct.

First of all, take µ : W (X)→ H, ν : W (Y )→ H such that µs = ν. Then
u ∈ LKer(µ) if and only if v ∈ LKer(ν).

Indeed, u = s∗v ∈ LKer(µ) means that µ ∈ V alXH (s∗v) = s∗V alYH(v) and
thus, µs ∈ V alYH(v). Hence, for ν = µs we have v ∈ LKer(ν). Conversely,
let v ∈ LKer(ν) and µs = ν ∈ V alYH(v). We have µ ∈ s∗V alYH(v) =
V alXH (s∗v) = V alXH (u) and u ∈ LKer(µ).

Note that morphism s∗ : Φ(Y ) → Φ(X) is a homomorphism of Boolean
algebras. Suppose that v ∈ Φ(Y ) is correct. This means that ṽ is chosen in
such a way that v ∈ LKerν if and only if ṽ ∈ Tp(nu).

We have

ṽ = ṽ(y1, . . . , ym, z1, . . . , zt),

where all zi are bound and belong to Z = {z1, . . . , zt}. All free variables
in ṽ belong to Y (it is assumed that not necessarily all variables from Y
occurs in ṽ). In this sense ṽ is Y -special. Since v ∈ Φ(Y ) is correct then
v ∈ Kerν if and only if ṽ ∈ Tp(nu).

We will define the formula ũ and show that in our situation ũ ∈ TpH(µ)
if and only if ṽ ∈ TpH(ν).

Consider Z ′ = {z′1, . . . , z′t}, where all z′i do not belong to X. Take the free
algebras W (X∪Z ′) and W (Y ∪Z). Define homomorphism s′ : W (Y ∪Z)→
W (X ∪ Z ′) extending s : W (Y )→ W (X) by s′(zi) = z′i (we are able to do
that because of the axioms of Halmos algebras, see, for instance, [7]). Take
Z0 = {z0}, where the variable z0 lies outside X, Y, Z, Z ′. The commutative
diagram of homomorphisms takes place:
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W (Y ∪ Z) -s′ W (X ∪ Z ′)

?
s1

?
s2

W (Y ∪ Z0) -s W (X ∪ Z0).

Here s1 and s2 are special homomorphisms which act identically on Y and
X, respectively, such that they send all variables from Z and Z ′ to the same
z0. The corresponding commutative diagram of morphisms of algebras of
formulas is as follows:

Φ(Y ∪ Z) -s′∗ Φ(X ∪ Z ′)

?
s1∗

?
s2∗

Φ(Y ∪ Z0) -s∗ Φ(X ∪ Z0).

This diagram is commutative due to the fact that the product of morphisms
of algebras of formulas corresponds to the product of homomorphisms of free
algebras. Apply the diagram to Y -special formula ṽ which belongs to the
algebra Φ(Y ∪ Z). Then, s2∗s

′
∗ṽ = s∗s

1
∗ṽ. Assume that ũ = s′∗ṽ. Here, ũ

is an X-special formula, contained in the algebra Φ(X ∪ Z ′). We need to
prove that for any point µ : W (X)→ H the inclusion ũ ∈ TpH(µ) holds if
and only if u ∈ LKer(µ).

Let u ∈ LKerµ. We use the criterion from Theorem 0.8: ũ ∈ TpH(µ)
if and only if s2∗ũ ∈ LKer(µ). Let us prove the latter inclusion. The
similar criterion is valid for the formula ṽ. Since the formula v is correct,
then ṽ ∈ TpH(ν), where ν = µs. Hence, s1∗ṽ ∈ LKer(ν), which means
that the point ν belongs to the set V alYH(s

1
∗ṽ). Since ν = µs, then µ ∈

V alXH (s∗s
1
∗ṽ) = V alXH (s

2
∗s

′
∗ṽ) = V alXH (s

2
∗ũ). This leads to the inclusion

s2∗ũ ∈ LKer(µ), which gives ũ ∈ TpH(µ).
The same reasoning in the opposite direction shows that the inclusion

ũ ∈ TpH(µ) is equivalent to that of ṽ ∈ TpH(ν).
It is worth to recall that we started from the fact u ∈ LKer(µ) if and only

if v ∈ LKer(ν). But v ∈ LKer(ν) because of the correctness of the formula
v. Thus, u ∈ LKer(µ). Hence, the transition from u to ũ guarantees the
correctness of the formula u.

Hence, the set of all correct X-formulas, for various X, respects all op-

erations of the multi-sorted algebra Φ̃. Since Φ̃ is generated by equalities,

which are correct, the subalgebra of all correct formulas in Φ̃ coincides with

Φ̃. Thus, every u ∈ Φ̃(X) for every X is correct. �

0.7. LG- and MT -isotypeness of algebras. The following important
theorem (see [15]) illuminates the notion of isotypeness of algebras.

Theorem 0.11. [15] Let the points µ : W (X) → H1 and ν : W (X) → H2

be given. Then

TpH1(µ) = TpH2(ν)
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if and only if

LKer(µ) = LKer(ν).

Proof. We will use Theorem 0.10. Let the points µ : W (X) → H1 and
ν : W (X) → H2 be given and let TpH1(µ) = TpH2(ν). Take u ∈ LKer(µ).
Then ũ ∈ TpH1(µ) and, thus, ũ ∈ TpH2(ν). Hence, u ∈ LKer(ν). The same
is true in the opposite direction.

Let, conversely, LKer(µ) = LKer(ν). Take an arbitrary X-special for-
mula u in TpH1(µ). Take a special homomorphism from s : W (X0) →
W (X). The morphism s∗ : Φ(X0) → Φ(X) corresponds to s. Then, using
Theorem 0.8, the formula u ∈ TpH(µ) is valid if and only if s∗u ∈ LKer(µ).
Then s∗u ∈ LKer(ν). Then u ∈ TpH(ν). �

Definition 0.12. Given X, denote by SX(H) the set of all MT -types over
an algebra H. Algebras H1 and H2 are called MT -isotypic if SX(H1) =
SX(H2) for any X ∈ Γ.

Definition 0.13. Two algebras H1 and H2 are called LG-isotypic if for
every X and every point µ : W (X)→ H1 there exists a point ν : W (X)→
H2 such that LKer(µ) = LKer(ν) and, conversely, for every point ν :
W (X) → H2 there exists a point µ : W (X) → H1 such that LKer(ν) =
LKer(µ).

If we denote by LX(H) the set of all MT -types over an algebra H, then
Definition 0.13 means that two algebras H1 and H2 are LG-isotypic if and
only if LX(H1) = LX(H2) for any X ∈ Γ.

Corollary 0.14. Algebras H1 and H2 in the variety Θ are MT -isotypic if
and only if they are LG-isotypic.

So, it doesn’t matter which type (LG-type or MT -type) is used in the
definition of isotypeness.

Recall that (see, for example, [8], [9]),

Definition 0.15. Algebras H1 and H2 are LG-equivalent, if for every X
and every set of formulas T in Φ(X) holds TLL

H1
= TLL

H2
.

Then,

Theorem 0.16. [15] Algebras H1 and H2 are LG-equivalent if and only if
they are LG-isotypic.

Corollary 0.17. Algebras H1 and H2 in the variety Θ are isotypic if and
only if they are LG-equivalent.

If algebras H1 and H2 are isotypic then they are locally isomorphic. This
means that if A is a finitely generated subalgebra in H, then there exists
a subalgebra B in H2 which is isomorphic to A. The same is true in the
direction from H2 to H1.
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On the other hand, local isomorphism of H1 and H2 does not imply their
isotypeness: the groups Fn and Fm, m,n > 1 are locally isomorphic, but
they are isotypic only for n = m.

Isotypeness implies elementary equivalence of algebras, but the same ex-
ample with Fn and Fm shows that the converse is false.

Recall here the following problems (see, [13])

Problem 1. Suppose that H1 and H2 are two finitely generated isotypic
algebras. Are they always isomorphic?

In particular,

Problem 2. Let Θ be the variety of commutative and associative algebras
over a field. Let an algebra H ∈ Θ is isotypic to a n-generated polynomial
algebra. Are they isomorphic?

0.8. MT -saturated and LG-saturated algebras.

Definition 0.18. An algebra H ∈ Θ is called LG-saturated if for every X ∈
Γ each ultrafilter T in Φ(X) containing ThX(h) has the form T = LKer(µ)
for some u : W (X)→ H.

The standard notion of saturation defined in Model Theory will be called
MT -saturation. MT -saturation of an algebra H means that for any X-type
T there is a point µ : W (X)→ H such that T ⊂ TpH(µ).

Theorem 0.19. [13] If algebra H is LG-saturated, then H is MT -saturated.

We do not know whether MT -saturation implies LG-saturation.
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