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COMMUNICATIONS IN ALGEBRA, 27(8), 40 15-4025 (1 999) 

GEOMETRICAL 

EQUIVALENCE OF GROUPS 
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Hebww C'N71~rs~tg .  Gzvat Ram. 91904. 

Jerusalem. Israel 

and 

' Departmrnt of !llnthernatz~s and Computer S ~ l e n c e  
Bar  Ilan Ci~zuerszty 

Ramat Gun. 52900. Israel 

Abstract. The notion of geometrical equivalence of two algebras, which is 
basic for this paper. is introduced in [ 5 ] .  [ti]. I t  is motivated in the framework 
of universal algebraic geometry. in which algebraic varieties are considered in 
arbitrary varieties of algebras. Universal algebraic geometry (as well as classic 
algebraic geometry) studies systems of equations and its geometric images. 
i.c.. algebraic varieties. consisting of ~olut~ions of equations. Geonletrical 
equivalence of algebras means: in some sense, equal possibilitics for solving 
systems of equations. 

In this paper wc consider results about geometrical equivalence of'algebras. 
and special att,rntion is paied on groups (abclian and nilpotent). 

Equivalence of universal algebras 

1. Let O bc a \alietv of algebias. tt' = I17(X) be the free algrbi,i ni 8 
oxc1 the finite set X ,  and G an algebra in O A congruence T of It- is called 
G-t lovd if 

T = n Kelp. 
PEA 

Copyr~ght Q 1999 by Marcel Dekker, Inc 
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4016 PLOTKIN, PLOTKIN, AND TSURKOV 

where A is a set of liomorrlorphis~ns p : C i 7  -t G. The set of all G-closed 
coligrurnces in given II '  is denotcd bl- CIG(li-). This set ran be considrrtd 
as srrnilattice sirm the intrrsectio~~ of tiva G-closed congrnciices is also G- 
closrd co~igr~lc~icc.  

Definition. Tu,o  algebras G1 and G2 ate tolled geornetritally fquicalcnt  ( o r .  
shortl7~. equlralent)  zf 

Theorem 1 [ 6 ] .  dlqrbras  GI and G2 or<, qrJornr trltalltJ equll alerit t f  nrld or1/7/ 
i f  c i  pry j ir~ltely q r n e r a t ~ d  subalgebra of G I  tnrr br c lppro~~rn t l t rd  b y  sz~bniqtbrrr~ 
of Gz and 1 ' 1 ~ ~  ~ e r s a  

Let the quasiiclentity ,u of' the form 

ht, fulfilled in G I .  Check that 11 is fulfilled ill Ga. I t  is ewl~g l i  to  check 
that v is fulfilled in every finitely generated subalgebra H of G2. Siriw H is 
approximated by subalgebras of GI .  we have the injrction 

rvhrrry all GI,,  R ~ C  sul)algrhas ill G I .  Sint,tl 11 is fulfillet1 in GI .  tlrc7ii 7 1  is 
t'dfillcd in each GI,,. and. tllrrrforr. in nm GI,. Since p is i~ijcction. o is 
fulfilled iri H. Thus. r~ is fi~lfillcd in G2. A11alogously. if l i  is f~dfil l t~i  ill G2. 
the11 this quasiidentity is fi11fillet-i in G1. 

2. ;\ class of' (3-algchrx X is called a p r t i z ~ ~ r i e t ! ~  if it is c.los~1 untlcr 
Cartesian p o d w t s  and suba2gebras ([3]. ['i]). \\k call a prt>~.arirty .T lomllc/ 
c1osc.d if for a givcri G E O the fijilo~i-irig p r o p ~ r t y  takes p1ac.e: if every fi~~itoly 
gcueratcd s ~ ~ b a l g c t m  of G lies in X tllm G E X. 

Evcry algrtxa G E 8 gr~icrates the lorally closed prevaricty. 2nd cwry 
clui\sivarirty of a lgrhas  of O is a locally c,losc~l prevaricty. 

Theorem 3. Algebras G1 and Ga arp ytnnlrtrzcallg q < ~ ~ ~ a l e n t  ~f and only 1f 
f h p y  g ~ n e r a t e  t h ~  s a m e  lotallg ( l o s ~ d  precsarzety. 
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GEOMETRICAL EQUIVALENCE OF GROUPS 4017 

Consider operators on classes X of algebras of O. As usual. CX is the 
class of Cartesian products of algebras of X. SX consists of subalgebras of 
algebras of X . and LX is defined by the rule: G E LX, if every finitely 
genrrated subalgebra H of G belongs to  X. \Ve show that for any X the class 
LSC(X)  is the locally closed prevariety generated by X. It is well k~lou-11 that 
CS < SC. Therefore. the class SCX is a prevariety generat>ed by X .  Let us 
prove that LSC(X)  is a locally closed prevariety. 

First note that if SX = X then X c LX. Indeed. if G E X ,  and H is a 
finitely generatjed subalgebra in G. then H E X and, t h s .  G E LX. 

Clieck that  S L  = L. Take G E S L ( X ) .  Thcii G is a subalgebra in 
GI E LX. Every finitely generated subalgebra of G1 is contained in the class 
X . Thcrefore, every finitely generated subalgebra of G belongs to X. Thus. 
C: E LX. On the other lmid. if G E LX. then G E SL(X) .  Thus. every 
class of t,he type LX is S-closed. Therefore. LX c L(LX)  = L2X. Let us 
check the inverse iiicliision. Take G E L2X and let H be a finitely generakd 
subalgebra in G. Then H E LX. and H E X. This means that G E LX and 
L'X C LX. Since LX C L2X. u-c have L2K = LX. Hence. every class LX is 
L a i d  S closed. I11 particular, this relates to the class LSC(X) .  

Check that  LSC(X)  is also C-closed. First. check that CL < LSC. Take 
ail arbitrary X and G E CLX. Then G = n, G,. G, E LX. Let H be 
a finitely generated subalgebra in G ,  with generators g l : .  . . . g,. For every 
a in G, take subalgebra Ha.  generated by the elements y l (o) ,  . . . . g,,(a). 
\Ve have H, E X and H c n, H,, H E SCX. G  E LSC(X) .  Then. 
CLSC(X)  c LSCSC(X)  = LSC(X) .  The inverse inclusion is also holds anti 
the class LSC(X)  is C-closed. Thus, this class is locally closed pre~ariet~y. 
which is t,he rninirnal locally closed prevariety, containing X. In part,icular. 
if G is an algebra in O t,hen LSC(G) is locally closed prevariety, generateti 
by G. 

Now let, algebras G1 and G2 be equivalent. Every finitely generated suhwl- 
gt,brw of C 1  is approxiniated by subalgebras of G2 and. hence: belongs to pre- 
variety SC(G2) .  Thtlrefore. G1 E LSC(G2). -4nalogously. G' E LSC(G1). 
Thus. 

LSC(G1) = LSC(G2). 

Let. conversely. t.hc equality above holds. Then every finit,ely generated 
sul~algebra ZI fi-on1 G I  is contained in SC(G2) .  Such H is approxi~nat,c.d by 
snl-mlgchas in G2. Similarly. every finitely generated subalgebra in G2 is 
approximated by subalgebras in G I .  Using Theorem 1 we conclude that G1 
and G2 are equivalent. 

3. An algebra G E O is called subdirectly indecomposable if there is a 
mil-zero congruence T in G which is cont,aincd in all non-zero coilgruelices 
in G .  Simple algebra is an algebra which has only zero congruence and 
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4018 PLOTKIN, PLOTKIN, AND TSURKOV 

unity congruence. Silnplr algebra is suldiwctly iildecoinposahle and the 
correspoiiding congruence is unity congruence. 

Proposition 1. If two  subd~rect ly  zndcc onlpoiablt  f i r 1  t f e  nlgr bras GI ond G2 
( L I P  e q u ~ ~ d r ~ ~ t  t hen  t hey  U P  ~ a o r r ~ o r p h ~ ~  

Proof.  

Equivalcricy of G1 and G2 implies iiijt~ctions G2 i G1 i G 2 .  Tlicrc4oro. 
IG1 / = /Gzl and the iriject,ion G1 -t G2 is an isoinorpliisnl. 

Corollary. F l n d r  szmple algebras arc cqrrlivzler~f (f a r ~ d  only  tf t h ~ y  arc ( so -  
rlrorpfLK. 

111 particular. finit,c simple grorlps arc rquivalcrrt if and only if tlicy arc, 
isoiriorpliic. The s;tinc reasoning can br applied t o  finitc diniensio~ial sinlplv 
associative and Lie algebras. 

Equivalence of groups 

1. Froin Theorem 2 immediately follows 

Proposition 2. If the  groups G1 a n d  G2 a7cJ g~on le t r7 (a l l y  equr~lnlr n t  and 
o n f  of t h e m  1 ,  tors7orl free, thcrl the  o ther  one  2s also torsion frep. 

%ow. let G1 and G2 be Abelian groups. 

Theorem 4. Abrlzan groups G1 and G2 arc yrorrtrtr/cnlly cqa~r ,a lcnt  i f  nrtd 
only  if t hey  hacr  t he  sarnr qunszlrlrntitws 

Proof. 

It sufficrs to prove that if G1 and G2 llilve the same quasiitlent,itic~s tlicw 
tlicy arc equivaltnt. 

.~.Htminsli has provcd (sce [ti]. [I]) that  two Abclian groups G1 anti C 2  
arc rqni~alcnt if arid only if. 

1. Groups G1 and G2  have the same cxpoi~c~nts. 
2.  For evory prinlc. iiunll~t~r p the cxporiwts of' thc corrcsporitli~lg Sj.lo~. 

hl11)groups G1p and G?p coiiicide. 
Lc>t 11s ronsider tlic special quasiidriitity 1 1 :  

.xprl-I = 1 3 iCpn = 1. 

This quasiidentity is fulfilled in a group C: if' anti only if every p-eleiriciit, 
in G has the order. which tliviiies pn. Indeed, let the order of each p-elcrnwt~ 
divides prL.  Then gp" = 1 for every p-element g .  Let riow gp"." = 1. Tlmi  I! 
is a p-element arid g'''' = 1. 

Let g be a p-eleincnt. and the quasiidentity tr be fi~lfilled in G. Tllen for 
some r n  we have g'''" = 1. Suppose prn is the order of g and p7" does riot divide 
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GEOMETRICAL EQUIVALENCE OF GROUPS 4019 

$1 + 1 

pn. Tlien rn > n .  rn = rrlo + n + 1. r r ~ o  2 0. Therefore. gp"' = yl = 1. 
"I 0 

91 = g p  . By the condition g?'' = 1 and gpm0"' = 1. Since ,,no + ,[ < 711 and 
p7" is the order of g.  we get corit,radict8ioa. Thus. the orders of all p-eleineiits 
of G divide pn. 

Let Abelian groups G I  and G2 have the same yuasiidentities. Then thcv 
have the same identities, arid. therefore. their exponents coincide. Let G1, 
and GZl, be Sylow p-subproups. Suppose the exponent of G1, is prl.  If GI,, 
is trivial. then r r  = 0. All p-eleincnt,~ of G I  belong to GI, and their orders 

divide p''. The quasiitleritity spn-' = 1 + z"" = 1 holds in G1 and G 2 .  
Therefore, G2, has the exponeilt. which divides prL.  If this exponent less 
than pn .  then acting backwards we get contradickion. Hence. exponents of 
Sylow subgroups GI,, arid G2p coincide. 

Now let the exponent of GI, be infinite. If' the exponent of G2p is finite. 
then there is a yuasiidentit,y iri G2 which does not exist iri GI .  Thus. the 
exponent of GZp should be infinite too. Conditions of the crit,erion are fulfilled 
anti the theorenl is proved. 

2. Now let G be a nilpotent group and P ( G )  be its periodic part .  

Theorem 5. If groups G1 and G2 are geometrically equivalent th,en P ( G 1 )  
a n d  P ( G 2 )  are equirderrt too. 

Proof. 

Let H be a finitely generated a i d .  hence. finite subgroup in P (G1) .  H 
is approxiniat,ed by subgroups of G2. which are also finite and. therefbre. 
belong to P ( G 2 ) .  Xlialogously. every finitely generated subgroup of P(G2)  
is approximat~cd by subgroups of P (G1) .  Thus. P(G1)  and P ( G 2 )  are equiv- 
iilcllt. 

Siiniiarly. one can prove that  if G1 and G2  are equivalent then their Sylow 
11-sul)groups Gip a ~ i d  G2j1 are equivalent. 

Theorem 6. Lct G1 ctnd G2 b~ p ~ r i o d z ~  rtilpoter(t ! p ~ i ~ y s .  They ctrc yeo711r:t- 
r.icc~ll!/ eqrlirdent if nrld only if for eccry prime p Sylozr: ,subgroups Glp (rud 
Grl, are cqui~~olerlt. 

For every prime y consider Sylov decomposit,iorl of G I  and G2: 

Since m i t y  group is equivalent only to unity group. it follows that  if G1 and 
G2 arc equivalerit t,llen 111 = 112 = II and for every p E II groups GI, and 
Gap are ryuivalcnt. 
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4020 PLOTKIN, PLOTKIN, AND TSURKOV 
I 

Xccortlilig to [5] it follows that  G1 and G2 are equivalent. 

Kow consider torsion free nilpotent groups. 

Such a group G is called subdirectly intlecomposahlc in tlic class of torsi011 
fwe groups. if there is a rioritrivial norinal subgroup H in G. such that G / H  
is torsion free and H lies in every nornlal subgroup with this property. 

Proof. 

By t,he condition GI  can be approxirnatrd by torsion free subgroups of G2. 
Sincc GI  is subdirectly indecorriposable in t,lie class of torsion free glwups. 
there is an injection G I  + G2. Similarly. there is an injectmion Gz i G I .  

Recall that a nilpotent torsion free group has finite rank r  = r (G) .  i f  
iri G there is norrnal serirs of the length r  whose factors are isomorphic: to 
suhgro~~ps  of the additive group of rational nunibers. Every f i~~i te ly  generated 
idpotent group without torsion has a finite rank. If H is a subgroup of 
iL group of rank r .  then r ( H )  < r .  X subgroup H is called isolated. if 
.r7' € H + .I. E H. If H is a proper isolatcd suhgroi~p. t l i ~ i l  r ( H )  < T .  :I 
group G is called divisible. if for every n E G and 71 E Z there exist,s 11 E G 
such that b'" i ~ .  Every torsion free nilpotent group G call be en~bedtletl illto 
its corripletiori. whirl1 is the rr~inirrlal divisible riilpoterit torsion free group. 
c:ontaining G j-l]. 

P r .oaf. 
Using Propositioil 3 we have injectioris Gp + GI + G2. Then r (G?)  < 

/ , (GI)  < r(G2). Therefore. ?.(GI) = r (G2) .  We also liavc injcc.tions for the 
conlplet~ioris 

G2 4 GI  i G2.  

Sirice r  (G) = r (G) .  we have r (G1)  = r (G2) .  
Coniplet,e subgroup in a nilpoterit torsion free group is all i~olateti sub- 

group. Therefore. if the injection GI  + G 2  is not a surjection. t,hcrl /.GI < 
762.  ow rjG1) = r[Gp) implies that  tile injection r(G1) i r,(Gz) is an  
isornorpllism. 
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GEOMETRICAL EQUIVALENCE OF GROUPS 402 1 

Problem 1. Is it true that ex-ery torsion free uilpotent) group .s geornet- 
rically equivalent to its coiripletion'l1 If not. consider the conditions wheii 
geometrical equivalence takes place. 

3. Examples. 
Corisitler the group G = IT,, (Z) of 71-unitriangular matrices over intcgers. 

This group is torsion free nilpotelit group of liilpotency class ( n  - 1 j with 
filiit,e nuintm of generators. It has isolated cyclic center whit.11 is contail~ed in 
elcry isolated iiorma! ~xhgroup of G .  Thus. G is subdirectly indrcomposablr 
ill the class of torsion fi-rre groups. Denot,e by G the similar group CT,,(Q) 
over the field of rational nuriitms. which is. ill fact, completion of G. Let us 
show (A.  Tsurkov) that 

Proposition 4. The qroups G = 17T,,(Z) and G = UT,,(Q) art rqcul~alent.  

The set (I = { r ~ , , ) .  whcre nI3 = 5, r E N. k 5 j - i ,  if j < i and n,, = 0 
cithcrwise. is the iiet of additive subgro~ips (see. for examplo 121. [8]). Consicicr 
tht' net subgroup G,  in GL,,JQ) and take the subgroup U g  = G, n I.TT,(Q) 
gtricrnted by transvectioiis rZj(u). ,u E n,j. It coiiicides with the subgroup 
G,.. r .  > 0. 7, E Z. of G .  which consists of rnatrices g = (g,,) of the form 

11-lirw a,,, E Z. It is easy t o  see that every finitely gtwmtctl  subgroup 
of G lies in some G, . where r .  is thc colnrrlon delionlinat,or of all entrios 
of all n la t r ic~s  generated this subgroup. Besides that .  the lionloinorphism. 
assigniiig to every g the rnat,rix 

is tlie injection G,, i G. Hence. G and G are equivalent). 
Usillg similar nrgunient,s and the notion of n c ~  subgroup for Chevallcy 

group ([lo]. [ l l ] ) .  it call he shown. that  the unipotent subgroup I;(@. Z)  of 
t,ho Clievalley group G(@. Z). where Q, is a root system. is equivalent to its 
coinplrtion. 

Consider other cxarriples of group equivalence. 

lThis is t l u e  for thrl torsion flee i~ilporent groups of class 2 (.4.Tsurkuv). Fm rcwaion 
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4022 PLOTKIN, PLOTKIN, AND TSURKOV 

Lct P be a field and R = Pi.,] he a polynoiniwl ring. Lef G1 and G3 be tlic 
groiips of la-unitriangular matrices over P and X rcqxcti\7t1ly. If c1aur.P = 0 
t l lw GI  arid G2 are t,orsiim free liilpotetit groups. I t  is easy t,o clieck that if 
the field P is illfinite t,licii thc groups G1 ant1 G2 arc equivalellt,. 

Sow let P bt. a firlit,e field of' odd characteristic p. Consider. the grollp C 
of ~nat,rices over P of the form 

This is a nilpotent finite group of class 2 with cxponr'iit p. Let L be ?\II 

extension of P of t iegre~ 2 arid G be the group of matrices g owr L = I1 (n)  
of tile form 

1 s Z 1  + cYZ2 

0 1 y l  t qJ? 

This is also a ~lilpot,tlut finitc group of class 2 with cxpoi~r:l~t p. Tllc11 t11~  
llo11lolllorp~lislll g + {I?). Wll(W 

givrs ill(. i~lj(,c.tion G -t G x G .  Heut.c> (.i.Tsu~ko\r). t11c groltps C; mcl G' 
arc cqui \ . ; r l t~ .  Of collrsc. t,licy ;u.c 11011-isol1iory)liic a d  ~ i o l ~ - t i t ~ i . o i ~ l ~ ) ~ ) ~ i ~ l ) I ( ~  iii 
t l i r t~ r  product . 

Now we point out the problems related to equivalency of rlilpot,rnt groups. 
Problem 2. Is it true that two t,orsion frtle (periodic) nilpott~it groups 

11-it,li the same cluasiitlentiti~ are equivalent'? 
Problem 3. Lct GI  and Gp t)t? txo cqliivalwt n i lpo te~~ t  groups. IS it t1.w 

tliat torsio~l fiee groups G1/P(G1) and G2/P(G2)  are also cclniv;rlt~rit'! 
Problem 4. Let F = F ( X )  be a free nilpotelit group of class 1 2 .  Drscribc 

all gruups G which are equivalf~iit to F'. 

Remarks on algebraic varieties over a finite group 

1. Lct us return to gcnmal dcfinitio~is. given in tlie beginnirig of the paper. 
Closcil congruelices in free algt,l)ras. (ill particular. closed rior~ill subgroups 
in free gronps) are dual to ( a f h c )  algcl~raic varict,ies. 

Let 0 be a variety of algebras. 11.(X) = IT'. <Y-finite. b v  thr frcr wlg<,l)ra ill 
0. Fix an algebra G E 0. The set Wonl(ll: G) is considered to be all ;tffinr 
space. whose points are I-ion~o~iiorpllis~lls. Define the Galois corrcspondoncc 
between sets of points -4 in Horn (ti: G') ;tiid binary relations T ill I T 7  11). the 
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GEOMETRICAL EQUIVALENCE OF GROUPS 

Rtcall that thr  coiigrucim T = -4' is callcd G - c h ~ d  congruence in  II'. Thc 
set of' points -4 = T' is called a11 af inc ,  algebraic t w - i e t y  over t,he algcbra G 
in affi~ie space Horri(l.I: G).  For cvrry set A c Hon~(lV.-  G) one can take its 
closure -4" = (A')'. which is the rniliiirial afine space, containing A. Tliere 
is . z l ~ o .  the closure T" = (T ' ) ' .  

Comidcr cmrilplcs. Let % br, a class in (->. Dcnot,c the set of all poiiits 
/ I  : I T 7  3 G. such that In! p E X. by .-1(X). If X is a variety. tlien 

Lf,t T =. A' = n,,E.Ali?ci,lr.. A411 117,/Ker,li aye c.ontaincct in tlic vitrirty f. 
F1cuc.r. I17/T t X. If liow / 1  t :1". tlieil T c K e r p .  Tlirrcfnrc. TI-/Icc~.jl 
is tho hoi~~oiiiorpliic iii~agr of' TT7/T. Since TT7/T E 3. the algebra I T - / h ' c : r ~ p  
lwlol~gs to X .  Tlieil I1r1 p E X .  p t .-I = .4(Xj. Thnls. A = A". 

Let 11s gciitrnlizc this pyol~ositioli. Lt,t X 11r a class of algtbras. which is 
l~ (wdi t a l~y  wi(1~1~ sul)algel)r~i5. 

L r t  T be the wliprnleilce of identit>i~s of t,lic class X(G) .  For every H E 
X(G) drnote by T ( H )  tlir congruence of idmtities in H. Then, 

Si1lc.c X is herctlitary. I , I ~  E X for every / I  : 117 -+ H. It follows that 
T C T .  Let p : I t '  + G Iw i ln arbitrary homomorphisrri such that  Irn p E X. 
Thcii H = In2 p E X(G). This iri~plies that T C T arid T = T. 

Lct iiow 11 t 1" = .-Ir'. Tllis ~ l ~ r a ~ i s  that 71 C K ( J I . ~ L .  Then identit,ics of  T 
are fillfilled i11 I m  p .  Now let t,he iticntity of T he f'ulfilled in l.t'IK~7.p. This 
Illearls that, T C K e r / ~  and I L  C TI. 
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is callctl tlw rwlurrie of thr variety .A. Definrl 
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GEOMETRICAL EQUIVALENCE OF GROUPS 4025 

3 r d  I' = { ( I , ,  (z. y). LL,, (y .  3 . ) ) .  The corresponding relation pn is called t,he 
relation of wst,ep nilpotency (Ellgel relation). Ele~nents a arid b from a 
group satisii nilpotency relation. if there is ,n such that np,,b. Recall thal  n 
fiiiit,e group C: is nilpotent if and m l y  if there exists n such that the identity 
21, ,  - 1 holds in G. 

Let us introduce now t>lie relation of solvability. Take 'ul = 'u l (z .  y) = [ z .  y].  
aild let 1,: = [u1.:2:]. 21; = [ t ~ ~ . g i  Set ~2 = [~1;.7(']. Having ~ ~ - 1 ,  define 
I ~ ~ , - ~  = [ ~ : ~ ~ - 1 .  .r]. I ( -  = [ I I , , - ~ .  g ] .  anti u,  = [2!A-1. I ~ K - ~ ] .  It is clear that if 
the group G is r ;olval~l~ of class n .  then we have the identity I:,, = 1. 

Hcre ariws t,hr natural conjt~cture: 
.4 ,finitc' y r m p  G L S  s u l ~ ~ b l t '  if n n d  ordy if in G holds  t h e  ide'rttzty 11, 1 

,for S O l l l f '  11. 

Lt3t 11s tnkc rww TI, = {Y,, (7 .  y ) .  73,,(y. 2 ) ) .  arid p,, = p(T,,). This rc.lation 
pr i  is tllc rclation of 71-step solvability 1)~twtwi  ele~neuts of' the grollp. Ele- 
iiiciits (1, aii(l h fioni a group satisfy relatioli of solvability. if' t l i e r ~  is r l  sue+ 
tliat fl/),,b. 

Tlicw. relations givt. riso to s tudy of tlic corresponding graphs. am1 for 
>urll T it is r~atural t o  cousicirl. tlie hilictioli ('(T). 
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