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GEOMETRICAL
EQUIVALENCE OF GROUPS

B.PLoTKIN !, E.PLoTkiN, b, A.Tsurkov

4 Institute of Mathematics
Hebrew University, Givat Ram, 91904,
Jerusalem, Israel

and

’ Department of Mathematics and Computer Science
Bar Ilan University
Ramat Gan, 52900, Israel

Abstract. The notion of geometrical equivalence of two algebras, which is
basic for this paper, is introduced in [5], [6]. It is motivated in the framework
of universal algebraic geometry, in which algebraic varieties are considered in
arbitrary varieties of algebras. Universal algebraic geometry (as well as classic
algebraic geometry) studies systems of equations and its geormetric images.
ie., algebraic varieties, consisting of solutions of equations. Geometrical
equivalence of algebras means, in some sense, equal possibilities for solving
systems of equations.

In this paper we consider results about geometrical equivalence of algebras,
and special attention is paied on groups (abelian and nilpotent).

Equivalence of universal algebras

1. Let © be a variety of algebras, W = W(X) be the free algebra in ©
over the finite set X, and G an algebra in © . A congruence T of W is called
G—closed if

T = ﬂ Kerpy,
uEA
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where A is a set of homomorphisms g : W — G. The set of all G-closed
congruences in given W is denoted by Clg (1), This set can be considered
as semilattice since the intersection of two G-closed congruences is also G-
closed congruence.

Definition. Two algebras G, and Gy are called geometrically equivalent (or,
shortly. equivalent) if

ClG'l (117(‘Y)) - CVZGQ (IVL‘Y>>

for every finite set X.

Theorem 1 [6]. Algebras G; and G4 are geometrically equivalent if and only
if every finitely generated subalgebra of Gy can be approzimated by subalgebras
of Gy and vice versa.

Theorem 2. If the algebras Gy and Go are geometrically equivalent then
they generate the same quasivariety.

Proof.

Let the quasiidentity u of the form
wy WAL AW, = w, e =

be fulfilled in G;. Check that u is fulfilled in G,. It is enough to check
that u is fulfilled in every finitely generated subalgebra H of G,. Since H is
approximated by subalgebras of G, we have the injection

u:H~>HG1w

where all G;, are subalgebras in G;. Since w is fulfilled in G, then u is
fulfilled in each G1,. and. therefore. in Hﬂ G- Since o is injection. w is
fulfilled in H. Thus. u is fulfilled in G. Analogously. if « is fulfilled in Go.
then this quasiidentity is fulfilled in G-

2. A class of ®-algebras X is called a prevariety if it is closed under
Cartesian products and subalgebras {[3]. [7]). We call a prevariety X locally
closed if for a given G € O the following property takes place: if every finitely
generated subalgebra of G lies in X then G € X.

Every algebra G € O generates the locally closed prevariety. and every
quasivariety of algebras of © is a locally closed prevariety.

Theorem 3. Algebras Gy and G2 are geometrically equivalent if and only if
they generate the same locally closed prevariety.
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Proof.

Consider operators on classes X of algebras of ©. As usual, CX¥ is the
class of Cartesian products of algebras of X, SX consists of subalgebras of
algebras of X . and LX is defined by the rule: G ¢ LX, if every finitely
generated subalgebra H of G belongs to X. We show that for any X the class
LSC(X} is the locally closed prevariety generated by X. It is well known that
CS < SC. Therefore. the class SCX is a prevariety generated by ¥. Let us
prove that LSC(X) is a locally closed prevariety.

First note that if SX = X then X C LX. Indeed, if G € X, and H is a
finitely generated subalgebra in G, then H € X and, thus, G € LX.

Check that SL = L. Take G € SL(X). Then G is a subalgebra in
G € LX. Every finitely generated subalgebra of G; is contained in the class
X . Therefore, every finitely generated subalgebra of G belongs to X. Thus.
G € LX. On the other hand, if G € LX. then G € SL(X). Thus, every
class of the type LX is S-closed. Therefore, LX < L(LX) = L?X. Let us
check the inverse inclusion. Take G € L*X and let H be a finitely generated
subalgebra in G. Then H € LX, and H € X. This means that G € LX and
L?X% ¢ LX. Since LX C L?X, we have L?X = LX. Hence, every class LX is
L and S closed. In particular, this relates to the class LSC(X).

Check that LSC(X) is also C-closed. First, check that CL < LSC. Take
an arbitrary X and G € CLX. Then G =[], Gs. G, € LX. Let H be
a finitely generated subalgebra in G, with generators g;,....g,. For every
o in (G, take subalgebra H,, generated by the elements g1(a),. .., gn(a).
We have H, € X and H C ], H,, H € SCX. G € LSC(X). Then,
CLSC(X) ¢ LSCSC(X) = LSC(X). The inverse inclusion is also holds and
the class LSC(X) is C-closed. Thus, this class is locally closed prevariety,
which is the minimal locally closed prevariety, containing X. In particular,
if G is an algebra in © then LSC(G) is locally closed prevariety, generated
by G.

Now let algebras G and G, be equivalent. Every finitely generated subal-
gebra of G is approximated by subalgebras of G2 and. hence, belongs to pre-
variety SC(G3). Therefore, Gy € LSC(G3). Analogously. Gy € LSC(G,).
Thus.

LSC(Gy) = LSC(G3).

Let. conversely, the equality above holds. Then every finitely generated
subalgebra H from G is contained in SC(G»). Such H is approximated by
subalgebras in Gs. Similarly. every finitely generated subalgebra in Gg is
approximated by subalgebras in G;. Using Theorem 1 we conclude that Gy
and Gy are eguivalent. '

3. An algebra G € © is called subdirectly indecomposable if there is a
non-zero congruence 7' in G which is contained in all non-zero congruences
in G. Simple algebra is an algebra which has only zero congruence and
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unity congruence. Simple algebra is subdirectly indecomposable and the
corresponding congruence is unity congruence.

Proposition 1. If two subdirectly indecomposable finite algebras Gy and Go
are equivalent then they are isomorphic.

Proof.

Equivalency of Gy and Go implies injections G2 — G — G2. Therefore,
|G1] = |G3| and the injection Gy — G is an isomorphisn.

Corollary. Finite simple algebras are equivalent if and only if they arc iso-
morphic.

In particular. finite simple groups are equivalent if and only if they are
isomorphic. The same reasoning can be applied to finite dimensional simple
associative and Lie algebras.

Equivalence of groups
1. From Theorem 2 immediately follows

Proposition 2. If the groups G1 and Go are geometrically equivalent and
one of them is torsion free, then the other one is also torsion free.

Now, let G and G5 be Abelian groups.

Theorem 4. Abelian groups Gy and Gy are geometrically equivalent if and
only if they have the same quasiidentities.

Proof.

It suffices to prove that if G; and G5 have the same quasiidentitics then
thev are equivalent.

A Berzinsh has proved (see [6]. [1]} that two Abelian groups Gy and Ga
are equivalent if and only if.

1. Groups G and G5 have the same exponents.

2. For every prime number p the exponents of the corresponding Sylov
subgroups Gip and Gap coincide.

Let us consider the special quasiidentity u:

T =1 =1

This quasiidentity is fulfilled in a group G if and only if every p-element
in G has the order, which divides p™. Indeed, let the order of cach p-element
divides p™. Then g?" =1 for every p-element g. Let now gP“H = 1. Then ¢
is a p-element and g?" = 1.

Let g be a p-element. and the quasiidentity u be fulfilled in G. Then for
some rn we have g?" = 1. Suppose p™ is the order of g and p™ does not divide
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p". Then m > n. m = mg +n -+ 1, mg > 0. Therefore, g¢" = a7 = 1.
g1 = g?"°. By the condition gy =1land g?"°"" = 1. Since mg +n < m and
p”" is the order of g, we get contradiction. Thus. the orders of all p-elements

of G divide p™.

Let Abelian groups G; and G have the same quasiidentities. Then they
have the same identities, and. therefore, their exponents coincide. Let Gy,
and G, be Sylow p-subgroups. Suppose the exponent of Gy, is p”. If Gyp
is trivial, then n = 0. All p-elements of G belong to G1, and their orders
divide p™. The quasiidentity 27 =1 = z¢" = 1 holds in Gy and Gs.
Therefore, G, has the exponent. which divides p™. If this exponent less
than p™, then acting backwards we get contradiction. Hence, exponents of
Sylow subgroups Gy, and G5, coincide.

Now let the exponent of Gy, be infinite. If the exponent of Gy, is finite,
then there is a quasiidentity in G5 which does not exist in Gy. Thus, the
exponent of Gy, should be infinite too. Conditions of the criterion are fulfilled
and the theorem is proved.

2. Now let G be a nilpotent group and P(G) be its periodic part.

Theorem 5. If groups G1 and G5 are geometrically equivalent then P(G )
and P(G3) are equivalent too.

Proof.

Let H be a finitelv generated and, hence, finite subgroup in P(Gy). H
is approximated by subgroups of G3. which are also finite and. therefore,
belong to P(G3). Analogously. every finitely generated subgroup of P(G2)
is approximated by subgroups of P{(G1). Thus. P(G1) and P(G3) are equiv-
alent,

Similarly. one can prove that if G; and G5 are equivalent then their Sylow
p-subgroups G1, and G, are equivalent.

Theorem 6. Let G and Gy be periodic nilpotent groups. They arc geomet-
rically equivalent if and only if for every prime p Sylow subgroups G, and
Gy are equivalent.

Proof.
For every prime p consider Sylov decomposition of G and G3:

Gi=[] Gy Ga=[] Ga

p€elh pellz

Since unity group is equivalent only to unity group, it follows that if G; and
Gy are equivalent then I1; = ITs = II and for every p € I groups Gp, and
G2y are equivalent.
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According to [3] it follows that G; and Gy are equivalent.

Now consider torsion free nilpotent groups.

Such a group G is called subdirectly indecomposable in the class of torsion
free groups. if there is a nontrivial normal subgroup H in G. such that G/H
is torsion free and H lies in every normal subgroup with this property.

Proposition 3. If Gy and G, are equivalent finitely generated torsion free
groups, which are subdirectly indecomposable in the class of torsion free groups.
then there exist injections G1 — G4 and Gy — Gy

Proof.

By the condition Gy can be approximated by torsion free subgroups of Gs.
Since G is subdirectly indecomposable in the class of torsion free groups.
there is an injection G — G». Similarly, there is an injection Gy — G;.

Recall that a nilpotent torsion free group has finite rank r = r(G). if
in G there is normal series of the length r whose factors are isomorphic to
subgroups of the additive group of rational numbers. Every finitely generated
nilpotent group without torsion has a finite rank. If H is a subgroup of
a group of rank r, then r(H) < r. A subgroup H is called isolated, if
" € H = 2 e H If His a proper isolated subgroup, then r(H) < r. A
group G is called divisible, if for every a € G and n € Z there exists b € G
such that 0" = a. Every torsion free nilpotent group G caun be embedded into
its completion. which is the minimal divisible nilpotent torsion free group.
containing G [4].

Theorem 7. Let (71 and G, be torsion free finitely generated nilpotent
groups, which are subdirectly indecomposable in the class of torsion free groups.
If they are geometrically equivalent then v(G1) = 7(G2). and their comple-
tions are isomorphic.

Proof.

Using Proposition 3 we have injections G2 — G1 — G3. Then r(G2) <
r{Gy) < r(G2). Therefore. r(G1) = r(G3). We also have injections for the
completions

GQ — Gl b Gg.
Since r(G) = r(G), we have r(G;) = r(Ga).

Complete subgroup in a nilpotent torsion free group is an isolated sub-

group. Therefore. if the injection G1 — G2 is not a surjection. then rGy <

rGa. Now r(Gy) = 7(G) implies that the injection r(G1) — r(Gs) is an
isomorphism.
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Problem 1. Is it true that every torsion free nilpotent group .s geomet-
rically equivalent to its completion?! If not. consider the conditions when
geometrical equivalence takes place.

3. Examples.

Consider the group ¢ = UT},(Z) of n-unitriangular matrices over integers.
This group is torsion free nilpotent group of nilpotency class (n — 1) with
finite number of generators. It has isolated cyclic center which is contained in
every isolated normal subgroup of G. Thus. G is subdirectly indecomposable
in the class of torsion free groups. Denote by G the similar group UT,(Q)
over the field of rational numbers, which is, in fact. completion of G. Let us
show (A.Tsurkov) that

Proposition 4. The groups G = UT,(Z) and G = UT,(Q) are equivalent.
Proof.

The set 0 = {o;}. where 0;; = ;T reN k<j—-difj<iando;; =0
otherwise, is the net of additive subgroups (see, for example [2]. [8]). Consider
the net subgroup G, in GL,(Q) and take the subgroup U, = G, N UT,(Q)
generated by transvections z;(u), u € oy, It coincides with the subgroup
Gy.r > 0.1 € Z, of G, which consists of matrices g = (g;;) of the form

Q12 Q.
1 w2 o
N [P)
0 1 ... o
0o 0 ... 1

where a,; € Z. It is easy to see that every finitely generated subgroup
of G lies in some G,. where v is the common denominator of all entries
of all matrices generated this subgroup. Besides that, the homomorphism,
assigning to every g the matrix

1 a1z ... QAip
0 1 s Qop
0 6 ... 1

is the injection G, — G. Hence, G and G are equivalent.

Using similar arguments and the notion of net subgroup for Chevalley
group ({10].[11]). it can be shown, that the unipotent subgroup U(®,Z) of
the Chevalley group G(®.Z). where @ i3 a root system. is equivalent to its
completion.

Consider other examples of group equivalence.

!This is true for the torsion free nilpotent groups of class 2 (A.Tsurkov). For torsion
free nilpotent groups of class n. n > 3 there are counterexamples (V.Bludov).
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Let P be a field and R = P[x] be a polynomial ring. Let G; and G2 be the
groups of n-unitriangular matrices over P and R respectively. If charP =0
then Gy and G are torsion free nilpotent groups. It is easy to check that if
the field P is infinite then the groups G and Gy arc equivalent.

Now let P be a finite field of odd characteristic p. Consider the group G
of matrices over P of the form

1 = =z
0 1 y
0 0 1

This is a nilpotent finite group of class 2 with exponent p. Let L be an
extension of P of degree 2 and G be the group of matrices g over L = P(a)

of the form
1 z z1+oaz
0 1 y1+ays
0 0 1

This is also a nilpotent finite group of class 2 with exponent p. Then the
homomorphism g — (g1. g2). where

1« 2 1 o 2
gr=10 1 un|. g2=10 1 wo
0 0 1 0 0 1

gives the injection G = G x G. Hence (A.Tsurkov). the groups G and G
are equivalent. Of course. they are non-isomorphic and non-decomposable in
direct product.

Now we point out the problems related to equivalency of nilpotent groups.

Problem 2. Is it true that two torsion free (periodic) nilpotent groups
with the same quasiidentities are equivalent?

Problem 3. Let Gf and G be two cequivalent nilpotent groups. Is it true
that torsion free groups G1/P(G1) and G2/ P(G,) are also equivalent?

Problem 4. Let F = F(X) be a free nilpotent group of class n. Describe
all groups G which are equivalent to .

Remarks on algebraic varieties over a finite group

1. Let us return to general definitions, given in the beginning of the paper.
Closed congruences in free algebras, (in particular, closed norml subgroups
in free groups) are dual to (affine) algebraic varieties.

Let @ be a variety of algebras. W(X ) = 1, X-finite. be the free algebra in
©. Fix an algebra G € 6. The set Hom(W.G) is considered to be an affine
space. whose points are homomorphisms. Define the Galols correspondence
between sets of points A in Hom{W. &) and binary relations T in W by the
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rule

T =A=ncaKerp.
A=T ={p.T C Keru}.

Recall that the congruence T' = 4’ is called G-closed congruence in W. The
set of points A = T is called an affine algebraic variety over the algebra G
in affine space Hom(W,G). For every set A € Hom(W,G) one can take its
closure A” = (A’)', which is the minimal affine space, containing A. There
is . also. the closure T = (T"}.

Counsider examples. Let X be a class in ©. Denote the set of all poiuts
i W — GLosuch that Iy € X by A(X). If X is a variety. then

Proposition 5. The set A = A(X) is an algebraic variety over the algebra
G.

Proof.

Let T = A" = NyueaKerp. All W/ Kerp are contained in the variety X.
Hence. W/T € X. I now u € A”, then T < Kerp. Therefore. W/ Keru
is the homomorphic image of W/T. Since W/T € X, the algebra W/Keru
belongs to X. Then I'm p e X. pe A= A(X). Thus. 4 = A",

Let us generalize this proposition. Let X be a class of algebras. which is
hereditary under subalgebras.

Theorem 8. I.Let X(G) be the set of all subalgebras in G. belonging to X.
A= A(X). Then. T = A’ is the verbal congruence in W of all identities of
the class X(G).

2. The closure A" = T' consists of all points p from Hom(W.G). for
which the identities of the set T are fulfilled in I'm p.

Proof.

Let T be the congruence of identities of the class X(G). For every H €
X(@) denote by T(H) the congruence of identities in H. Then,

T = QHGI(G)T(H>~

T(H) = NuwopnKerp.

Since X is hereditary. I'm p € X for every p: W — H. It follows that
T C T. Let u: W — G be an arbitrary homomorphism such that I'm g € X.
Then H = Im p € X(G). This implies that T ¢ T and T = 7T".

Let now € T = A”. This means that 7' C Kerp. Then identities of T
are fulfilled in I'm p. Now let the identity of T be fulfilled in W/Kerpu. This
means that T C Kery and p C T'.
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These two propositions illustrate the definition of the closure of a set A.

I the next two iterns we give the notions. which lock very natural from
the point of view of algebraic geometry of finite groups.

2. Let © be the variety of all groups and G be a finite group. |G} = mn.
Let [X| = n. Then {Hom{W,G) = |G|*T = m™. If 4 = T' is an affine
algebraic variety over G, then

l']”(G) - ;l

mn

is called the volume of the variety A. Define
o(T) = supg vr(G).

where supremun is taken over all finite G, The function ¢(T) naturally
characterizes the system of equations T in the class of finite groups. The
shmilar characteristic can be considered also for the class of finite simple
STOUPS.

3. Consider the situation. when the set X consists of two varlables X =
{a.y}. and the finite group G is fixed. For a.b € G. one can consider the
homowmorphism p = p,p 0 F — G given by u(x) = a.ply) = b. where F is
the free group with two generators. To each set of elements T in F = F'(r.y)
correspouds binary relation p = p(T) on the group G

apb= =, e T = A

This means that T C Kerpg,p or fla.b)=1forall fe T,
Suppose that the set T is symimetric, i.c.

and reflexive flaoy) € T = flr.o) € T. I T is a symmetric and reflexive
set. then the algebraic variety A =77 and the relation g are svinmetric and
reflexive. Such a relation p determines the graph on (. which is the unjon
of its counected components.

Examples. For the set T take the commutator lr.yl. Since [yl = 1 =
{y- 7] = 1. this is svmmetric relation. This T deternines graph on the group
G- which is called commuting graph of the group (see [9] for further infor-
mation).

Consider generalizations of this graph.

Denote

wy =up{r y) =yl wr=luyloo o un = lun oLyl
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and T = {u,(z.y). un(y,2)}. The corresponding relation p, is called the
relation of n-step nilpotency (Engel relation). Elements a and b from a
group satisfy nilpotency relation, if there is n such that ap,b. Recall that a
finite group G is nilpotent if and only if there exists n such that the identity
iy, = 1 holds in G.

Let us introduce now the relation of solvability. Take v; = vy (2, y) = [z.y].
and let v) = [vi. 2], v{ = [v1.yl. Set vy = [v).v{]. Having v,_;. define
v, = [vpor.x)o vy = [va_1.y)s and v, = [0/ _ .0l (] Tt is clear that if
the group G is solvable of class n. then we have the identity v,, = 1.

Here ariges the natural conjecture:

A finite group G s solvable if and only if in G holds the identity v, = 1
for some n.

Let us take now T, = {v.(z.y). v,(y.x)}. and p, = p(T,,). This relation
pn is the relation of n-step solvability between elements of the group. Ele-
ments ¢ and b from a group satisfy relation of solvability. if there is n such
that ap,b.

These relations give rise to study of the corresponding graphs. and for
such T it s natural to consider the function v(T).
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