Cyclic permutations, shuffles, and quasi-symmetric functions

Ron Adin
Bar-Ilan University

Algebraic Combinatorics Online Workshop
April 21, 2020

(This talk is being recorded)

Based on joint work with

$$
\begin{aligned}
& \text { Ira Gessel (Brandeis) } \\
& \text { Vic Reiner (Minnesota) } \\
& \text { Yuval Roichman (Bar-Ilan) }
\end{aligned}
$$

Special thanks to Darij Grinberg (Drexel)

Outline

Permutations, shuffles, descents

Cyclic permutations etc.

Sym, QSym, cQSym

Other proof ingredients

Summary

Permutations, shuffles, and descents

Permutations, shuffles, and descents

- $A=$ a finite set of size a (alphabet)

$$
\begin{aligned}
S_{A} & :=\text { the set of all permutations of } A \\
& =\text { bijections } u:[a] \rightarrow A \quad \text { (bijective words) }
\end{aligned}
$$

Example: $A=\{1,3,5,7,8\}, \quad u=51783 \in S_{A}$

Permutations, shuffles, and descents

- $A=$ a finite set of size a (alphabet)

$$
\begin{aligned}
S_{A} & :=\text { the set of all permutations of } A \\
& =\text { bijections } u:[a] \rightarrow A \quad \text { (bijective words) }
\end{aligned}
$$

Example: $A=\{1,3,5,7,8\}, \quad u=51783 \in S_{A}$
Note: $S_{[n]}=S_{n}$, the symmetric group

Permutations, shuffles, and descents

- $A=$ a finite set of size a (alphabet)

$$
\begin{aligned}
S_{A} & :=\text { the set of all permutations of } A \\
& =\text { bijections } u:[a] \rightarrow A \quad \text { (bijective words) }
\end{aligned}
$$

Example: $A=\{1,3,5,7,8\}, \quad u=51783 \in S_{A}$
Note: $S_{[n]}=S_{n}$, the symmetric group

- $A, B=$ disjoint finite sets; $u \in S_{A}, v \in S_{B}$

$$
u \amalg v:=\text { the set of all shuffles of } u \text { and } v
$$

Example:
$A=\{1,2,3,5\}, B=\{4,6,7\}, u=1235 \in S_{A}, v=764 \in S_{B}$

$$
1723654 \in u \text { Шv }
$$

Permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a The descent set of $u \in S_{A}$ is

$$
\operatorname{Des}(u):=\{1 \leq i \leq a-1: u(i)>u(i+1)\}
$$

The descent number of u is

$$
\operatorname{des}(u):=|\operatorname{Des}(u)| .
$$

Permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a The descent set of $u \in S_{A}$ is

$$
\operatorname{Des}(u):=\{1 \leq i \leq a-1: u(i)>u(i+1)\}
$$

The descent number of u is

$$
\operatorname{des}(u):=|\operatorname{Des}(u)| .
$$

Example: $u=48721365$

$$
\operatorname{Des}(u)=\{2,3,4,7\}, \quad \operatorname{des}(u)=4
$$

Permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a The descent set of $u \in S_{A}$ is

$$
\operatorname{Des}(u):=\{1 \leq i \leq a-1: u(i)>u(i+1)\}
$$

The descent number of u is

$$
\operatorname{des}(u):=|\operatorname{Des}(u)| .
$$

Example: $u=48721365$

$$
\operatorname{Des}(u)=\{2,3,4,7\}, \quad \operatorname{des}(u)=4
$$

Question:
What is the distribution of $\operatorname{des}(w)$ for $w \in u \amalg v$?

Permutations, shuffles, and descents

What is the distribution of $\operatorname{des}(w)$ for $w \in u \amalg v$? In particular, what are the smallest and largest values of $\operatorname{des}(w)$?

Example: $u=1432, v=65 ;(a, b, i, j)=(4,2,2,1)$

Permutations, shuffles, and descents

What is the distribution of $\operatorname{des}(w)$ for $w \in u \amalg v$? In particular, what are the smallest and largest values of $\operatorname{des}(w)$?

Example: $u=1432, v=65 ;(a, b, i, j)=(4,2,2,1)$

$$
\begin{aligned}
& u Ш v=\{143265,143625,146325,164325,614325, \\
& \text { 143652, 146352, 164352, 614352, 146532, } \\
& 164532,614532,165432,615432,651432\} \\
& \sum_{w \in u \amalg v} q^{\operatorname{des}(w)}=3 q^{2}+9 q^{3}+3 q^{4}
\end{aligned}
$$

Permutations, shuffles, and descents

Theorem (Stanley '72; Goulden '85, Stadler '99) If $|A|=a,|B|=b, A \cap B=\varnothing$, $u \in S_{A}, \operatorname{des}(u)=i, v \in S_{B}, \operatorname{des}(v)=j$ then

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}
$$

Permutations, shuffles, and descents

Theorem (Stanley '72; Goulden '85, Stadler '99)
If $|A|=a,|B|=b, A \cap B=\varnothing$,
$u \in S_{A}, \operatorname{des}(u)=i, v \in S_{B}, \operatorname{des}(v)=j$ then

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}
$$

Example: $u=1432, \quad \operatorname{des}(u)=2 ; \quad v=65, \quad \operatorname{des}(v)=1$

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{3}{k-2}\binom{3}{k-1}=\ldots
$$

Permutations, shuffles, and descents

Theorem (Stanley '72; Goulden '85, Stadler '99)
If $|A|=a,|B|=b, A \cap B=\varnothing$,
$u \in S_{A}, \operatorname{des}(u)=i, v \in S_{B}, \operatorname{des}(v)=j$ then

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}
$$

Example: $u=1432, \quad \operatorname{des}(u)=2 ; \quad v=65, \quad \operatorname{des}(v)=1$

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{3}{k-2}\binom{3}{k-1}=\ldots
$$

Remarks:

- Does not depend on u and v (only on $\operatorname{des}(u)$ and $\operatorname{des}(v)$).
- Does not depend on the relative order of A and B.

Permutations, shuffles, and descents

Theorem (Stanley '72; Goulden '85, Stadler '99)
If $|A|=a,|B|=b, A \cap B=\varnothing$,
$u \in S_{A}, \operatorname{des}(u)=i, v \in S_{B}, \operatorname{des}(v)=j$ then

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{a+j-i}{k-i}\binom{b+i-j}{k-j}
$$

Example: $u=1432, \quad \operatorname{des}(u)=2 ; \quad v=65, \quad \operatorname{des}(v)=1$

$$
\#\{w \in u ш v: \operatorname{des}(w)=k\}=\binom{3}{k-2}\binom{3}{k-1}=\ldots
$$

Remarks:

- Does not depend on u and v (only on $\operatorname{des}(u)$ and $\operatorname{des}(v)$).
- Does not depend on the relative order of A and B.
- Actually holds on the level of descent sets.
- Follows from multiplication of quasi-symmetric functions.

Permutations, shuffles, and descents

Motivating Question:
What is the cyclic analogue?

Cyclic permutations, shuffles, and descents

Cyclic permutations, shuffles, and descents

- $A=$ a finite set, $u \in S_{A}$. The cyclic permutation $[u]$ is the equivalence class (orbit) of u under cyclic shifts:

$$
[u]:=\text { the set of all cyclic shifts of } u
$$

Cyclic permutations, shuffles, and descents

- $A=$ a finite set, $u \in S_{A}$. The cyclic permutation $[u]$ is the equivalence class (orbit) of u under cyclic shifts:

$$
[u]:=\text { the set of all cyclic shifts of } u
$$

Denote

$$
c S_{A}:=S_{A} / \text { cyclic equiv. }=\left\{[u]: u \in S_{A}\right\}
$$

Cyclic permutations, shuffles, and descents

- $A=$ a finite set, $u \in S_{A}$. The cyclic permutation $[u]$ is the equivalence class (orbit) of u under cyclic shifts:

$$
[u]:=\text { the set of all cyclic shifts of } u
$$

Denote

$$
c S_{A}:=S_{A} / \text { cyclic equiv. }=\left\{[u]: u \in S_{A}\right\}
$$

Example: $[1432]=\{1432,4321,3214,2143\}$

Cyclic permutations, shuffles, and descents

- $A=$ a finite set, $u \in S_{A}$. The cyclic permutation $[u]$ is the equivalence class (orbit) of u under cyclic shifts:

$$
[u]:=\text { the set of all cyclic shifts of } u
$$

Denote

$$
c S_{A}:=S_{A} / \text { cyclic equiv. }=\left\{[u]: u \in S_{A}\right\}
$$

Example: $[1432]=\{1432,4321,3214,2143\}$

- $A, B=$ disjoint finite sets; $u \in S_{A}, v \in S_{B}$
$u Ш_{c} v:=$ the set of all cyclic shuffles of u and v
$=$ the set of all shuffles of $u^{\prime} \in[u]$ and $v^{\prime} \in[v]$

Cyclic permutations, shuffles, and descents

- $A=$ a finite set, $u \in S_{A}$. The cyclic permutation $[u]$ is the equivalence class (orbit) of u under cyclic shifts:

$$
[u]:=\text { the set of all cyclic shifts of } u
$$

Denote

$$
c S_{A}:=S_{A} / \text { cyclic equiv. }=\left\{[u]: u \in S_{A}\right\}
$$

Example: $[1432]=\{1432,4321,3214,2143\}$

- $A, B=$ disjoint finite sets; $u \in S_{A}, v \in S_{B}$
$u Ш_{c} v:=$ the set of all cyclic shuffles of u and v
$=$ the set of all shuffles of $u^{\prime} \in[u]$ and $v^{\prime} \in[v]$
Example: $u=1234, v=56789$

$$
w=734819562 \in u Ш_{c} v
$$

Cyclic permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a. The cyclic descent set of $u \in S_{A}$ is

$$
\operatorname{cDes}(u):=\{1 \leq i \leq a: u(i)>u(i+1)\},
$$

where $u(a+1):=u(1)$.

Cyclic permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a.

The cyclic descent set of $u \in S_{A}$ is

$$
\operatorname{cDes}(u):=\{1 \leq i \leq a: u(i)>u(i+1)\},
$$

where $u(a+1):=u(1)$.
The cyclic descent number of u is

$$
\operatorname{cdes}(u):=|\operatorname{cDes}(u)| .
$$

Introduced by Cellini ['95] (for arbitrary Weyl groups);

Cyclic permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a. The cyclic descent set of $u \in S_{A}$ is

$$
\operatorname{cDes}(u):=\{1 \leq i \leq a: u(i)>u(i+1)\},
$$

where $u(a+1):=u(1)$.
The cyclic descent number of u is

$$
\operatorname{cdes}(u):=|\operatorname{cDes}(u)| .
$$

Introduced by Cellini ['95] (for arbitrary Weyl groups); further studied by Dilks, Petersen and Stembridge ['09] and others.

Cyclic permutations, shuffles, and descents

- $A=$ a totally ordered finite set of size a.

The cyclic descent set of $u \in S_{A}$ is

$$
\operatorname{cDes}(u):=\{1 \leq i \leq a: u(i)>u(i+1)\},
$$

where $u(a+1):=u(1)$.
The cyclic descent number of u is

$$
\operatorname{cdes}(u):=|\operatorname{cDes}(u)| .
$$

Introduced by Cellini ['95] (for arbitrary Weyl groups); further studied by Dilks, Petersen and Stembridge ['09] and others.
Example: $u=241563 \in S_{[6]}$

$$
\operatorname{Des}(u)=\{2,5\}, \quad \operatorname{cDes}(u)=\{2,5,6\}
$$

Example: $v=341562 \in S_{[6]}$

$$
\operatorname{cDes}(v)=\operatorname{Des}(v)=\{2,5\}
$$

Cyclic permutations, shuffles, and descents

Remarks:

- cdes (u) is invariant under cyclic shifts of u. Thus cdes([u]) is well defined.
- Similarly, the cyclic shuffle $[u] \omega_{c}[v]$ is well defined, and is cyclically invariant.

Cyclic permutations, shuffles, and descents

Remarks:

- cdes (u) is invariant under cyclic shifts of u. Thus cdes([u]) is well defined.
- Similarly, the cyclic shuffle $[u] \omega_{c}[v]$ is well defined, and is cyclically invariant.

Motivating Question:
What is the distribution of $\operatorname{cdes}([w])$ for $[w] \in[u] \omega_{c}[v]$?

Cyclic permutations, shuffles, and descents

Remarks:

- $\operatorname{cdes}(u)$ is invariant under cyclic shifts of u. Thus $\operatorname{cdes}([u])$ is well defined.
- Similarly, the cyclic shuffle $[u] \omega_{c}[v]$ is well defined, and is cyclically invariant.

Motivating Question:
What is the distribution of $\operatorname{cdes}([w])$ for $[w] \in[u] \omega_{c}[v]$?
Theorem (AGRR)
If $|A|=a,|B|=b, A \cap B=\varnothing$,
$u \in S_{A}, \operatorname{cdes}(u)=i, v \in S_{B}, \operatorname{cdes}(v)=j$ then

$$
\#\left\{[w] \in[u] \amalg_{c}[v]: \operatorname{cdes}([w])=k\right\}=?
$$

Cyclic quasi-symmetric functions

Symmetric and quasi-symmetric functions

- A symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two sequences $\left(i_{1}, \ldots, i_{t}\right)$ and ($i_{1}^{\prime}, \ldots, i_{t}^{\prime}$) of distinct positive integers (indices), and any sequence (m_{1}, \ldots, m_{t}) of positive integers (exponents), the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}} \cdots x_{i_{t}^{\prime}}^{m_{t}}$ in f are equal.
- A quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, and any sequence $\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}} \cdots x_{i_{t}^{\prime}}^{m_{t}}$ in f are equal.

Cyclic quasi-symmetric functions

- A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, any sequence $m=\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, and any cyclic shift $m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right)$ of m, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}^{\prime}} \cdots x_{i_{t}^{\prime}}^{m_{t}^{\prime}}$ in f are equal.
Example:

$$
\begin{aligned}
& \quad x_{1}^{4} x_{2}^{2} x_{3}^{5}+\ldots \in \text { QSym } \\
& x_{1}^{4} x_{2}^{2} x_{3}^{5}+x_{1}^{2} x_{2}^{5} x_{3}^{4}+x_{1}^{5} x_{2}^{4} x_{3}^{2}+\ldots \in \mathrm{cQSym} \\
& x_{1}^{4} x_{2}^{2} x_{3}^{5}+x_{1}^{2} x_{2}^{5} x_{3}^{4}+x_{1}^{5} x_{2}^{4} x_{3}^{2}+ \\
& x_{1}^{4} x_{2}^{5} x_{3}^{2}+x_{1}^{5} x_{2}^{2} x_{3}^{4}+x_{1}^{2} x_{2}^{4} x_{3}^{5}+\ldots \in \text { Sym }
\end{aligned}
$$

Similar features

- Sym, QSym, and cQSym are graded rings, Sym $\subseteq c$ QSym \subseteq QSym

Similar features

- Sym, QSym, and cQSym are graded rings,

$$
\text { Sym } \subseteq c Q S y m \subseteq \text { QSym }
$$

- The n-th graded piece has a basis indexed by simple combinatorial objects:

$$
\begin{aligned}
\text { Sym }_{n}: & \left\{s_{\lambda}: \lambda \vdash n\right\} \quad \text { Schur functions } \\
\text { QSym }_{n}: & \left\{F_{n, J}: J \subseteq[n-1]\right\} \quad \text { Fundamental QSF } \\
\text { cQSym }_{n}: & \left\{\widehat{F}_{n,[J]}^{c}: \varnothing \neq J \subseteq[n] \text { up to cyclic shifts }\right\} \\
& \text { Normalized fundamental CQSF }
\end{aligned}
$$

Similar features

- Sym, QSym, and cQSym are graded rings,

$$
\text { Sym } \subseteq \mathrm{cQSym} \subseteq \text { QSym }
$$

- The n-th graded piece has a basis indexed by simple combinatorial objects:

$$
\begin{aligned}
\operatorname{Sym}_{n}: & \left\{s_{\lambda}: \lambda \vdash n\right\} \quad \text { Schur functions } \\
\text { QSym }_{n}: & \left\{F_{n, J}: J \subseteq[n-1]\right\} \quad \text { Fundamental QSF } \\
\text { cQSym }_{n}: & \left\{\widehat{F}_{n,[J]}^{c}: \varnothing \neq J \subseteq[n] \text { up to cyclic shifts }\right\}
\end{aligned}
$$

Normalized fundamental CQSF

- Dimension:

$$
\begin{aligned}
\operatorname{dim} \operatorname{Sym}_{n} & =p(n) \sim c^{\sqrt{n}} \quad \text { (partitions) } \\
\operatorname{dim} \text { QSym }_{n} & =2^{n-1} \quad(\text { compositions) } \\
\operatorname{dim} \text { cQSym }_{n} & =\frac{1}{n} \sum_{d \mid n} \varphi(d) 2^{n / d}-1 \sim \frac{1}{n} 2^{n}
\end{aligned}
$$

Similar features (cont.)

- The involution ω :

$$
\begin{aligned}
\operatorname{Sym}_{n}: & s_{\lambda} \leftrightarrow s_{\lambda^{\prime}} \\
\text { QSym }_{n}: & F_{n, J} \leftrightarrow F_{n,[n-1] \backslash J} \\
\operatorname{cQSym}_{n}: & \widehat{F}_{n,[J]}^{c} \leftrightarrow \widehat{F}_{n,[[n] \backslash J]}^{c}
\end{aligned}
$$

Similar features (cont.)

- The involution ω :

$$
\begin{aligned}
\operatorname{Sym}_{n}: & s_{\lambda} \leftrightarrow s_{\lambda^{\prime}} \\
\text { QSym }_{n}: & F_{n, J} \leftrightarrow F_{n,[n-1] \backslash J} \\
\operatorname{cQSym}_{n}: & \widehat{F}_{n,[J]}^{c} \leftrightarrow \widehat{F}_{n,[[n] \backslash J]}^{c}
\end{aligned}
$$

- Multiplication corresponds to (cyclic) shuffling: For $u \in S_{A}$, $v \in S_{B}, A \cap B=\varnothing, A \cup B=C$,

$$
\begin{aligned}
F_{|A|, c \operatorname{Des}(u)} \cdot F_{|B|, \mathrm{cDes}(v)} & =\sum_{w \in u 山 v} F_{|C|, \mathrm{cDes}(w)} \\
F_{|A|,[\operatorname{CDes}(u)]}^{c} \cdot F_{|B|,[\operatorname{DDes}(v)]}^{c} & =\sum_{[w] \in[u] \omega_{c}[v]} F_{|C|,[\operatorname{CDes}(w)]}^{c}
\end{aligned}
$$

Similar features (cont.)

- $s_{\lambda / \mu}$ is a linear combination, with nonnegative integer coefficients, of the basis elements (for cQSym - only when λ / μ is not a connected ribbon!):

$$
\begin{aligned}
s_{\lambda / \mu} & =\sum_{T \in \operatorname{SYT}(\lambda / \mu)} F_{n, \operatorname{Des}(T)} \quad[\text { Gessel '84] } \\
& =\sum_{[J]} m^{c}([J]) \widehat{F}_{n,[J]}^{c}
\end{aligned}
$$

This follows from the existence of cyclic descents for SYT (Rhoades ['10], A-Reiner-Roichman ['18], A-ElizaldeRoichman ['19], Huang ['20])

Differences

- The need for normalization: $\widehat{F}_{n,[J]}^{c}=\frac{1}{d_{J}} F_{n, J}^{c}$, where

$$
d_{J}:=\left|\operatorname{Stab}_{\mathbb{Z} / n \mathbb{Z}}(J)\right|=\#\{i \in \mathbb{Z} / n \mathbb{Z}: J+i \equiv J \quad(\bmod n)\}
$$

Differences

- The need for normalization: $\widehat{F}_{n,[J]}^{c}=\frac{1}{d_{\jmath}} F_{n, J}^{c}$, where

$$
d_{J}:=\left|\operatorname{Stab}_{\mathbb{Z} / n \mathbb{Z}}(J)\right|=\#\{i \in \mathbb{Z} / n \mathbb{Z}: J+i \equiv J \quad(\bmod n)\}
$$

- Linear dependence:

$$
\sum_{[J]}(-1)^{|J|} \widehat{F}_{n,[J]}^{c}=0
$$

Differences

- The need for normalization: $\widehat{F}_{n,[J]}^{c}=\frac{1}{d_{J}} F_{n, J}^{c}$, where

$$
d_{J}:=\left|\operatorname{Stab}_{\mathbb{Z} / n \mathbb{Z}}(J)\right|=\#\{i \in \mathbb{Z} / n \mathbb{Z}: J+i \equiv J \quad(\bmod n)\}
$$

- Linear dependence:

$$
\sum_{[J]}(-1)^{|J|} \widehat{F}_{n,[J]}^{c}=0
$$

- "Non-Escher" property: clearly

$$
\operatorname{cDes}(u) \neq \varnothing,[n] \quad\left(\forall u \in S_{n}\right)
$$

but we would like to include $\widehat{F}_{n,[\varnothing]}^{c}=h_{n}=s_{(n)}$ and $\widehat{F}_{n,[n]]}^{c}=e_{n}=s_{\left(1^{n}\right)}$.

Other proof ingredients

An unusual ring homomorphism

- Define a new product on $\mathbb{Z}[[q]]$ by

$$
q^{i} \odot q^{j}:=q^{\max (i, j)},
$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

An unusual ring homomorphism

- Define a new product on $\mathbb{Z}[[q]]$ by

$$
q^{i} \odot q^{j}:=q^{\max (i, j)},
$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

- Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]]=\mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[\mathbf{x}]]_{\text {bd }}$ consisting of bounded-degree power series.

An unusual ring homomorphism

- Define a new product on $\mathbb{Z}[[q]]$ by

$$
q^{i} \odot q^{j}:=q^{\max (i, j)},
$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

- Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]]=\mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[\mathbf{x}]]_{\text {bd }}$ consisting of bounded-degree power series.
- Define a ring homomorphism $\psi: \mathbb{Z}[[\mathbf{x}]]_{\text {bd }} \rightarrow \mathbb{Z}[[q]]_{\odot}$ by

$$
\Psi\left(x_{i_{1}}^{m_{1}} \cdots x_{i_{k}}^{m_{k}}\right):=q^{i_{k}} \quad\left(k>0, i_{1}<\ldots<i_{k}, m_{1}, \ldots, m_{k}>0\right)
$$

and $\Psi(1):=1$.

An unusual ring homomorphism

- Define a new product on $\mathbb{Z}[[q]]$ by

$$
q^{i} \odot q^{j}:=q^{\max (i, j)},
$$

with the usual addition, to get the ring $\mathbb{Z}[[q]]_{\odot}$.

- Consider the ring of multivariate formal power series $\mathbb{Z}[[\mathbf{x}]]=\mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ (with the usual addition and multiplication), and its subring $\mathbb{Z}[[\mathbf{x}]]_{\text {bd }}$ consisting of bounded-degree power series.
- Define a ring homomorphism $\psi: \mathbb{Z}[[\mathbf{x}]]_{\text {bd }} \rightarrow \mathbb{Z}[[q]]_{\odot}$ by

$$
\Psi\left(x_{i_{1}}^{m_{1}} \cdots x_{i_{k}}^{m_{k}}\right):=q^{i_{k}} \quad\left(k>0, i_{1}<\ldots<i_{k}, m_{1}, \ldots, m_{k}>0\right)
$$

and $\Psi(1):=1$.

$$
\Psi\left(F_{n, J}\right)=\frac{q^{|J|+1}}{(1-q)^{n}} \quad(J \subseteq[n-1])
$$

A triple binomial identity

Other proof ingredients $00 \bullet 00$ 000

A triple binomial identity

A triple binomial identity

Doron Zeilberger

Other proof ingredients 000

A triple binomial identity

$$
\begin{aligned}
& \text { WHO YOU GONNA CALL? }
\end{aligned}
$$

A triple binomial identity

WHO YOU GONNA CALL?

This is a special case of the triple-binomial identity

$$
\sum_{k}\binom{m-x+y}{k}\binom{n-y+x}{n-k}\binom{x+k}{m+n}=\binom{x}{m}\binom{y}{n}
$$

which is equivalent to the hypergeometric identity

$$
{ }_{3} F_{2}\left(\left.\begin{array}{c}
a, b,-n \\
c, a+b-c-n+1
\end{array} \right\rvert\, 1\right)=\frac{(c-a)^{\bar{n}}(c-b)^{\bar{n}}}{c^{\bar{n}}(c-a-b)^{\bar{n}}}
$$

due to Pfaff (1797) and Saalschütz (1890). We use the general case.

... and the answer is:

... and the answer is:

Theorem (AGRR)
If $|A|=a,|B|=b$ with $A \cap B=\varnothing$, and $u \in S_{A}, v \in S_{B}$ with $\operatorname{cdes}([u])=i, \operatorname{cdes}([v])=j$, then the number of $[w] \in[u] \omega_{c}[v]$ with $\operatorname{cdes}([w])=k$ is

$$
\begin{aligned}
& k\binom{a+j-i-1}{k-i}\binom{b+i-j-1}{k-j}+ \\
& \quad(a+b-k)\binom{a+j-i-1}{k-i-1}\binom{b+i-j-1}{k-j-1} \\
& =\frac{k(a-i)(b-j)+(a+b-k) i j}{(a+j-i)(b+i-j)}\binom{a+j-i}{k-i}\binom{b+i-j}{k-j} .
\end{aligned}
$$

Summary

Summary

- The ring cQSym of cyclic quasi-symmetric functions is intermediate between Sym and QSym.
- It has many properties in common with QSym, but also some interesting unique features.
- It has applications to combinatorial enumeration (and to other areas).

Thank You!

