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Cyclic descents of permutations

The descent set of a permutation π = (π1, . . . , πn) in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1],

where [m] := {1, 2, . . . ,m}.

The cyclic descent set is defined, with the convention πn+1 := π1,
by

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n].

Introduced by Cellini [’95] (for arbitrary Weyl groups); further
studied by Dilks, Petersen and Stembridge [’09] and others.
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Cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.
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Example

π = 23154 : Des(π) = {2, 4} ,

cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.

2

3

1

5

1 2 3 4

4

4

2

5

3

4

1

5

2

1 2 3 4

3

5



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.

π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.

2

3

1

5

1 2 3 4

4

4

2

5

3

4

1

5

2

1 2 3 4

3

5



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 :

Des(π) = {2, 4} , cDes(π) = {2, 4}.

2

3

1

5

1 2 3 4

4

4

2

5

3

4

1

5

2

1 2 3 4

3

5



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} ,

cDes(π) = {2, 4}.

2

3

1

5

1 2 3 4

4

4

2

5

3

4

1

5

2

1 2 3 4

3

5



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.

2

3

1

5

1 2 3 4

4

4

2

5

3

4

1

5

2

1 2 3 4

3

5



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Question:

Can a similar concept be defined in other contexts?
E.g., for standard Young tableaux?
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Standard Young Tableaux

A shape λ of size n is a partition λ = (λ1, . . . , λk) ` n. It has a
corresponding diagram.

Example

λ = (4, 3, 1)

A standard Young tableau (SYT) T of shape λ is a filling of the
diagram of λ by the numbers 1, . . . , n, each one appearing once,
such that the entries increase along rows (from left to right) and
along columns (from top to bottom).

Example

λ = (4, 3, 1)
1 2 4 8
3 5 7
6
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Standard Young Tableaux

A diagram of skew shape λ/µ is the set difference of the diagrams
of shapes λ and µ, assuming that µ ⊆ λ, i.e. µi ≤ λi (∀i).

A SYT of skew shape λ/µ is defined as for shape λ.

Example

λ/µ = (4, 3, 3, 1)/(2, 1)

2 3
1 5

4 7 8
6

Denote the set of all standard Young tableaux of shape λ/µ by
SYT(λ/µ).
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Descents of SYT

The descent set of a standard Young tableau T is

Des(T ) := {i : i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6

5
∈ SYT((4, 3, 1)/(1, 1))

Des(T ) = {2, 4}.

Motivating Problem:

Define a cyclic descent set for SYT of any shape λ/µ.
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SYT of rectangular shapes

Theorem (Rhoades ’10)

For r |n, let λ = (rn/r ) = (r , . . . , r) ` n be a rectangular shape.
Then there exists a cyclic descent map cDes : SYT(λ)→ 2[n] s.t.,
for all T ∈ SYT(λ),

cDes(T ) ∩ [n − 1] = Des(T )

cDes(p(T )) = pn(cDes(T ))

where pn acts on the set of integers cDes(T ) by adding 1 (mod n)
to each element, and p acts on the SYT T by Schützenberger’s
jeu-de-taquin promotion.
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SYT of rectangular shapes

Example

λ = (3, 3) ` 6.

Jeu-de-taquin promotion:

1 3 4
2 5 6

→ 1 3 4
2 5

→ 1 3 4
2 5

→ 1 4
2 3 5

→ 1 4
2 3 5

→ 1 2 5
3 4 6

Two orbits of SYT:

1 3 4
2 5 6

1 2 5
3 4 6

1 2 3
4 5 6

; 1 3 5
2 4 6

1 2 4
3 5 6

{1, 4} {2, 5} {3, 6} ; {1, 3, 5} {2, 4, 6}
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Formalization

Let us formalize the concept of a cyclic descent set. Recall the
bijection pn : 2[n] −→ 2[n] induced by the cyclic shift i 7→ i + 1
(mod n).

Definition
Let T be a finite set, and Des : T −→ 2[n−1] any map. A cyclic
extension of Des is a pair (cDes, p), where cDes : T −→ 2[n] is a
map and p : T −→ T is a bijection, satisfying the following
axioms: for all T in T ,

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = pn(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].
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Formalization

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = pn(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].

Examples

• T = Sn, cDes = Cellini’s cyclic descent set, p = cyclic
rotation of indices.

• T = SYT(rn/r ), cDes = Rhoades’ cyclic descent set, p =
jeu-de-taquin promotion.

Motivating Problem:

Does Des on SYT(λ/µ) have a cyclic extension ?
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More examples

For λ ` n− 1 let λ� be the skew shape obtained from λ by placing
a disconnected box at its upper right corner.

Example

(3, 3, 1)� =

Theorem (Elizalde-Roichman ’15)

For every partition λ ` n− 1 there exists a cyclic descent extension
on SYT(λ�).
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More examples

Theorem (A-Elizalde-Roichman ’16)

Each of the following shapes carries a cyclic descent extension:

(strip)

(hook plus one box)

(two rows).

The proofs are explicit and combinatorial.
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More examples

Remarks

• For the shape (n − 2, 2), the definition for a two-row shape
coincides with the definition for a hook plus one box.

• For the shape (r , r), the definition for a two-row shape
coincides with Rhoades’ definition for a rectangular shape.

So far - so good!
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Hooks and ribbons

A connected skew shape λ/µ is a ribbon if it does not contain a
2× 2 square.

In particular, for µ = ∅, a non-skew ribbon is a hook
λ = (n − k , 1k).

Example

Proposition If λ/µ is a connected ribbon, then SYT(λ/µ) does not
have a cyclic descent extension.

Oops !!!
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A Conjecture

At this point, we conducted computer experiments on all partitions
of size n < 16. The numerical results led to

Conjecture

For every non-hook partition λ ` n, the set SYT(λ) has a cyclic
descent extension.
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Main theorem

Recall our

Conjecture
For every non-hook partition λ ` n, the set SYT(λ) has a cyclic
descent extension.

This is indeed true, and can actually be extended to arbitrary skew
shapes.

Theorem (A-Reiner-Roichman ’17)

1. (existence) For every skew shape λ/µ of size n, which is not a
connected ribbon, there exists a cyclic descent extension.

2. (uniqueness) For any such shape, all cyclic descent extensions
cDes : SYT(λ/µ)→ 2[n] have the same fiber sizes
| cDes−1(J)|, uniquely determined by λ/µ and J ⊆ [n].
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Near-hooks

In general, the descent map cDes is not unique; only the fiber sizes
are. However, in some special cases the map itself is unique.

Theorem
Let λ/µ be skew shape with n ≥ 2 cells, and let 1 ≤ k ≤ n − 1 be
an integer. Then TFAE:

1. All the tableaux in SYT(λ/µ) have the same cyclic descent
number k.

2. The set of descent numbers of SYT(λ/µ) is {k − 1, k}.
3. Either λ/µ or its reverse is “one cell away from a hook”,

namely has one of the forms:

(a) Hook minus its corner cell: (n− k + 1, 1k)/(1) = (1k)⊕ (n− k).
(b) Hook plus a disconnected cell: (n − k , 1k−1)⊕ (1) or

(1)⊕ (n − k, 1k−1).
(c) Hook plus an internal cell: (n− k, 2, 1k−2), with 2 ≤ k ≤ n− 2.

The shapes (a), (b) and (c) will be called near-hooks.
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Near-hooks

Example

Near-hooks, for n = 5 and k = 2:

, , , .

Their reverses:

, , , .
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Exceptional (Escher) cyclic descents

What happens if we relax the non-Escher condition?

Definition
Let T be a finite set, and Des : T −→ 2[n−1] any map. An
exceptional (Escher) cyclic extension of Des is a pair (cDes∗, p),
where cDes∗ : T −→ 2[n] is a map and p : T −→ T is a bijection,
satisfying the following axioms:

(extension) cDes∗(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes∗(p(T )) = pn(cDes∗(T )),

(Escher) (∃T ∈ T ) cDes∗(T ) ∈ {∅, [n]}.
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Exceptional (Escher) cyclic descents

Theorem
Let λ/µ be a skew shape of size n ≥ 2. The usual descent map
Des on SYT(λ/µ) has an exceptional cyclic extension (cDes∗, p) if
and only if λ/µ has one of the following forms. In each case, all
such extensions have the same fiber sizes | cDes−1∗ (J)| (∀J ⊆ [n]).

1. λ/µ = (n), a single row: cDes∗(T ) = ∅ for the unique SYT
T .

2. λ/µ = (1n), a single column: cDes∗(T ) = [n] for the unique
SYT T .

3. λ/µ = (1)⊕n has n connected components, each of size 1,
with n even. In this case there is also a non-Escher cyclic
extension, and the fiber sizes satisfy

| cDes−1∗ (J)| = | cDes−1(J)|+ (−1)|J| (∀J ⊆ [n]).

In particular, | cDes−1∗ (∅)| = | cDes−1∗ ([n])| = 1.
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Exceptional (Escher) cyclic descents

Remarks

1. For n = 1, there are two distinct exceptional cyclic extensions,
one with cDes∗(T ) = ∅ and the other with cDes∗(T ) = [1],
for the unique SYT T .

2. For λ/µ = (1)⊕n there is a natural descent-preserving
bijection between SYT(λ/µ) and the symmetric group Sn. It
follows that, for even n, there is a definition for the cyclic
descents of permutations whose distribution is slightly
different from Cellini’s!
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Exceptional (Escher) cyclic descents

Example

The symmetric group S4.

cDes/cDes∗

4123 3412 2341 1234
{1}/{1, 4} {2}/{2, 4} {3}/{3, 4} {4}/∅

1432 2143 3214 4321
{2, 3, 4}/{2, 3} {1, 3, 4}/{1, 3} {1, 2, 4}/{1, 2} {1, 2, 3}/{1, 2, 3, 4}
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Schur functions
For λ ` n let the Schur function sλ be∑

T∈SSYT (λ)

∏
i

xnumber of i entries in T
i ,

where SSYT (λ) is the set of semi-standard Young tableaux of
shape λ (weakly increasing along rows, and strictly increasing
along columns).

Example SSYT (2, 1) =

1 1
2

1 2
2

1 1
3

1 2
3

1 3
2

1 3
3

2 2
3

2 3
3

. . .

s2,1 = x21x2 + x1x
2
2 + x21x3 + 2x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3 + . . .

Schur functions are symmetric, and form a basis for the space of
symmetric functions.
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Complete homogeneous functions

λ = (5)

For the special case of a one-row shape λ = (n), the Schur function
hn = s(n) is the complete homogeneous symmetric function:

hn =
∑

i1≤...≤in

xi1 · · · xin .

Define also, for a sequence N = (n1, . . . , nk),

hN = hn1 · · · hnk .



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Complete homogeneous functions

λ = (5)

For the special case of a one-row shape λ = (n), the Schur function
hn = s(n) is the complete homogeneous symmetric function:

hn =
∑

i1≤...≤in

xi1 · · · xin .

Define also, for a sequence N = (n1, . . . , nk),

hN = hn1 · · · hnk .



Cyclic descents Existence and uniqueness Tools Additional aspects Summary and open problems

Schur positivity

A symmetric function is called Schur positive if all coefficients of
its expansion in the Schur basis are nonnegative.

Motivating Example
The product sµsν is clearly symmetric.
It is also Schur-positive:

sµsν =
∑
λ

cλµ,νsλ,

where the Littlewood-Richardson coefficients cλµ,ν ≥ 0 have a
combinatorial interpretation.
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Ribbon Schur functions

For a subset J = {j1 < j2 < . . . < jt} ⊆ [n − 1] define the
associated composition

co(J) := (j1, j2 − j1, j3 − j2, . . . , n − jt)

and the corresponding ribbon Schur function

sco(J) :=
∑
I⊆J

(−1)|J\I |hco(I ).

Theorem (Gessel ’83)

For any skew shape λ/µ and J ⊆ [n],

|{T ∈ SYT(λ/µ) : Des(T ) = J}| = 〈sλ/µ, sco(J)〉.

In particular,

〈sλ/µ, sco(J)〉 ≥ 0 (∀J ⊆ [n]).

The ribbon Schur functions sco(J) are Schur positive.
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Affine ribbon Schur functions

For a subset ∅ 6= J = {j1 < j2 < . . . < jt} ⊆ [n] define the
associated cyclic composition

cc(J) := (j2 − j1, j3 − j2, . . . , j1 − jt + n)

and the corresponding affine ribbon Schur function

s̃cc(J) :=
∑

∅6=I⊆J
(−1)|J\I |hcc(I ).
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Affine ribbon Schur functions

Example

Let n = 6 and J = {3, 5}. The affine ribbon Schur function is

s̃cc({3,5}) = hcc({3,5}) − hcc({3}) − hcc({5})

= h(2,4) − h(6) − h(6).
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Theorem (A-Reiner-Roichman ’16)

A skew shape λ/µ has a cyclic descent extension if and only if

〈sλ/µ, s̃cc(J)〉 ≥ 0 (∀∅ 6= J ⊆ [n]),

and then

|{T ∈ SYT(λ/µ) : cDes(T ) = J}| = 〈sλ/µ, s̃cc(J)〉.

If all the s̃cc(J) were Schur positive, we would have a cyclic
extension for all λ/µ (since sλ/µ is always Schur positive).

However, this is not the case!

Example

For n = 6 and J = {3, 5},

s̃cc({3,5}) = s4,2 + s5,1 − s6.
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Gromov-Witten invariants

Gromov-Witten invariants appear in

• string theory: Free energy in type IIA superstring theory

• symplectic geometry: Count (pseudoholomorphic) curves in a
symplectic manifold, subject to certain conditions

• algebraic geometry: Yield structure constants for (cup product
of) quantum cohomology

Specifically, let the Grassmannian Grk,n be the projective variety of
all k-dimensional subspaces of Cn.

Let Pk,n be the set of all partitions λ whose shape fits in a
k × (n − k) rectangle, namely λ = (λ1, . . . , λk) with
n − k ≥ λ1 ≥ . . . ≥ λk ≥ 0.
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Gromov-Witten invariants

Fix a flag of subspaces {0} = V0 ⊂ V1 ⊂ . . . ⊂ Vn = Cn. For each
λ ∈ Pk,n Define the corresponding Schubert variety Ωλ ⊂ Grk,n as
the set of all subspaces X ∈ Grk,n such that the dimensions of its
intersections with the various subspaces Vi in the flag satisfy
suitable bounds (depending on λ).

For a nonnegative integer d and partitions λ, µ, ν ∈ Pk,n, the

(3-point) Gromov-Witten invariant Cλ,dµ,ν is the number of rational
curves of degree d in Grk,n that intersect fixed generic translates of
the Schubert varieties Ωλ∨ , Ωµ and Ων , provided that this number
is finite. This happens exactly when |µ|+ |ν| = nd + |λ|.
For d = 0, Cλ,0µ,ν = cλµ,ν are the Littlewood-Richardson coefficients.

Important: The geometric description implies that

Cλ,dµ,ν ≥ 0 (∀d , λ, µ, ν)
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Existence

Recall that the affine ribbon Schur functions s̃cc(J) are not always
Schur positive. Can this be made more precise?

Theorem (Postnikov ’05, McNamara ’06, A-Reiner-Roichman)

For all ∅ 6= J ⊆ [n] of size k > 0

s̃cc(J) +
k−1∑
i=0

(−1)k−i s(n−i ,1i )

is Schur positive (and hook-free).
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Existence

Proof idea:

s̃cc(J) = sλ/1/λ + (−1)|J|−1pn,

where sλ/1/λ is a special case of Postnikov’s (toric) cylindric Schur
functions and

pn = xn1 + xn2 + . . . =
n−1∑
i=0

(−1)i s(n−i ,1i )

is the n-th power symmetric function.
Postnikov proved that, restricting to k variables only (namely
letting xk+1 = . . . = 0),

sλ/d/µ(x1, . . . , xk) =
∑

ν⊆k×(n−k)

Cλ,dµ,ν sν(x1, . . . , xk),

where Cλ,dµ,ν ≥ 0 are the aforementioned Gromov-Witten invariants.
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A topological interpretation

The Coxeter complex Σ(W ) of type A2:

The Steinberg torus ∆̃ = Σ(W̃ )/ZΦ∨ of type Ã2:
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A topological interpretation

The Coxeter complex ∆ = Σ(An−1), and each of its type-selected
subcomplexes ∆J (for J ⊆ [n− 1]), are Cohen-Macaulay. Their top
cohomology groups carry Sn-representations corresponding to the
ribbon Schur functions sco(J).

The Steinberg torus ∆̃ is not Cohen-Macaulay. Its Euler
characteristic carries the (virtual) Sn-representation∑

i≥0
(−1)i ch(C i (∆̃)) =

∑
i≥0

(−1)i ch(H i (∆̃))

which corresponds to the symmetric function identity

∑
∅6=I⊆[n]

(−1)n−|I |hcc(I ) =
n−1∑
i=0

(−1)n−1−i s(n−i ,1i ) = s̃cc([n]).

There are analogues for type-selected subcomplexes.
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Cyclic quasi-symmetric functions
A quasi-symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1, any
two increasing sequences i1 < . . . < it and i ′1 < . . . < i ′t of positive
integers, and any sequence (m1, . . . ,mt) of positive integers, the
coefficients of xm1

i1
· · · xmt

it
and xm1

i ′1
· · · xmt

i ′t
in f are equal. The set

QSym of all quasi-symmetric functions is a graded ring, and its
n-homogeneous part QSymn has as a basis Gessel’s fundamental
quasi-symmetric functions FJ , indexed by all subsets J ⊆ [n − 1].
Its dimension is 2n−1.

Theorem (Gessel ’84)

For any skew shape λ/µ,∑
T∈SYT(λ/µ)

FDes(T ) = sλ/µ.
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Cyclic quasi-symmetric functions
A cyclic quasi-symmetric function is a formal power series
f ∈ Z[[x1, x2, . . .]] of bounded degree such that, for any t ≥ 1, any
two increasing sequences i1 < . . . < it and i ′1 < . . . < i ′t of positive
integers, any sequence m = (m1, . . . ,mt) of positive integers, and
any cyclic shift m′ = (m′1, . . . ,m

′
t) of m, the coefficients of

xm1
i1
· · · xmt

it
and x

m′
1

i ′1
· · · xm

′
t

i ′t
in f are equal.

Theorem (A-Gessel-Reiner-Roichman ’17)

The set cQSym of all cyclic quasi-symmetric functions is a graded
ring, and its n-homogeneous part QSymn has as a basis suitable
(normalized) fundamental cyclic quasi-symmetric functions F̂A,
indexed by the orbits A of the Z/nZ-action (by cyclic shifts) on the
nonempty subsets J ⊆ [n]. Its dimension is

1

n

∑
d |n

ϕ(d)(2n/d − 1).
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Cyclic quasi-symmetric functions

Theorem (A-Gessel-Reiner-Roichman ’17)

For any skew shape λ/µ which is not a connected ribbon,∑
T∈SYT(λ/µ)

F̂[cDes(T )] = sλ/µ.

Corollary

For any non-hook shape ν and set J ⊆ [n], the Gromov-Witten

invariant Cλ,1λ,ν is equal to the coefficient of F̂[J] in the expansion of
sν , where the partition λ corresponds to the cyclic composition
cc(J).
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invariant Cλ,1λ,ν is equal to the coefficient of F̂[J] in the expansion of
sν , where the partition λ corresponds to the cyclic composition
cc(J).
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Summary

• For almost all skew shapes λ/µ there exists a cyclic extension
cDes for the usual descent map.

• For almost all skew shapes λ/µ, the fiber size distribution of
this cyclic extension is unique.

• The proof (of existence) involves toric Schur functions and the
nonnegativity of Gromov-Witten invariants.
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Open Problems

Problem
Find an explicit combinatorial description of a cyclic descent
extension on SYT(λ/µ).

Problem
Find an explicit “cyclic shift” p on SYT(λ/µ).

Problem
For each non-hook partition λ ` n find a cyclically closed subset
A ⊆ Sn such that∑

π∈A
xcDes(π) =

∑
T∈SYT(λ)

xcDes(T ).
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Thank You!
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