Cyclic descents, standard Young tableaux and Gromov-Witten invariants

Ron Adin

Bar-Ilan University and IIAS

Combinatorics Seminar, MIT
February 7, '18

Based on joint works with

Ira Gessel (Brandeis)
Sergi Elizalde (Dartmouth)
Vic Reiner (Minnesota)
Yuval Roichman (Bar-Ilan)

Outline

Cyclic descents

Existence and uniqueness

Tools

Additional aspects

Summary and open problems

Cyclic descents

Cyclic descents of permutations

Cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$.

Cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$.
The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq[n]
$$

Cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$.
The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq[n] .
$$

Introduced by Cellini ['95] (for arbitrary Weyl groups);

Cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group \mathfrak{S}_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$.
The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq[n] .
$$

Introduced by Cellini ['95] (for arbitrary Weyl groups); further studied by Dilks, Petersen and Stembridge ['09] and others.

Cyclic descents of permutations

Example

Cyclic descents of permutations

Example

$$
\pi=23154:
$$

Cyclic descents of permutations

Example

$$
\pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}
$$

Cyclic descents of permutations

Example

$$
\pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4,5\} .
$$

Cyclic descents of permutations

Example

$$
\begin{aligned}
& \pi=23154: \\
& \pi=34152:
\end{aligned} \quad \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4,5\} .
$$

Cyclic descents of permutations

Example

$$
\begin{array}{ll}
\pi=23154: & \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4,5\} . \\
\pi=34152: & \operatorname{Des}(\pi)=\{2,4\},
\end{array}
$$

Cyclic descents of permutations

Example

$$
\begin{aligned}
& \pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4,5\} . \\
& \pi=34152: \quad \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4\} \text {. }
\end{aligned}
$$

Question:

Can a similar concept be defined in other contexts? E.g., for standard Young tableaux?

Standard Young Tableaux

A shape λ of size n is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$. It has a corresponding diagram.

Example

$$
\lambda=(4,3,1)
$$

Standard Young Tableaux

A shape λ of size n is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$. It has a corresponding diagram.

Example

$$
\lambda=(4,3,1)
$$

A standard Young tableau (SYT) T of shape λ is a filling of the diagram of λ by the numbers $1, \ldots, n$, each one appearing once, such that the entries increase along rows (from left to right) and along columns (from top to bottom).
Example

$$
\lambda=(4,3,1) \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 7 & \\
\hline 6 & & &
\end{array}
$$

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.
Example

$$
\begin{array}{l|l|l|l|}
\cline { 2 - 4 } & 2 & 3 \\
\cline { 2 - 4 } & 1 & 5 & \\
\hline 4 & \\
\hline & 7 & 8 & \\
\hline 6 & & &
\end{array}
$$

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.
Example

$$
\lambda / \mu=(4,3,3,1) /(2,1)
$$

Denote the set of all standard Young tableaux of shape λ / μ by $\operatorname{SYT}(\lambda / \mu)$.

Descents of SYT

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5 &
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5 &
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Motivating Problem:
Define a cyclic descent set for SYT of any shape λ / μ.

SYT of rectangular shapes

SYT of rectangular shapes

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes: $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t., for all $T \in \operatorname{SYT}(\lambda)$,

$$
\operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)
$$

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t., for all $T \in \operatorname{SYT}(\lambda)$,

$$
\begin{aligned}
\operatorname{cDes}(T) \cap[n-1] & =\operatorname{Des}(T) \\
\operatorname{cDes}(p(T)) & =p_{n}(\operatorname{cDes}(T))
\end{aligned}
$$

where p_{n} acts on the set of integers $\mathrm{cDes}(T)$ by adding $1(\bmod n)$ to each element, and p acts on the SYT T by Schützenberger's jeu-de-taquin promotion.

SYT of rectangular shapes

Example
$\lambda=(3,3) \vdash 6$.

SYT of rectangular shapes

Example
$\lambda=(3,3) \vdash 6$.

Jeu-de-taquin promotion:

SYT of rectangular shapes

Example
$\lambda=(3,3) \vdash 6$.

Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	$\rightarrow \rightarrow$	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

SYT of rectangular shapes

Example
$\lambda=(3,3) \vdash 6$.

Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	$\rightarrow \rightarrow$	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

Two orbits of SYT:

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline 1 & 2 & 2 & \begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 4 & 6 \\
\hline 4 & 5 & 6 \\
\hline
\end{array} ; \quad \begin{array}{|l|l|l|}
\hline 1 & 3 & 5 \\
\hline 2 & 4 & 6 \\
\hline 1 & 2 & 4 \\
\hline 3 & 5 & 6 \\
\hline
\end{array} \mathbf{|} \\
\hline
\end{array}
$$

SYT of rectangular shapes

Example
$\lambda=(3,3) \vdash 6$.

Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	$\rightarrow \rightarrow$	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

Two orbits of SYT:

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 1 & 2 & 5 \\
\hline 3 & 4 & 6 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 4 & 5 & 6 \\
\hline
\end{array} ; \\
& \{1,4\} \\
& \{2,5\} \\
& \{3,6\} \\
& \{1,3,5\} \\
& \{2,4,6\}
\end{aligned}
$$

Formalization

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_{n}: 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i+1$ $(\bmod n)$.

Formalization

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_{n}: 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i+1$ $(\bmod n)$.

Definition
Let \mathcal{T} be a finite set, and Des: $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. A cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all T in \mathcal{T},

Formalization

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_{n}: 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i+1$ $(\bmod n)$.

Definition
Let \mathcal{T} be a finite set, and Des: $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. A cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all T in \mathcal{T},

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=p_{n}(\mathrm{cDes}(T)), \\
\text { (non-Escher) } & \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n] .
\end{aligned}
$$

Formalization

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=p_{n}(\operatorname{c\operatorname {Des}(T)),} \\
\text { (non-Escher) } & \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n] .
\end{aligned}
$$

Formalization

$$
\begin{aligned}
\text { (extension) } & \operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=p_{n}(\operatorname{cDes}(T)), \\
\text { (non-Escher) } & \varnothing \subsetneq c \operatorname{Des}(T) \subsetneq[n] .
\end{aligned}
$$

Examples

- $\mathcal{T}=\mathfrak{S}_{n}$, cDes $=$ Cellini's cyclic descent set, $p=$ cyclic rotation of indices.
- $\mathcal{T}=\operatorname{SYT}\left(r^{n / r}\right)$, cDes $=$ Rhoades' cyclic descent set, $p=$ jeu-de-taquin promotion.

Formalization

$$
\begin{aligned}
\text { (extension) } & \operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T), \\
\text { (equivariance) } & \mathrm{cDes}(p(T))=p_{n}(\operatorname{cDes}(T)), \\
\text { (non-Escher) } & \varnothing \subsetneq c \operatorname{Des}(T) \subsetneq[n] .
\end{aligned}
$$

Examples

- $\mathcal{T}=\mathfrak{S}_{n}$, cDes $=$ Cellini's cyclic descent set, $p=$ cyclic rotation of indices.
- $\mathcal{T}=\operatorname{SYT}\left(r^{n / r}\right)$, cDes $=$ Rhoades' cyclic descent set, $p=$ jeu-de-taquin promotion.

Motivating Problem:
Does Des on $\operatorname{SYT}(\lambda / \mu)$ have a cyclic extension ?

More examples

More examples

For $\lambda \vdash n-1$ let λ^{\square} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

More examples

For $\lambda \vdash n-1$ let λ^{\square} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

Theorem (Elizalde-Roichman '15)
For every partition $\lambda \vdash n-1$ there exists a cyclic descent extension on $\operatorname{SYT}\left(\lambda^{\square}\right)$.

More examples

Theorem (A-Elizalde-Roichman '16)
Each of the following shapes carries a cyclic descent extension:

More examples

Theorem (A-Elizalde-Roichman '16)
Each of the following shapes carries a cyclic descent extension:

(strip)

More examples

Theorem (A-Elizalde-Roichman '16)
Each of the following shapes carries a cyclic descent extension:

(strip)

(hook plus one box)

More examples

Theorem (A-Elizalde-Roichman '16)
Each of the following shapes carries a cyclic descent extension:

(strip)

(hook plus one box)

(two rows).

More examples

Theorem (A-Elizalde-Roichman '16)
Each of the following shapes carries a cyclic descent extension:

(strip)

(hook plus one box)

(two rows).

The proofs are explicit and combinatorial.

More examples

Remarks

- For the shape ($n-2,2$), the definition for a two-row shape coincides with the definition for a hook plus one box.

More examples

Remarks

- For the shape ($n-2,2$), the definition for a two-row shape coincides with the definition for a hook plus one box.

- For the shape (r, r), the definition for a two-row shape coincides with Rhoades' definition for a rectangular shape.

More examples

Remarks

- For the shape ($n-2,2$), the definition for a two-row shape coincides with the definition for a hook plus one box.

- For the shape (r, r), the definition for a two-row shape coincides with Rhoades' definition for a rectangular shape.

So far - so good!

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square .

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.
In particular, for $\mu=\varnothing$, a non-skew ribbon is a hook $\lambda=\left(n-k, 1^{k}\right)$.

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.
In particular, for $\mu=\varnothing$, a non-skew ribbon is a hook $\lambda=\left(n-k, 1^{k}\right)$.

Example

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.
In particular, for $\mu=\varnothing$, a non-skew ribbon is a hook $\lambda=\left(n-k, 1^{k}\right)$.

Example

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.
In particular, for $\mu=\varnothing$, a non-skew ribbon is a hook
$\lambda=\left(n-k, 1^{k}\right)$.
Example

Proposition If λ / μ is a connected ribbon, then $\operatorname{SYT}(\lambda / \mu)$ does not have a cyclic descent extension.

Hooks and ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.
In particular, for $\mu=\varnothing$, a non-skew ribbon is a hook
$\lambda=\left(n-k, 1^{k}\right)$.
Example

Proposition If λ / μ is a connected ribbon, then $\operatorname{SYT}(\lambda / \mu)$ does not have a cyclic descent extension.

> Oops !!!

A Conjecture

At this point, we conducted computer experiments on all partitions of size $n<16$. The numerical results led to

Conjecture

A Conjecture

At this point, we conducted computer experiments on all partitions of size $n<16$. The numerical results led to

Conjecture
For every non-hook partition $\lambda \vdash n$, the set $\mathrm{SYT}(\lambda)$ has a cyclic descent extension.

Existence and uniqueness

Main theorem

Recall our

Conjecture
For every non-hook partition $\lambda \vdash n$, the set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension.

Main theorem

Recall our
Conjecture
For every non-hook partition $\lambda \vdash n$, the set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Main theorem

Recall our
Conjecture
For every non-hook partition $\lambda \vdash n$, the set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Theorem (A-Reiner-Roichman '17)

1. (existence) For every skew shape λ / μ of size n, which is not a connected ribbon, there exists a cyclic descent extension.

Main theorem

Recall our
Conjecture
For every non-hook partition $\lambda \vdash n$, the set $\operatorname{SYT}(\lambda)$ has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Theorem (A-Reiner-Roichman '17)

1. (existence) For every skew shape λ / μ of size n, which is not a connected ribbon, there exists a cyclic descent extension.
2. (uniqueness) For any such shape, all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\operatorname{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $J \subseteq[n]$.

Near-hooks

Near-hooks

In general, the descent map cDes is not unique; only the fiber sizes are. However, in some special cases the map itself is unique.
Theorem
Let λ / μ be skew shape with $n \geq 2$ cells, and let $1 \leq k \leq n-1$ be an integer. Then TFAE:

1. All the tableaux in $\operatorname{SYT}(\lambda / \mu)$ have the same cyclic descent number k.
2. The set of descent numbers of $\operatorname{SYT}(\lambda / \mu)$ is $\{k-1, k\}$.
3. Either λ / μ or its reverse is "one cell away from a hook", namely has one of the forms:
(a) Hook minus its corner cell: $\left(n-k+1,1^{k}\right) /(1)=\left(1^{k}\right) \oplus(n-k)$.
(b) Hook plus a disconnected cell: $\left(n-k, 1^{k-1}\right) \oplus(1)$ or (1) $\oplus\left(n-k, 1^{k-1}\right)$.
(c) Hook plus an internal cell: $\left(n-k, 2,1^{k-2}\right)$, with $2 \leq k \leq n-2$.

The shapes (a), (b) and (c) will be called near-hooks.

Near-hooks

Near-hooks

Example

Near-hooks, for $n=5$ and $k=2$:

Their reverses:

Exceptional (Escher) cyclic descents

Exceptional (Escher) cyclic descents

What happens if we relax the non-Escher condition?

Exceptional (Escher) cyclic descents

What happens if we relax the non-Escher condition?
Definition
Let \mathcal{T} be a finite set, and Des: $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. An exceptional (Escher) cyclic extension of Des is a pair (cDes,p), where $\mathrm{cDes}_{*}: \mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

Exceptional (Escher) cyclic descents

What happens if we relax the non-Escher condition?
Definition
Let \mathcal{T} be a finite set, and Des: $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. An exceptional (Escher) cyclic extension of Des is a pair (cDes*,p), where $\mathrm{cDes}_{*}: \mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

$$
\begin{aligned}
\text { (extension) } & \mathrm{cDes}_{*}(T) \cap[n-1]=\operatorname{Des}(T) \\
\text { (equivariance) } & \mathrm{cDes} *(p(T))=p_{n}\left(\operatorname{cDes}_{*}(T)\right), \\
\text { (Escher) } & (\exists T \in \mathcal{T}) \mathrm{CDes}_{*}(T) \in\{\varnothing,[n]\} .
\end{aligned}
$$

Exceptional (Escher) cyclic descents

Exceptional (Escher) cyclic descents

Theorem
Let λ / μ be a skew shape of size $n \geq 2$. The usual descent map Des on $\operatorname{SYT}(\lambda / \mu)$ has an exceptional cyclic extension (cDes ${ }_{*}, p$) if and only if λ / μ has one of the following forms. In each case, all such extensions have the same fiber sizes $\left|\mathrm{cDes}_{*}^{-1}(J)\right|(\forall J \subseteq[n])$.

Exceptional (Escher) cyclic descents

Theorem

Let λ / μ be a skew shape of size $n \geq 2$. The usual descent map Des on $\operatorname{SYT}(\lambda / \mu)$ has an exceptional cyclic extension (cDes ${ }_{*}, p$) if and only if λ / μ has one of the following forms. In each case, all such extensions have the same fiber sizes $\left|\mathrm{cDes}_{*}^{-1}(J)\right|(\forall J \subseteq[n])$.

1. $\lambda / \mu=(n)$, a single row: $\operatorname{cDes}_{*}(T)=\varnothing$ for the unique $S Y T$ T.
2. $\lambda / \mu=\left(1^{n}\right)$, a single column: $\mathrm{cDes}_{*}(T)=[n]$ for the unique SYT T.
3. $\lambda / \mu=(1)^{\oplus n}$ has n connected components, each of size 1 , with n even. In this case there is also a non-Escher cyclic extension, and the fiber sizes satisfy

$$
\left|\mathrm{cDes}_{*}^{-1}(J)\right|=\left|\mathrm{cDes}^{-1}(J)\right|+(-1)^{|J|} \quad(\forall J \subseteq[n])
$$

In particular, $\left|\mathrm{cDes}_{*}^{-1}(\varnothing)\right|=\left|\mathrm{cDes}_{*}^{-1}([n])\right|=1$.

Exceptional (Escher) cyclic descents

Exceptional (Escher) cyclic descents

Remarks

1. For $n=1$, there are two distinct exceptional cyclic extensions, one with $\mathrm{cDes}_{*}(T)=\varnothing$ and the other with $\mathrm{cDes}_{*}(T)=[1]$, for the unique SYT T.
2. For $\lambda / \mu=(1)^{\oplus n}$ there is a natural descent-preserving bijection between $\operatorname{SYT}(\lambda / \mu)$ and the symmetric group \mathfrak{S}_{n}. It follows that, for even n, there is a definition for the cyclic descents of permutations whose distribution is slightly different from Cellini's!

Exceptional (Escher) cyclic descents

Exceptional (Escher) cyclic descents

Example

The symmetric group S_{4}.
cDes/cDes*

4123	3412	2341	1234
$\{1\} /\{1,4\}$	$\{2\} /\{2,4\}$	$\{3\} /\{3,4\}$	$\{4\} / \varnothing$
1432	2143	3214	4321
$\{2,3,4\} /\{2,3\}$	$\{1,3,4\} /\{1,3\}$	$\{1,2,4\} /\{1,2\}$	$\{1,2,3\} /\{1,2,3,4\}$

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T},
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T}
$$

where $\operatorname{SSY} T(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example $\operatorname{SSYT}(2,1)=$

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 1 & \begin{array}{ll}
1 & 2 \\
\hline 2 & \\
\hline & \\
\hline
\end{array} \\
\hline
\end{array}
$$

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T}
$$

where $\operatorname{SSY} T(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example $\operatorname{SSYT}(2,1)=$

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T}
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example $\operatorname{SSYT}(2,1)=$

$$
\begin{aligned}
& s_{2,1}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}
\end{aligned}
$$

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T}
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example $\operatorname{SSYT}(2,1)=$

$$
\begin{aligned}
& s_{2,1}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+\ldots
\end{aligned}
$$

Schur functions

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$
\sum_{T \in S S Y T(\lambda)} \prod_{i} x_{i}^{\text {number of } i \text { entries in } T}
$$

where $\operatorname{SSYT}(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example $\operatorname{SSYT}(2,1)=$

$$
\begin{aligned}
& s_{2,1}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+\ldots
\end{aligned}
$$

Schur functions are symmetric, and form a basis for the space of symmetric functions.

Complete homogeneous functions

$$
\lambda=(5)
$$

\square
For the special case of a one-row shape $\lambda=(n)$, the Schur function $h_{n}=s_{(n)}$ is the complete homogeneous symmetric function:

$$
h_{n}=\sum_{i_{1} \leq \ldots \leq i_{n}} x_{i_{1}} \cdots x_{i_{n}} .
$$

Complete homogeneous functions

$$
\lambda=(5)
$$

\square
For the special case of a one-row shape $\lambda=(n)$, the Schur function $h_{n}=s_{(n)}$ is the complete homogeneous symmetric function:

$$
h_{n}=\sum_{i_{1} \leq \ldots \leq i_{n}} x_{i_{1}} \cdots x_{i_{n}} .
$$

Define also, for a sequence $N=\left(n_{1}, \ldots, n_{k}\right)$,

$$
h_{N}=h_{n_{1}} \cdots h_{n_{k}} .
$$

Schur positivity

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Schur positivity

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example

Schur positivity

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example
The product $s_{\mu} s_{\nu}$ is clearly symmetric.

Schur positivity

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example
The product $s_{\mu} s_{\nu}$ is clearly symmetric.
It is also Schur-positive:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

Schur positivity

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example
The product $s_{\mu} s_{\nu}$ is clearly symmetric.
It is also Schur-positive:

$$
s_{\mu} s_{\nu}=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda},
$$

where the Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda} \geq 0$ have a combinatorial interpretation.

Ribbon Schur functions

Ribbon Schur functions

For a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n-1]$ define the associated composition

$$
\operatorname{co}(J):=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{t}\right)
$$

Ribbon Schur functions

For a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n-1]$ define the associated composition

$$
\operatorname{co}(J):=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{t}\right)
$$

and the corresponding ribbon Schur function

$$
s_{\mathrm{co}(J)}:=\sum_{I \subseteq J}(-1)^{|J \backslash I|} h_{\mathrm{co}(I)} .
$$

Ribbon Schur functions

For a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n-1]$ define the associated composition

$$
\operatorname{co}(J):=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{t}\right)
$$

and the corresponding ribbon Schur function

$$
s_{\mathrm{co}(J)}:=\sum_{I \subseteq J}(-1)^{|J \backslash I|} h_{\mathrm{co}(I)} .
$$

Theorem (Gessel '83)
For any skew shape λ / μ and $J \subseteq[n]$,

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{Des}(T)=J\}|=\left\langle s_{\lambda / \mu}, s_{\operatorname{co}(J)}\right\rangle
$$

Ribbon Schur functions

For a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n-1]$ define the associated composition

$$
\operatorname{co}(J):=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{t}\right)
$$

and the corresponding ribbon Schur function

$$
s_{\mathrm{co}(J)}:=\sum_{I \subseteq J}(-1)^{|J \backslash I|} h_{\mathrm{co}(I)} .
$$

Theorem (Gessel '83)
For any skew shape λ / μ and $J \subseteq[n]$,

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{Des}(T)=J\}|=\left\langle s_{\lambda / \mu}, s_{\mathrm{co}(J)}\right\rangle
$$

In particular,

$$
\left\langle s_{\lambda / \mu}, s_{\mathrm{Co}(J)}\right\rangle \geq 0 \quad(\forall J \subseteq[n])
$$

Ribbon Schur functions

For a subset $J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n-1]$ define the associated composition

$$
\operatorname{co}(J):=\left(j_{1}, j_{2}-j_{1}, j_{3}-j_{2}, \ldots, n-j_{t}\right)
$$

and the corresponding ribbon Schur function

$$
s_{\mathrm{co}(J)}:=\sum_{I \subseteq J}(-1)^{|J \backslash I|} h_{\mathrm{co}(I)} .
$$

Theorem (Gessel '83)
For any skew shape λ / μ and $J \subseteq[n]$,

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{Des}(T)=J\}|=\left\langle s_{\lambda / \mu}, s_{\mathrm{co}(J)}\right\rangle
$$

In particular,

$$
\left\langle s_{\lambda / \mu}, s_{\mathrm{co}(J)}\right\rangle \geq 0 \quad(\forall J \subseteq[n])
$$

The ribbon Schur functions $s_{\mathrm{co}(J)}$ are Schur positive.

Affine ribbon Schur functions

Affine ribbon Schur functions

For a subset $\varnothing \neq J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n]$ define the associated cyclic composition

$$
\mathrm{cc}(J):=\left(j_{2}-j_{1}, j_{3}-j_{2}, \ldots, j_{1}-j_{t}+n\right)
$$

Affine ribbon Schur functions

For a subset $\varnothing \neq J=\left\{j_{1}<j_{2}<\ldots<j_{t}\right\} \subseteq[n]$ define the associated cyclic composition

$$
\mathrm{cc}(J):=\left(j_{2}-j_{1}, j_{3}-j_{2}, \ldots, j_{1}-j_{t}+n\right)
$$

and the corresponding affine ribbon Schur function

$$
\tilde{s}_{\mathrm{cc}(J)}:=\sum_{\varnothing \neq I \subseteq J}(-1)^{|J \backslash I|} h_{\mathrm{cc}(I)} .
$$

Affine ribbon Schur functions

Example

Let $n=6$ and $J=\{3,5\}$. The affine ribbon Schur function is

$$
\begin{aligned}
\tilde{s}_{\mathrm{cc}(\{3,5\})} & =h_{\mathrm{cc}(\{3,5\})}-h_{\mathrm{cc}(\{3\})}-h_{\mathrm{cc}(\{5\})} \\
& =h_{(2,4)}-h_{(6)}-h_{(6)} .
\end{aligned}
$$

Theorem (A-Reiner-Roichman '16)
A skew shape λ / μ has a cyclic descent extension if and only if

$$
\left\langle s_{\lambda / \mu}, \tilde{s}_{c c(J)}\right\rangle \geq 0 \quad(\forall \varnothing \neq J \subseteq[n]),
$$

Theorem (A-Reiner-Roichman '16)
A skew shape λ / μ has a cyclic descent extension if and only if

$$
\left\langle s_{\lambda / \mu}, \tilde{s}_{\operatorname{cc}(J)}\right\rangle \geq 0 \quad(\forall \varnothing \neq J \subseteq[n]),
$$

and then

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{cDes}(T)=J\}|=\left\langle s_{\lambda / \mu}, \tilde{s}_{\mathrm{cc}(J)}\right\rangle .
$$

Theorem (A-Reiner-Roichman '16)
A skew shape λ / μ has a cyclic descent extension if and only if

$$
\left\langle s_{\lambda / \mu}, \tilde{c}_{\mathrm{cc}(J)}\right\rangle \geq 0 \quad(\forall \varnothing \neq J \subseteq[n])
$$

and then

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{cDes}(T)=J\}|=\left\langle s_{\lambda / \mu}, \tilde{s}_{\mathrm{cc}(J)}\right\rangle .
$$

If all the $\tilde{s}_{\mathrm{cc}(J)}$ were Schur positive, we would have a cyclic extension for all λ / μ (since $s_{\lambda / \mu}$ is always Schur positive).

Theorem (A-Reiner-Roichman '16)
A skew shape λ / μ has a cyclic descent extension if and only if

$$
\left\langle s_{\lambda / \mu}, \tilde{c}_{\mathrm{cc}(J)}\right\rangle \geq 0 \quad(\forall \varnothing \neq J \subseteq[n])
$$

and then

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{cDes}(T)=J\}|=\left\langle s_{\lambda / \mu}, \tilde{s}_{\mathrm{cc}(J)}\right\rangle .
$$

If all the $\tilde{s}_{\mathrm{cc}(J)}$ were Schur positive, we would have a cyclic extension for all λ / μ (since $s_{\lambda / \mu}$ is always Schur positive).

However, this is not the case!

Theorem (A-Reiner-Roichman '16)
A skew shape λ / μ has a cyclic descent extension if and only if

$$
\left\langle s_{\lambda / \mu}, \tilde{c}_{c c(J)}\right\rangle \geq 0 \quad(\forall \varnothing \neq J \subseteq[n])
$$

and then

$$
|\{T \in \operatorname{SYT}(\lambda / \mu): \operatorname{cDes}(T)=J\}|=\left\langle s_{\lambda / \mu}, \tilde{s}_{\mathrm{cc}(J)}\right\rangle .
$$

If all the $\tilde{s}_{\mathrm{cc}(J)}$ were Schur positive, we would have a cyclic extension for all λ / μ (since $s_{\lambda / \mu}$ is always Schur positive).

However, this is not the case!
Example
For $n=6$ and $J=\{3,5\}$,

$$
\tilde{s}_{\mathrm{cc}(\{3,5\})}=s_{4,2}+s_{5,1}-s_{6} .
$$

Gromov-Witten invariants

Gromov-Witten invariants

Gromov-Witten invariants

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology

Gromov-Witten invariants

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology
Specifically, let the Grassmannian $\mathrm{Gr}_{k, n}$ be the projective variety of all k-dimensional subspaces of \mathbb{C}^{n}.

Gromov-Witten invariants

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology

Specifically, let the Grassmannian $\mathrm{Gr}_{k, n}$ be the projective variety of all k-dimensional subspaces of \mathbb{C}^{n}.

Let $P_{k, n}$ be the set of all partitions λ whose shape fits in a
$k \times(n-k)$ rectangle, namely $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ with
$n-k \geq \lambda_{1} \geq \ldots \geq \lambda_{k} \geq 0$.

Gromov-Witten invariants

Gromov-Witten invariants

Fix a flag of subspaces $\{0\}=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}$. For each $\lambda \in P_{k, n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \operatorname{Gr}_{k, n}$ as the set of all subspaces $X \in \mathrm{Gr}_{k, n}$ such that the dimensions of its intersections with the various subspaces V_{i} in the flag satisfy suitable bounds (depending on λ).

Gromov-Witten invariants

Fix a flag of subspaces $\{0\}=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}$. For each $\lambda \in P_{k, n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \mathrm{Gr}_{k, n}$ as the set of all subspaces $X \in \mathrm{Gr}_{k, n}$ such that the dimensions of its intersections with the various subspaces V_{i} in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k, n}$, the (3-point) Gromov-Witten invariant $C_{\mu, \nu}^{\lambda, d}$ is the number of rational curves of degree d in $\mathrm{Gr}_{k, n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda^{\vee}}, \Omega_{\mu}$ and Ω_{ν}, provided that this number is finite. This happens exactly when $|\mu|+|\nu|=n d+|\lambda|$.

Gromov-Witten invariants

Fix a flag of subspaces $\{0\}=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}$. For each $\lambda \in P_{k, n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \operatorname{Gr}_{k, n}$ as the set of all subspaces $X \in \mathrm{Gr}_{k, n}$ such that the dimensions of its intersections with the various subspaces V_{i} in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k, n}$, the (3-point) Gromov-Witten invariant $C_{\mu, \nu}^{\lambda, d}$ is the number of rational curves of degree d in $\mathrm{Gr}_{k, n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda \vee}, \Omega_{\mu}$ and Ω_{ν}, provided that this number is finite. This happens exactly when $|\mu|+|\nu|=n d+|\lambda|$.
For $d=0, C_{\mu, \nu}^{\lambda, 0}=c_{\mu, \nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Gromov-Witten invariants

Fix a flag of subspaces $\{0\}=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}$. For each $\lambda \in P_{k, n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \operatorname{Gr}_{k, n}$ as the set of all subspaces $X \in \mathrm{Gr}_{k, n}$ such that the dimensions of its intersections with the various subspaces V_{i} in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k, n}$, the (3-point) Gromov-Witten invariant $C_{\mu, \nu}^{\lambda, d}$ is the number of rational curves of degree d in $\mathrm{Gr}_{k, n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda \vee}, \Omega_{\mu}$ and Ω_{ν}, provided that this number is finite. This happens exactly when $|\mu|+|\nu|=n d+|\lambda|$.
For $d=0, C_{\mu, \nu}^{\lambda, 0}=c_{\mu, \nu}^{\lambda}$ are the Littlewood-Richardson coefficients.
Important: The geometric description implies that

$$
C_{\mu, \nu}^{\lambda, d} \geq 0 \quad(\forall d, \lambda, \mu, \nu)
$$

Existence

Recall that the affine ribbon Schur functions $\tilde{s}_{\mathrm{cc}(J)}$ are not always Schur positive. Can this be made more precise?

Existence

Recall that the affine ribbon Schur functions $\tilde{s}_{\mathrm{cc}(J)}$ are not always Schur positive. Can this be made more precise?
Theorem (Postnikov '05, McNamara '06, A-Reiner-Roichman)

Existence

Recall that the affine ribbon Schur functions $\tilde{s}_{\mathrm{cc}(J)}$ are not always Schur positive. Can this be made more precise?

Theorem (Postnikov '05, McNamara '06, A-Reiner-Roichman)
For all $\varnothing \neq J \subseteq[n]$ of size $k>0$

$$
\tilde{s}_{\mathrm{cc}(J)}+\sum_{i=0}^{k-1}(-1)^{k-i} s_{\left(n-i, 1^{i}\right)}
$$

is Schur positive (and hook-free).

Existence

Proof idea:

Existence

Proof idea:

$$
\tilde{s}_{\mathrm{cc}(J)}=s_{\lambda / 1 / \lambda}+(-1)^{|J|-1} p_{n}
$$

where $s_{\lambda / 1 / \lambda}$ is a special case of Postnikov's (toric) cylindric Schur functions and

Existence

Proof idea:

$$
\tilde{s}_{\mathrm{cc}(J)}=s_{\lambda / 1 / \lambda}+(-1)^{|J|-1} p_{n}
$$

where $s_{\lambda / 1 / \lambda}$ is a special case of Postnikov's (toric) cylindric Schur functions and

$$
p_{n}=x_{1}^{n}+x_{2}^{n}+\ldots=\sum_{i=0}^{n-1}(-1)^{i} s_{\left(n-i, 1^{i}\right)}
$$

is the n-th power symmetric function.
Postnikov proved that, restricting to k variables only (namely letting $x_{k+1}=\ldots=0$),

$$
s_{\lambda / d / \mu}\left(x_{1}, \ldots, x_{k}\right)=\sum_{\nu \subseteq k \times(n-k)} C_{\mu, \nu}^{\lambda, d} s_{\nu}\left(x_{1}, \ldots, x_{k}\right),
$$

where $C_{\mu, \nu}^{\lambda, d} \geq 0$ are the aforementioned Gromov-Witten invariants.

A topological interpretation

A topological interpretation

A topological interpretation

Robert Steinberg May 25, 1922 - May 25, 2014

A topological interpretation

A topological interpretation

The Coxeter complex $\Sigma(W)$ of type A_{2} :

A topological interpretation

The Coxeter complex $\Sigma(W)$ of type A_{2} :

The Steinberg torus $\widetilde{\Delta}=\Sigma(\widetilde{W}) / \mathbb{Z} \Phi^{\vee}$ of type \widetilde{A}_{2} :

A topological interpretation

A topological interpretation

The Coxeter complex $\Delta=\Sigma\left(A_{n-1}\right)$, and each of its type-selected subcomplexes Δ_{J} (for $\left.J \subseteq[n-1]\right)$, are Cohen-Macaulay. Their top cohomology groups carry \mathfrak{S}_{n}-representations corresponding to the ribbon Schur functions $S_{\mathrm{co}(J)}$.

A topological interpretation

The Coxeter complex $\Delta=\Sigma\left(A_{n-1}\right)$, and each of its type-selected subcomplexes Δ_{J} (for $\left.J \subseteq[n-1]\right)$, are Cohen-Macaulay. Their top cohomology groups carry \mathfrak{S}_{n}-representations corresponding to the ribbon Schur functions $S_{\mathrm{co}(J)}$.

The Steinberg torus $\widetilde{\Delta}$ is not Cohen-Macaulay. Its Euler characteristic carries the (virtual) \mathfrak{S}_{n}-representation

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{ch}\left(C^{i}(\widetilde{\Delta})\right)=\sum_{i \geq 0}(-1)^{i} \operatorname{ch}\left(H^{i}(\widetilde{\Delta})\right)
$$

which corresponds to the symmetric function identity

$$
\sum_{\varnothing \neq I \subseteq[n]}(-1)^{n-|I|} h_{\mathrm{cc}(I)}=\sum_{i=0}^{n-1}(-1)^{n-1-i} s_{\left(n-i, 1^{i}\right)}=\tilde{s}_{\mathrm{cc}([n])}
$$

There are analogues for type-selected subcomplexes.

Cyclic quasi-symmetric functions

A quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, and any sequence $\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}} \cdots x_{i_{t}^{\prime}}^{m_{t}}$ in f are equal. The set QSym of all quasi-symmetric functions is a graded ring, and its n-homogeneous part $Q S y m_{n}$ has as a basis Gessel's fundamental quasi-symmetric functions F_{J}, indexed by all subsets $J \subseteq[n-1]$. Its dimension is 2^{n-1}.

Cyclic quasi-symmetric functions

A quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, and any sequence $\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}} \cdots x_{i_{t}^{\prime}}^{m_{t}}$ in f are equal. The set QSym of all quasi-symmetric functions is a graded ring, and its n-homogeneous part $Q S y m_{n}$ has as a basis Gessel's fundamental quasi-symmetric functions F_{J}, indexed by all subsets $J \subseteq[n-1]$. Its dimension is 2^{n-1}.

Theorem (Gessel '84)
For any skew shape λ / μ,

$$
\sum_{E \operatorname{SYT}(\lambda / \mu)} F_{\operatorname{Des}(T)}=s_{\lambda / \mu} .
$$

Cyclic quasi-symmetric functions

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, any sequence $m=\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, and any cyclic shift $m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right)$ of m, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}^{\prime}} \cdots x_{i_{t}^{\prime}}^{m_{t}^{\prime}}$ in f are equal.

Cyclic quasi-symmetric functions

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ of bounded degree such that, for any $t \geq 1$, any two increasing sequences $i_{1}<\ldots<i_{t}$ and $i_{1}^{\prime}<\ldots<i_{t}^{\prime}$ of positive integers, any sequence $m=\left(m_{1}, \ldots, m_{t}\right)$ of positive integers, and any cyclic shift $m^{\prime}=\left(m_{1}^{\prime}, \ldots, m_{t}^{\prime}\right)$ of m, the coefficients of $x_{i_{1}}^{m_{1}} \cdots x_{i_{t}}^{m_{t}}$ and $x_{i_{1}^{\prime}}^{m_{1}^{\prime}} \cdots x_{i_{t}^{\prime}}^{m_{t}^{\prime}}$ in f are equal.

Theorem (A-Gessel-Reiner-Roichman '17)

The set cQSym of all cyclic quasi-symmetric functions is a graded ring, and its n-homogeneous part $Q S_{y m}$ has as a basis suitable (normalized) fundamental cyclic quasi-symmetric functions \widehat{F}_{A}, indexed by the orbits A of the $\mathbb{Z} / n \mathbb{Z}$-action (by cyclic shifts) on the nonempty subsets $J \subseteq[n]$. Its dimension is

$$
\frac{1}{n} \sum_{d \mid n} \varphi(d)\left(2^{n / d}-1\right)
$$

Cyclic quasi-symmetric functions

Cyclic quasi-symmetric functions

Theorem (A-Gessel-Reiner-Roichman '17)
For any skew shape λ / μ which is not a connected ribbon,

$$
\sum_{T \in \operatorname{SYT}(\lambda / \mu)} \widehat{F}_{[c \operatorname{Des}(T)]}=s_{\lambda / \mu} .
$$

Cyclic quasi-symmetric functions

Theorem (A-Gessel-Reiner-Roichman '17)
For any skew shape λ / μ which is not a connected ribbon,

$$
\sum_{T \in \operatorname{SYT}(\lambda / \mu)} \widehat{F}_{[\operatorname{Des}(T)]}=s_{\lambda / \mu} .
$$

Corollary

For any non-hook shape ν and set $J \subseteq[n]$, the Gromov-Witten invariant $C_{\lambda, \nu}^{\lambda, 1}$ is equal to the coefficient of $\widehat{F}_{[J]}$ in the expansion of s_{ν}, where the partition λ corresponds to the cyclic composition cc(J).

Summary and open problems

Summary

Summary

- For almost all skew shapes λ / μ there exists a cyclic extension cDes for the usual descent map.

Summary

- For almost all skew shapes λ / μ there exists a cyclic extension cDes for the usual descent map.
- For almost all skew shapes λ / μ, the fiber size distribution of this cyclic extension is unique.

Summary

- For almost all skew shapes λ / μ there exists a cyclic extension cDes for the usual descent map.
- For almost all skew shapes λ / μ, the fiber size distribution of this cyclic extension is unique.
- The proof (of existence) involves toric Schur functions and the nonnegativity of Gromov-Witten invariants.

Open Problems

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on $\operatorname{SYT}(\lambda / \mu)$.

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on $\operatorname{SYT}(\lambda / \mu)$.

Problem
Find an explicit "cyclic shift" p on $\operatorname{SYT}(\lambda / \mu)$.

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on $\operatorname{SYT}(\lambda / \mu)$.

Problem
Find an explicit "cyclic shift" p on $\operatorname{SYT}(\lambda / \mu)$.
Problem
For each non-hook partition $\lambda \vdash n$ find a cyclically closed subset $A \subseteq \mathfrak{S}_{n}$ such that

$$
\sum_{\pi \in A} \mathbf{x}^{\mathrm{cDes}(\pi)}=\sum_{T \in \operatorname{SYT}(\lambda)} \mathbf{x}^{\mathrm{cDes}(T)}
$$

Thank You!

