Cyclic descents, standard Young tableaux and Gromov-Witten invariants

Ron Adin

Bar-Ilan University and IIAS

Combinatorics Seminar, MIT February 7, '18

Based on joint works with

Ira Gessel (Brandeis) Sergi Elizalde (Dartmouth) Vic Reiner (Minnesota) Yuval Roichman (Bar-Ilan)

Additional aspects

Summary and open problems

Cyclic descents

Existence and uniqueness

Tools

Additional aspects

Summary and open problems

Cyclic descents

Existence and uniqueness

Tools

Additional aspects

Summary and open problems

Cyclic descents

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

 $\mathsf{Des}(\pi) := \{ 1 \le i \le n-1 : \pi_i > \pi_{i+1} \} \subseteq [n-1],$ where $[m] := \{1, 2, \dots, m\}.$

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \leq i \leq n-1 \, : \, \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \leq i \leq n-1 \, : \, \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

Introduced by Cellini ['95] (for arbitrary Weyl groups);

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi):=\{1\leq i\leq n-1\,:\,\pi_i>\pi_{i+1}\}\subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

Introduced by Cellini ['95] (for arbitrary Weyl groups); further studied by Dilks, Petersen and Stembridge ['09] and others.

Summary and open problems

Cyclic descents of permutations

Example

 $\pi=$ 23154 :

Summary and open problems

Cyclic descents of permutations

$$\pi = 23154$$
 : $Des(\pi) = \{2, 4\}$,

$$\pi = 23154$$
 : $\mathsf{Des}(\pi) = \{2, 4\}$, $\mathsf{cDes}(\pi) = \{2, 4, 5\}$.

$$\pi = 23154$$
 : Des $(\pi) = \{2, 4\}$, cDes $(\pi) = \{2, 4, 5\}$.
 $\pi = 34152$:

$$\pi = 23154 : \text{Des}(\pi) = \{2, 4\}, \text{ cDes}(\pi) = \{2, 4, 5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2, 4\},$$

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4\}.$$

Cyclic des	cents	Existence and uniqueness	Tools	Additional aspects	Summary and open problems
(Juestion				
	guestion				

Can a similar concept be defined in other contexts? E.g., for standard Young tableaux?

A shape λ of size *n* is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n$. It has a corresponding diagram.

$$\lambda = (4, 3, 1)$$

A shape λ of size *n* is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n$. It has a corresponding diagram.

Example

$$\lambda = (4, 3, 1)$$

A standard Young tableau (SYT) T of shape λ is a filling of the diagram of λ by the numbers $1, \ldots, n$, each one appearing once, such that the entries increase along rows (from left to right) and along columns (from top to bottom).

$$\lambda = (4, 3, 1) \qquad \boxed{\frac{1}{3}}_{6}$$

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

$$\lambda/\mu = (4, 3, 3, 1)/(2, 1) \qquad \begin{array}{c} 2 & 3 \\ \hline 1 & 5 \\ \hline 4 & 7 & 8 \\ \hline 6 \\ \end{array}$$

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

Example

$$\lambda/\mu = (4, 3, 3, 1)/(2, 1) \qquad \begin{array}{r} 2 & 3 \\ \hline 1 & 5 \\ \hline 4 & 7 & 8 \\ \hline 6 \\ \end{array}$$

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

Summary and open problems

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \end{array}}_{\text{SYT}((4,3,1)/(1,1))}$$

 $Des(T) = \{2, 4\}.$

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \\ \text{Des}(T) = \{2, 4\}. \end{array}$$

Motivating Problem:

Define a cyclic descent set for SYT of any shape λ/μ .

Summary and open problems

SYT of rectangular shapes

Summary and open problems

SYT of rectangular shapes

Theorem (Rhoades '10)

For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t., for all $T \in SYT(\lambda)$,

$$cDes(T) \cap [n-1] = Des(T)$$

Theorem (Rhoades '10)

For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t., for all $T \in SYT(\lambda)$,

$$cDes(T) \cap [n-1] = Des(T)$$

 $cDes(p(T)) = p_n(cDes(T))$

where p_n acts on the set of integers cDes(T) by adding 1 (mod n) to each element, and p acts on the SYT T by Schützenberger's jeu-de-taquin promotion.

Example

 $\lambda = (3,3) \vdash 6.$

Example

 $\lambda = (3,3) \vdash 6.$

Jeu-de-taquin promotion:

Summary and open problems

SYT of rectangular shapes

Example

 $\lambda = (3,3) \vdash 6.$

Jeu-de-taquin promotion:

Summary and open problems

SYT of rectangular shapes

Example

 $\lambda = (3,3) \vdash 6.$

Jeu-de-taquin promotion:

Two orbits of SYT:

1	3	4	1	2	5	1	2	3		1	3	5	1	2	4
2	5	6	3	4	6	4	5	6	,	2	4	6	3	5	6
SYT of rectangular shapes

Example

 $\lambda = (3,3) \vdash 6.$

Jeu-de-taquin promotion:

Two orbits of SYT:

1 3 4	1 2 5	1 2 3	;	1 3 5	1 2 4
2 5 6	3 4 6	4 5 6		2 4 6	3 5 6
$\{1,4\}$	$\{2, 5\}$	{3, <mark>6</mark> }	;	$\{1, 3, 5\}$	{2,4, <mark>6</mark> }

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_n : 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i + 1 \pmod{n}$.

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_n : 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i + 1 \pmod{n}$.

Definition

Let \mathcal{T} be a finite set, and Des : $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. A cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

Let us formalize the concept of a cyclic descent set. Recall the bijection $p_n : 2^{[n]} \longrightarrow 2^{[n]}$ induced by the cyclic shift $i \mapsto i + 1 \pmod{n}$.

Definition

Let \mathcal{T} be a finite set, and Des : $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. A cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

 $\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = p_n(\text{cDes}(T)), \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$

$$\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = p_n(\text{cDes}(T)), \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$$

(extension)
$$cDes(T) \cap [n-1] = Des(T)$$
,
(equivariance) $cDes(p(T)) = p_n(cDes(T))$,
(non-Escher) $\varnothing \subsetneq cDes(T) \subsetneq [n]$.

Examples

- \$\mathcal{T} = \mathcal{S}_n\$, cDes = Cellini's cyclic descent set, \$p\$ = cyclic rotation of indices.
- \$\mathcal{T}\$ = SYT(r^{n/r}), cDes = Rhoades' cyclic descent set, p = jeu-de-taquin promotion.

(extension)
$$cDes(T) \cap [n-1] = Des(T)$$
,
(equivariance) $cDes(p(T)) = p_n(cDes(T))$,
(non-Escher) $\varnothing \subsetneq cDes(T) \subsetneq [n]$.

Examples

- \$\mathcal{T} = \mathcal{S}_n\$, cDes = Cellini's cyclic descent set, \$p\$ = cyclic rotation of indices.
- \$\mathcal{T}\$ = SYT(r^{n/r}), cDes = Rhoades' cyclic descent set, p = jeu-de-taquin promotion.

Motivating Problem:

Does Des on SYT(λ/μ) have a cyclic extension ?

For $\lambda \vdash n-1$ let λ^{\Box} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

For $\lambda \vdash n-1$ let λ^{\Box} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

Theorem (Elizalde-Roichman '15)

For every partition $\lambda \vdash n-1$ there exists a cyclic descent extension on SYT(λ^{\Box}).

Theorem (A-Elizalde-Roichman '16)

Theorem (A-Elizalde-Roichman '16)

Theorem (A-Elizalde-Roichman '16)

Theorem (A-Elizalde-Roichman '16)

Theorem (A-Elizalde-Roichman '16)

Each of the following shapes carries a cyclic descent extension:

The proofs are explicit and combinatorial.

Remarks

• For the shape (n - 2, 2), the definition for a two-row shape coincides with the definition for a hook plus one box.

Remarks

• For the shape (n - 2, 2), the definition for a two-row shape coincides with the definition for a hook plus one box.

• For the shape (r, r), the definition for a two-row shape coincides with Rhoades' definition for a rectangular shape.

Remarks

• For the shape (n - 2, 2), the definition for a two-row shape coincides with the definition for a hook plus one box.

• For the shape (r, r), the definition for a two-row shape coincides with Rhoades' definition for a rectangular shape.

So far - so good!

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square. In particular, for $\mu = \emptyset$, a non-skew ribbon is a hook $\lambda = (n - k, 1^k)$.

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square. In particular, for $\mu = \emptyset$, a non-skew ribbon is a hook $\lambda = (n - k, 1^k)$.

Example

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square. In particular, for $\mu = \emptyset$, a non-skew ribbon is a hook $\lambda = (n - k, 1^k)$.

Example

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square. In particular, for $\mu = \emptyset$, a non-skew ribbon is a hook $\lambda = (n - k, 1^k)$.

Example

Proposition If λ/μ is a connected ribbon, then SYT(λ/μ) does not have a cyclic descent extension.

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square. In particular, for $\mu = \emptyset$, a non-skew ribbon is a hook $\lambda = (n - k, 1^k)$.

Example

Proposition If λ/μ is a connected ribbon, then SYT(λ/μ) does not have a cyclic descent extension.

Oops !!!

At this point, we conducted computer experiments on all partitions of size n < 16. The numerical results led to

Conjecture

A Conjecture

At this point, we conducted computer experiments on all partitions of size n < 16. The numerical results led to

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

Cyclic descents

Summary and open problems

Existence and uniqueness

Main theorem

Recall our

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

Main theorem

Recall our

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Main theorem

Recall our

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Theorem (A-Reiner-Roichman '17)

1. (existence) For every skew shape λ/μ of size n, which is not a connected ribbon, there exists a cyclic descent extension.

Main theorem

Recall our

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This is indeed true, and can actually be extended to arbitrary skew shapes.

Theorem (A-Reiner-Roichman '17)

- 1. (existence) For every skew shape λ/μ of size n, which is not a connected ribbon, there exists a cyclic descent extension.
- (uniqueness) For any such shape, all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and J ⊆ [n].

Near-hooks

In general, the descent map cDes is not unique; only the fiber sizes are. However, in some special cases the map itself is unique.

Theorem

Let λ/μ be skew shape with $n \ge 2$ cells, and let $1 \le k \le n-1$ be an integer. Then TFAE:

- 1. All the tableaux in SYT(λ/μ) have the same cyclic descent number k.
- 2. The set of descent numbers of $SYT(\lambda/\mu)$ is $\{k-1, k\}$.
- 3. Either λ/μ or its reverse is "one cell away from a hook", namely has one of the forms:
 - (a) Hook minus its corner cell: $(n-k+1,1^k)/(1) = (1^k) \oplus (n-k)$.
 - (b) Hook plus a disconnected cell: $(n k, 1^{k-1}) \oplus (1)$ or $(1) \oplus (n k, 1^{k-1})$.
 - (c) Hook plus an internal cell: $(n-k, 2, 1^{k-2})$, with $2 \le k \le n-2$.

The shapes (a), (b) and (c) will be called near-hooks.

Near-hooks

Example

Near-hooks, for n = 5 and k = 2:

Their reverses:

Exceptional (Escher) cyclic descents
What happens if we relax the non-Escher condition?

What happens if we relax the non-Escher condition?

Definition Let \mathcal{T} be a finite set, and Des : $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. An exceptional (Escher) cyclic extension of Des is a pair (cDes_{*}, p), where cDes_{*} : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

What happens if we relax the non-Escher condition?

Definition Let \mathcal{T} be a finite set, and Des : $\mathcal{T} \longrightarrow 2^{[n-1]}$ any map. An exceptional (Escher) cyclic extension of Des is a pair (cDes_{*}, *p*), where cDes_{*} : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

 $\begin{array}{ll} (\text{extension}) & \text{cDes}_*(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}_*(p(T)) = p_n(\text{cDes}_*(T)), \\ & (\text{Escher}) & (\exists T \in \mathcal{T}) \text{ cDes}_*(T) \in \{\varnothing, [n]\}. \end{array}$

Summary and open problems

Exceptional (Escher) cyclic descents

Theorem

Let λ/μ be a skew shape of size $n \ge 2$. The usual descent map Des on SYT(λ/μ) has an exceptional cyclic extension (cDes_{*}, p) if and only if λ/μ has one of the following forms. In each case, all such extensions have the same fiber sizes $|cDes_*^{-1}(J)|$ ($\forall J \subseteq [n]$).

Theorem

Let λ/μ be a skew shape of size $n \ge 2$. The usual descent map Des on SYT(λ/μ) has an exceptional cyclic extension (cDes_{*}, p) if and only if λ/μ has one of the following forms. In each case, all such extensions have the same fiber sizes $|cDes_*^{-1}(J)|$ ($\forall J \subseteq [n]$).

- 1. $\lambda/\mu = (n)$, a single row: cDes_{*}(T) = \emptyset for the unique SYT T.
- 2. $\lambda/\mu = (1^n)$, a single column: $cDes_*(T) = [n]$ for the unique SYT T.
- λ/μ = (1)^{⊕n} has n connected components, each of size 1, with n even. In this case there is also a non-Escher cyclic extension, and the fiber sizes satisfy

$$|\operatorname{cDes}_*^{-1}(J)| = |\operatorname{cDes}^{-1}(J)| + (-1)^{|J|} \qquad (\forall J \subseteq [n]).$$

In particular, $|cDes_*^{-1}(\emptyset)| = |cDes_*^{-1}([n])| = 1$.

Summary and open problems

Exceptional (Escher) cyclic descents

Remarks

- For n = 1, there are two distinct exceptional cyclic extensions, one with cDes_{*}(T) = Ø and the other with cDes_{*}(T) = [1], for the unique SYT T.
- For λ/μ = (1)^{⊕n} there is a natural descent-preserving bijection between SYT(λ/μ) and the symmetric group 𝔅_n. It follows that, for even n, there is a definition for the cyclic descents of permutations whose distribution is slightly different from Cellini's!

Summary and open problems

Exceptional (Escher) cyclic descents

Summary and open problems

Exceptional (Escher) cyclic descents

Example

The symmetric group S_4 .

cDes/cDes_{*}

4123	3412	2341	1234
{1}/{1,4}	{2}/{2,4}	{3}/{3,4}	{4}/Ø
1432	2143	3214	4321
{2,3,4}/{2,3}	{1,3,4}/{ <mark>1,3</mark> }	{1,2,4}/{1,2}	{1,2,3}/{1,2,3,4}

Cyclic descents

Existence and uniqueness

Tools

Additional aspects

Summary and open problems

Tools

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example SSYT(2, 1) =

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example SSYT(2,1) =

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example SSYT(2,1) =

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example SSYT(2,1) =

 $s_{2,1} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$

For $\lambda \vdash n$ let the Schur function s_{λ} be

$$\sum_{T \in SSYT(\lambda)} \prod_{i} x_{i}^{\text{number of } i \text{ entries in } T},$$

where $SSYT(\lambda)$ is the set of semi-standard Young tableaux of shape λ (weakly increasing along rows, and strictly increasing along columns).

Example SSYT(2,1) =

$$s_{2,1} = x_1^2 x_2 + x_1 x_2^2 + x_1^2 x_3 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 + \dots$$

Schur functions are symmetric, and form a basis for the space of symmetric functions.

Complete homogeneous functions

$$\lambda = (5)$$

For the special case of a one-row shape $\lambda = (n)$, the Schur function $h_n = s_{(n)}$ is the complete homogeneous symmetric function:

$$h_n=\sum_{i_1\leq\ldots\leq i_n}x_{i_1}\cdots x_{i_n}.$$

Complete homogeneous functions

$$\lambda = (5)$$

For the special case of a one-row shape $\lambda = (n)$, the Schur function $h_n = s_{(n)}$ is the complete homogeneous symmetric function:

$$h_n=\sum_{i_1\leq\ldots\leq i_n}x_{i_1}\cdots x_{i_n}.$$

Define also, for a sequence $N = (n_1, \ldots, n_k)$,

$$h_N=h_{n_1}\cdots h_{n_k}.$$

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example

The product $s_{\mu}s_{\nu}$ is clearly symmetric.

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example

The product $s_{\mu}s_{\nu}$ is clearly symmetric. It is also Schur-positive:

$$s_{\mu}s_{
u}=\sum_{\lambda}c_{\mu,
u}^{\lambda}s_{\lambda},$$

A symmetric function is called Schur positive if all coefficients of its expansion in the Schur basis are nonnegative.

Motivating Example

The product $s_{\mu}s_{\nu}$ is clearly symmetric. It is also Schur-positive:

$$s_{\mu}s_{
u}=\sum_{\lambda}c_{\mu,
u}^{\lambda}s_{\lambda},$$

where the Littlewood-Richardson coefficients $c_{\mu,\nu}^{\lambda} \ge 0$ have a combinatorial interpretation.

Summary and open problems

Ribbon Schur functions

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

Theorem (Gessel '83)

For any skew shape λ/μ and $J \subseteq [n]$,

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{Des}(T) = J\}| = \langle s_{\lambda/\mu}, s_{\mathsf{co}(J)} \rangle.$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

Theorem (Gessel '83)

For any skew shape λ/μ and $J \subseteq [n]$,

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{Des}(T) = J\}| = \langle s_{\lambda/\mu}, s_{\mathsf{co}(J)} \rangle.$$

In particular,

$$\langle s_{\lambda/\mu}, s_{co(J)} \rangle \geq 0$$
 $(\forall J \subseteq [n]).$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

Theorem (Gessel '83)

For any skew shape λ/μ and $J \subseteq [n]$,

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{Des}(T) = J\}| = \langle s_{\lambda/\mu}, s_{\mathsf{co}(J)} \rangle.$$

In particular,

$$\langle s_{\lambda/\mu}, s_{co(J)} \rangle \geq 0$$
 ($\forall J \subseteq [n]$).

The ribbon Schur functions $s_{co(J)}$ are Schur positive.

For a subset $\emptyset \neq J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n]$ define the associated cyclic composition

$$cc(J) := (j_2 - j_1, j_3 - j_2, \dots, j_1 - j_t + n)$$

For a subset $\emptyset \neq J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n]$ define the associated cyclic composition

$$cc(J) := (j_2 - j_1, j_3 - j_2, \dots, j_1 - j_t + n)$$

and the corresponding affine ribbon Schur function

$$\widetilde{s}_{\mathsf{cc}(J)} := \sum_{\varnothing \neq I \subseteq J} (-1)^{|J \setminus I|} h_{\mathsf{cc}(I)}.$$

Example

Let n = 6 and $J = \{3, 5\}$. The affine ribbon Schur function is

$$\begin{split} \tilde{s}_{\text{cc}(\{3,5\})} &= h_{\text{cc}(\{3,5\})} - h_{\text{cc}(\{3\})} - h_{\text{cc}(\{5\})} \\ &= h_{(2,4)} - h_{(6)} - h_{(6)}. \end{split}$$

Theorem (A-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \neq J \subseteq [n]),$

Theorem (A-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \neq J \subseteq [n]),$

and then

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}| = \langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle.$$
Theorem (A-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \neq J \subseteq [n]),$

and then

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}| = \langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ (since $s_{\lambda/\mu}$ is always Schur positive).

Theorem (A-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \neq J \subseteq [n]),$

and then

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}| = \langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ (since $s_{\lambda/\mu}$ is always Schur positive). However, this is not the case!

Theorem (A-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \neq J \subseteq [n]),$

and then

$$|\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}| = \langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ (since $s_{\lambda/\mu}$ is always Schur positive). However, this is not the case!

Example

For n = 6 and $J = \{3, 5\}$,

$$\tilde{s}_{cc({3,5})} = s_{4,2} + s_{5,1} - s_6.$$

Cyclic descents

Gromov-Witten invariants

Summary and open problems

Gromov-Witten invariants

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology

Specifically, let the Grassmannian $Gr_{k,n}$ be the projective variety of all k-dimensional subspaces of \mathbb{C}^n .

Gromov-Witten invariants appear in

- string theory: Free energy in type IIA superstring theory
- symplectic geometry: Count (pseudoholomorphic) curves in a symplectic manifold, subject to certain conditions
- algebraic geometry: Yield structure constants for (cup product of) quantum cohomology

Specifically, let the Grassmannian $Gr_{k,n}$ be the projective variety of all k-dimensional subspaces of \mathbb{C}^n .

Let $P_{k,n}$ be the set of all partitions λ whose shape fits in a $k \times (n-k)$ rectangle, namely $\lambda = (\lambda_1, \ldots, \lambda_k)$ with $n-k \ge \lambda_1 \ge \ldots \ge \lambda_k \ge 0$.

Summary and open problems

Gromov-Witten invariants

Fix a flag of subspaces $\{0\} = V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n$. For each $\lambda \in P_{k,n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \text{Gr}_{k,n}$ as the set of all subspaces $X \in \text{Gr}_{k,n}$ such that the dimensions of its intersections with the various subspaces V_i in the flag satisfy suitable bounds (depending on λ).

Fix a flag of subspaces $\{0\} = V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n$. For each $\lambda \in P_{k,n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \text{Gr}_{k,n}$ as the set of all subspaces $X \in \text{Gr}_{k,n}$ such that the dimensions of its intersections with the various subspaces V_i in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k,n}$, the (3-point) Gromov-Witten invariant $C_{\mu,\nu}^{\lambda,d}$ is the number of rational curves of degree d in $\operatorname{Gr}_{k,n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda^{\vee}}$, Ω_{μ} and Ω_{ν} , provided that this number is finite. This happens exactly when $|\mu| + |\nu| = nd + |\lambda|$.

Fix a flag of subspaces $\{0\} = V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n$. For each $\lambda \in P_{k,n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \text{Gr}_{k,n}$ as the set of all subspaces $X \in \text{Gr}_{k,n}$ such that the dimensions of its intersections with the various subspaces V_i in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k,n}$, the (3-point) Gromov-Witten invariant $C_{\mu,\nu}^{\lambda,d}$ is the number of rational curves of degree d in $\operatorname{Gr}_{k,n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda^{\vee}}$, Ω_{μ} and Ω_{ν} , provided that this number is finite. This happens exactly when $|\mu| + |\nu| = nd + |\lambda|$.

For d = 0, $C_{\mu,\nu}^{\lambda,0} = c_{\mu,\nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Fix a flag of subspaces $\{0\} = V_0 \subset V_1 \subset \ldots \subset V_n = \mathbb{C}^n$. For each $\lambda \in P_{k,n}$ Define the corresponding Schubert variety $\Omega_{\lambda} \subset \text{Gr}_{k,n}$ as the set of all subspaces $X \in \text{Gr}_{k,n}$ such that the dimensions of its intersections with the various subspaces V_i in the flag satisfy suitable bounds (depending on λ).

For a nonnegative integer d and partitions $\lambda, \mu, \nu \in P_{k,n}$, the (3-point) Gromov-Witten invariant $C_{\mu,\nu}^{\lambda,d}$ is the number of rational curves of degree d in $\operatorname{Gr}_{k,n}$ that intersect fixed generic translates of the Schubert varieties $\Omega_{\lambda^{\vee}}$, Ω_{μ} and Ω_{ν} , provided that this number is finite. This happens exactly when $|\mu| + |\nu| = nd + |\lambda|$. For d = 0, $C_{\mu,\nu}^{\lambda,0} = c_{\mu,\nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Important: The geometric description implies that

$$\mathcal{C}_{\mu,
u}^{\lambda,d} \geq 0 \qquad (orall d,\lambda,\mu,
u)$$

Recall that the affine ribbon Schur functions $\tilde{s}_{cc(J)}$ are not always Schur positive. Can this be made more precise?

Recall that the affine ribbon Schur functions $\tilde{s}_{cc(J)}$ are not always Schur positive. Can this be made more precise?

Theorem (Postnikov '05, McNamara '06, A-Reiner-Roichman)

Recall that the affine ribbon Schur functions $\tilde{s}_{cc(J)}$ are not always Schur positive. Can this be made more precise?

Theorem (Postnikov '05, McNamara '06, A-Reiner-Roichman) For all $\emptyset \neq J \subseteq [n]$ of size k > 0

$$\tilde{s}_{cc(J)} + \sum_{i=0}^{k-1} (-1)^{k-i} s_{(n-i,1^i)}$$

is Schur positive (and hook-free).

Proof idea:

Proof idea:

$$\widetilde{s}_{\operatorname{cc}(J)} = s_{\lambda/1/\lambda} + (-1)^{|J|-1} p_n,$$

where $s_{\lambda/1/\lambda}$ is a special case of Postnikov's (toric) cylindric Schur functions and

Proof idea:

$$\tilde{s}_{\operatorname{cc}(J)} = s_{\lambda/1/\lambda} + (-1)^{|J|-1} p_n,$$

where $s_{\lambda/1/\lambda}$ is a special case of Postnikov's (toric) cylindric Schur functions and

$$p_n = x_1^n + x_2^n + \ldots = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)}$$

is the *n*-th power symmetric function.

Postnikov proved that, restricting to k variables only (namely letting $x_{k+1} = \ldots = 0$),

$$s_{\lambda/d/\mu}(x_1,\ldots,x_k) = \sum_{\nu\subseteq k imes (n-k)} C_{\mu,\nu}^{\lambda,d} s_{\nu}(x_1,\ldots,x_k),$$

where $C_{\mu,\nu}^{\lambda,d} \ge 0$ are the aforementioned Gromov-Witten invariants.

Cyclic descents

Summary and open problems

A topological interpretation

Cyclic descents

Summary and open problems

A topological interpretation

Robert Steinberg May 25, 1922 - May 25, 2014

The Coxeter complex $\Sigma(W)$ of type A_2 :

The Coxeter complex $\Sigma(W)$ of type A_2 :

The Steinberg torus $\widetilde{\Delta} = \Sigma(\widetilde{W})/\mathbb{Z}\Phi^{\vee}$ of type \widetilde{A}_2 :

The Coxeter complex $\Delta = \Sigma(A_{n-1})$, and each of its type-selected subcomplexes Δ_J (for $J \subseteq [n-1]$), are Cohen-Macaulay. Their top cohomology groups carry \mathfrak{S}_n -representations corresponding to the ribbon Schur functions $s_{co(J)}$.

The Coxeter complex $\Delta = \Sigma(A_{n-1})$, and each of its type-selected subcomplexes Δ_J (for $J \subseteq [n-1]$), are Cohen-Macaulay. Their top cohomology groups carry \mathfrak{S}_n -representations corresponding to the ribbon Schur functions $s_{co(J)}$.

The Steinberg torus $\widetilde{\Delta}$ is not Cohen-Macaulay. Its Euler characteristic carries the (virtual) \mathfrak{S}_n -representation

$$\sum_{i\geq 0}(-1)^i\operatorname{ch}(C^i(\widetilde{\Delta}))=\sum_{i\geq 0}(-1)^i\operatorname{ch}(H^i(\widetilde{\Delta}))$$

which corresponds to the symmetric function identity

$$\sum_{\emptyset \neq I \subseteq [n]} (-1)^{n-|I|} h_{\mathsf{cc}(I)} = \sum_{i=0}^{n-1} (-1)^{n-1-i} s_{(n-i,1^i)} = \tilde{s}_{\mathsf{cc}([n])}.$$

There are analogues for type-selected subcomplexes.

A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, and any sequence (m_1, \ldots, m_t) of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal. The set QSym of all quasi-symmetric functions is a graded ring, and its *n*-homogeneous part $QSym_n$ has as a basis Gessel's fundamental quasi-symmetric functions F_J , indexed by all subsets $J \subseteq [n-1]$. Its dimension is 2^{n-1} .

A quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, and any sequence (m_1, \ldots, m_t) of positive integers, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m_1} \cdots x_{i'_t}^{m_t}$ in f are equal. The set QSym of all quasi-symmetric functions is a graded ring, and its n-homogeneous part $QSym_n$ has as a basis Gessel's fundamental quasi-symmetric functions F_J , indexed by all subsets $J \subseteq [n-1]$. Its dimension is 2^{n-1} .

Theorem (Gessel '84)

For any skew shape λ/μ ,

$$\sum_{T \in \mathsf{SYT}(\lambda/\mu)} F_{\mathsf{Des}(T)} = s_{\lambda/\mu}.$$

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, and any cyclic shift $m' = (m'_1, \ldots, m'_t)$ of m, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m'_1} \cdots x_{i'_t}^{m'_t}$ in f are equal.

A cyclic quasi-symmetric function is a formal power series $f \in \mathbb{Z}[[x_1, x_2, \ldots]]$ of bounded degree such that, for any $t \ge 1$, any two increasing sequences $i_1 < \ldots < i_t$ and $i'_1 < \ldots < i'_t$ of positive integers, any sequence $m = (m_1, \ldots, m_t)$ of positive integers, and any cyclic shift $m' = (m'_1, \ldots, m'_t)$ of m, the coefficients of $x_{i_1}^{m_1} \cdots x_{i_t}^{m_t}$ and $x_{i'_1}^{m'_1} \cdots x_{i'_t}^{m'_t}$ in f are equal.

Theorem (A-Gessel-Reiner-Roichman '17)

The set cQSym of all cyclic quasi-symmetric functions is a graded ring, and its n-homogeneous part QSym_n has as a basis suitable (normalized) fundamental cyclic quasi-symmetric functions \widehat{F}_A , indexed by the orbits A of the $\mathbb{Z}/n\mathbb{Z}$ -action (by cyclic shifts) on the nonempty subsets $J \subseteq [n]$. Its dimension is

$$\frac{1}{n}\sum_{d\mid n}\varphi(d)(2^{n/d}-1).$$

Summary and open problems

Cyclic quasi-symmetric functions

Theorem (A-Gessel-Reiner-Roichman '17)

For any skew shape λ/μ which is not a connected ribbon,

$$\sum_{T \in \mathsf{SYT}(\lambda/\mu)} \widehat{F}_{[\mathsf{cDes}(T)]} = s_{\lambda/\mu}.$$

Theorem (A-Gessel-Reiner-Roichman '17)

For any skew shape λ/μ which is not a connected ribbon,

$$\sum_{T \in \mathsf{SYT}(\lambda/\mu)} \widehat{F}_{[\mathsf{cDes}(T)]} = s_{\lambda/\mu}.$$

Corollary

For any non-hook shape ν and set $J \subseteq [n]$, the Gromov-Witten invariant $C_{\lambda,\nu}^{\lambda,1}$ is equal to the coefficient of $\widehat{F}_{[J]}$ in the expansion of s_{ν} , where the partition λ corresponds to the cyclic composition cc(J). Cyclic descents

Summary and open problems
Cyclic descents	Existence and uniqueness	Tools	Additional aspects	Summary and open problems
Summary				

• For almost all skew shapes λ/μ there exists a cyclic extension cDes for the usual descent map.

- For almost all skew shapes λ/μ there exists a cyclic extension cDes for the usual descent map.
- For almost all skew shapes λ/μ , the fiber size distribution of this cyclic extension is unique.

- For almost all skew shapes λ/μ there exists a cyclic extension cDes for the usual descent map.
- For almost all skew shapes $\lambda/\mu,$ the fiber size distribution of this cyclic extension is unique.
- The proof (of existence) involves toric Schur functions and the nonnegativity of Gromov-Witten invariants.

Summary and open problems

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on SYT(λ/μ).

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on SYT(λ/μ).

Problem

Find an explicit "cyclic shift" p on $SYT(\lambda/\mu)$.

Open Problems

Problem

Find an explicit combinatorial description of a cyclic descent extension on SYT(λ/μ).

Problem

Find an explicit "cyclic shift" p on SYT (λ/μ) .

Problem

For each non-hook partition $\lambda \vdash n$ find a cyclically closed subset $A \subseteq \mathfrak{S}_n$ such that

$$\sum_{\pi \in A} \mathbf{x}^{\mathsf{cDes}(\pi)} = \sum_{T \in \mathsf{SYT}(\lambda)} \mathbf{x}^{\mathsf{cDes}(T)}.$$

Cyclic descents

Existence and uniqueness

Tools

Additional aspects

Summary and open problems

Thank You!