Character formulas and matrices

Ron Adin and Yuval Roichman

Department of Mathematics
Bar-Ilan University

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

Abstract

We present a family of square matrices which are asymmetric variants of Walsh-Hadamard matrices. They originate in the study of character formulas, and provide a handy tool for translation of statements about permutation statistics to results in representation theory, and vice versa. They turn out to have many fascinating properties.

Outline

1. Character formulas
2. Matrices
3. Back to characters

Character formulas

μ-unimodal permutations

- A sequence $\left(a_{1}, \ldots, a_{n}\right)$ of distinct positive integers is unimodal if there exists $1 \leq m \leq n$ such that

$$
a_{1}>a_{2}>\ldots>a_{m}<a_{m+1}<\ldots<a_{n} .
$$

μ-unimodal permutations

- A sequence $\left(a_{1}, \ldots, a_{n}\right)$ of distinct positive integers is unimodal if there exists $1 \leq m \leq n$ such that

$$
a_{1}>a_{2}>\ldots>a_{m}<a_{m+1}<\ldots<a_{n} .
$$

- Let $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)$ be a composition of n. A sequence of n positive integers is μ-unimodal if the first μ_{1} integers form a unimodal sequence, the next μ_{2} integers form a unimodal sequence, and so on.

μ-unimodal permutations

- A sequence $\left(a_{1}, \ldots, a_{n}\right)$ of distinct positive integers is unimodal if there exists $1 \leq m \leq n$ such that

$$
a_{1}>a_{2}>\ldots>a_{m}<a_{m+1}<\ldots<a_{n} .
$$

- Let $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)$ be a composition of n. A sequence of n positive integers is μ-unimodal if the first μ_{1} integers form a unimodal sequence, the next μ_{2} integers form a unimodal sequence, and so on.
- A permutation $\pi \in S_{n}$ is μ-unimodal if the sequence $(\pi(1), \ldots, \pi(n))$ is μ-unimodal.

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.
- Example: $n=10, \mu=(3,3,4)$.

$$
\begin{gathered}
\pi=(4,2,10,9,7,6,5,3,1,8) \in U_{\mu} \\
\quad \left\lvert\, \begin{array}{ll|l|l|}
\mu_{1} & \mu_{2}\left|\mu_{3}\right|
\end{array}\right.
\end{gathered}
$$

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.
- Example: $n=10, \mu=(3,3,4)$.

$$
\begin{gathered}
\pi=(4,2,10,9,7,6,5,3,1,8) \in U_{\mu} \\
\left\lvert\, \begin{array}{ll|l|l|}
& \mu_{1} & \mu_{2}\left|\mu_{3}\right|
\end{array}\right.
\end{gathered}
$$

- The descent set of a permutation $\pi \in S_{n}$ is

$$
\operatorname{Des}(\pi):=\{i: \pi(i)>\pi(i+1)\} .
$$

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.
- Example: $n=10, \mu=(3,3,4)$.

$$
\begin{aligned}
\pi= & (\underline{4}, 2, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1,8) \in U_{\mu} \\
& \left|\mu_{1}\right| \mu_{2}\left|\mu_{3}\right|
\end{aligned}
$$

- The descent set of a permutation $\pi \in S_{n}$ is

$$
\operatorname{Des}(\pi):=\{i: \pi(i)>\pi(i+1)\} .
$$

- Example: $\operatorname{Des}(\pi)=\{1,3,4,5,6,7,8\}$

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.
- Example: $n=10, \mu=(3,3,4)$.

$$
\begin{aligned}
\pi= & (\underline{4}, 2, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1,8) \in U_{\mu} \\
& \left|\mu_{1}\right| \mu_{2}\left|\mu_{3}\right|
\end{aligned}
$$

- The descent set of a permutation $\pi \in S_{n}$ is

$$
\operatorname{Des}(\pi):=\{i: \pi(i)>\pi(i+1)\} .
$$

- Example: $\operatorname{Des}(\pi)=\{1,3,4,5,6,7,8\}$
- Denote $I(\mu):=\{1, \ldots, n\} \backslash\left\{\mu_{1}, \mu_{1}+\mu_{2}, \mu_{1}+\mu_{2}+\mu_{3}, \ldots\right\}$

μ-unimodal permutations, descent set

- Let U_{μ} be the set of all μ-unimodal permutations in S_{n}.
- Example: $n=10, \mu=(3,3,4)$.

$$
\begin{aligned}
\pi= & (\underline{4}, 2, \underline{10}, \underline{9}, \underline{7}, \underline{6}, \underline{5}, \underline{3}, 1,8) \in U_{\mu} \\
& \left|\mu_{1}\right| \mu_{2}\left|\mu_{3}\right|
\end{aligned}
$$

- The descent set of a permutation $\pi \in S_{n}$ is

$$
\operatorname{Des}(\pi):=\{i: \pi(i)>\pi(i+1)\} .
$$

- Example: $\operatorname{Des}(\pi)=\{1,3,4,5,6,7,8\}$
- Denote $I(\mu):=\{1, \ldots, n\} \backslash\left\{\mu_{1}, \mu_{1}+\mu_{2}, \mu_{1}+\mu_{2}+\mu_{3}, \ldots\right\}$
- Example: $I(\mu)=\{1, \ldots, 10\} \backslash\{3,6,10\}=\{1,2,4,5,7,8,9\}$

$$
\operatorname{Des}(\pi) \cap I(\mu)=\{1,4,5,7,8\}
$$

Formula 1: irreducible characters

Let λ and μ be partitions of n, let χ^{λ} be the character of the irreducible S_{n}-representation corresponding to λ, and let χ_{μ}^{λ} be its value on a conjugacy class of cycle type μ.
Theorem (Roichman '97)

$$
\chi_{\mu}^{\lambda}=\sum_{\pi \in \mathcal{C} \cap \cup_{\mu}}(-1)^{|\operatorname{Des}(\pi) \cap \imath(\mu)|},
$$

where \mathcal{C} is any Knuth class of shape λ.

Formula 2: coinvariant algebra, homogeneous component

Let $\chi^{(k)}$ be the S_{n}-character corresponding to the symmetric group action on the k-th homogeneous component of its coinvariant algebra, and let $\chi_{\mu}^{(k)}$ be its value on a conjugacy class of cycle type μ.

Theorem (A-Postnikov-Roichman, '00)

$$
\chi_{\mu}^{(k)}=\sum_{\pi \in L(k) \cap U_{\mu}}(-1)^{|\operatorname{Des}(\pi) \cap \iota(\mu)|}
$$

where $L(k)$ is the set of all permutations of length k in S_{n}.

Formula 3: Gelfand model

A complex representation of a group or an algebra A is called a Gelfand model for A if it is equivalent to the multiplicity free direct sum of all irreducible A-representations. Let χ^{G} be the corresponding character, and let χ_{μ}^{G} be its value on a conjugacy class of cycle type μ.

Theorem (A-Postnikov-Roichman, '08)
The character of the Gelfand model of S_{n} at a conjugacy class of cycle type μ is equal to

$$
\chi_{\mu}^{G}=\sum_{\pi \in \ln v_{n} \cap U_{\mu}}(-1)^{|\operatorname{Des}(\pi) \cap I(\mu)|},
$$

where $\operatorname{In} v_{n}:=\left\{\sigma \in S_{n}: \sigma^{2}=i d\right\}$ is the set of all involutions in S_{n}.

Inverse formulas?

Question

Are these formulas invertible?
In other words: to what extent do the character values $\chi_{\mu}^{*}(\forall \mu)$ determine the distribution of descent sets?

Matrices

Subsets as indices

Definition

Let P_{n} be the power set (set of all subsets) of $\{1, \ldots, n\}$, with the anti-lexicographic linear order: for $I, J \in P_{n}, I \neq J$, let m be the largest element in the symmetric difference $I \triangle J:=(I \cup J) \backslash(I \cap J)$, and define: $I<J \Longleftrightarrow m \in J$.

Example
The linear order on P_{3} is

$$
\emptyset<\{1\}<\{2\}<\{1,2\}<\{3\}<\{1,3\}<\{2,3\}<\{1,2,3\} .
$$

P_{n} will index the rows and columns of our matrices.

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_{n} of order 2^{n} has entries

$$
h_{I, J}:=(-1)^{|I \cap J|} \quad\left(\forall I, J \in P_{n}\right) .
$$

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_{n} of order 2^{n} has entries

$$
h_{I, J}:=(-1)^{|I \cap J|} \quad\left(\forall I, J \in P_{n}\right) .
$$

Example

$$
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_{n} of order 2^{n} has entries

$$
h_{I, J}:=(-1)^{|I \cap J|} \quad\left(\forall I, J \in P_{n}\right) .
$$

Example

$$
\begin{gathered}
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right)=H_{1}^{\otimes 2}
\end{gathered}
$$

Walsh-Hadamard matrices

The Walsh-Hadamard matrix H_{n} of order 2^{n} has entries

$$
h_{I, J}:=(-1)^{|I \cap J|} \quad\left(\forall I, J \in P_{n}\right) .
$$

Example

$$
\begin{gathered}
H_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
H_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right)=H_{1}^{\otimes 2} \\
H_{n}^{t}=H_{n} \quad H_{n} H_{n}^{t}=2^{n} I_{2^{n}}
\end{gathered}
$$

Prefixes and runs

Definition
The prefix of length p of an interval $\{m+1, \ldots, m+\ell\}$ is the interval $\{m+1, \ldots, m+p\}(0 \leq p \leq \ell)$.

Prefixes and runs

Definition
The prefix of length p of an interval $\{m+1, \ldots, m+\ell\}$ is the interval $\{m+1, \ldots, m+p\}(0 \leq p \leq \ell)$.

Definition
For $I \in P_{n}$ let I_{1}, \ldots, I_{t} be the sequence of runs (maximal consecutive intervals) in I.

Prefixes and runs

Definition
The prefix of length p of an interval $\{m+1, \ldots, m+\ell\}$ is the interval $\{m+1, \ldots, m+p\}(0 \leq p \leq \ell)$.

Definition
For $I \in P_{n}$ let I_{1}, \ldots, I_{t} be the sequence of runs (maximal consecutive intervals) in I.

Example
For $I=\{1,2,4,5,6,8,10\} \in P_{10}$:
$I_{1}=\{1,2\}, I_{2}=\{4,5,6\}, I_{3}=\{8\}, I_{4}=\{10\}$.

The matrices A and B

The matrices A and B

Definition
For $I \in P_{n}$ let I_{1}, \ldots, I_{t} be the runs in I. Define, for any $J \in P_{n}$:

$$
a_{l, J}:= \begin{cases}(-1)^{|\cap \cap J|}, & \text { if } I_{k} \cap J \text { is a prefix of } I_{k} \text { for each } k ; \\ 0, & \text { otherwise. }\end{cases}
$$

$A_{n}:=\left(a_{I, J}\right)_{I, J \in P_{n}}$, with P_{n} ordered as above.

The matrices A and B

Definition

For $I \in P_{n}$ let I_{1}, \ldots, I_{t} be the runs in I. Define, for any $J \in P_{n}$:

$$
a_{I, J}:= \begin{cases}(-1)^{|\cap \cap J|}, & \text { if } I_{k} \cap J \text { is a prefix of } I_{k} \text { for each } k ; \\ 0, & \text { otherwise. }\end{cases}
$$

$A_{n}:=\left(a_{l, J}\right)_{l, J \in P_{n}}$, with P_{n} ordered as above.
An auxiliary matrix:

$$
b_{I, J}:= \begin{cases}(-1)^{|I \cap J|}, & \text { if } I_{k} \cap J \text { is a prefix of } I_{k} \text { for each } k, \\ & \text { and } n \notin I \backslash J ; \\ 0, & \text { otherwise. }\end{cases}
$$

$B_{n}:=\left(b_{l, J}\right)_{l, J \in P_{n}}$.

A and B (examples)

$$
A_{1}=(1) \quad B_{1}=(1)
$$

A and B (examples)

$$
\begin{array}{cl}
A_{1}=(1) & B_{1}=(1) \\
A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & B_{1}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
\end{array}
$$

A and B (examples)

$$
\begin{array}{cc}
A_{1}=(1) & B_{1}=(1) \\
A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) & B_{1}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \\
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) & B_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \begin{array}{c}
\emptyset \\
\{1\} \\
\{2\} \\
\{1,2\}
\end{array}
\end{array}
$$

A and B (examples)

$$
\begin{gathered}
A_{1}=(1) \quad B_{1}=(1) \\
A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad B_{1}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \\
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) \quad B_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \begin{array}{c}
\emptyset \\
\{1\} \\
\{2\} \\
\{1,2\}
\end{array} \\
I=\{1,2\}, \quad J=\{2\}, \quad I \cap J=\{2\} \text { is not a prefix of } I
\end{gathered}
$$

A and B (examples)

$$
\begin{gathered}
A_{1}=(1) \quad B_{1}=(1) \\
A_{1}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad B_{1}=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right) \\
A_{2}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1 \\
1 & -1 & 0 \\
\uparrow & 1
\end{array}\right) \quad B_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \begin{array}{c}
\emptyset \\
\{1\} \\
\{2\} \\
\{1,2\}
\end{array} \\
I=\{1,2\}, \quad J=\{2\}, \quad I \cap J=\{2\} \text { is not a prefix of } I
\end{gathered}
$$

Recursion

Lemma

$$
A_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & -B_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $A_{0}=(1)$, and

$$
B_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
0 & -B_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $B_{0}=(1)$.

Recursion

Lemma

$$
A_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
A_{n-1} & -B_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $A_{0}=(1)$, and

$$
B_{n}=\left(\begin{array}{cc}
A_{n-1} & A_{n-1} \\
0 & -B_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $B_{0}=(1)$.
For comparison:

$$
H_{n}=\left(\begin{array}{cc}
H_{n-1} & H_{n-1} \\
H_{n-1} & -H_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $H_{0}=(1)$.

Determinant

Theorem
A_{n} and B_{n} are invertible for all $n \geq 0$.

Determinant

Theorem
A_{n} and B_{n} are invertible for all $n \geq 0$. In fact,

$$
\operatorname{det}\left(A_{n}\right)=(n+1) \cdot \prod_{k=1}^{n} k^{2^{n-1-k}(n+4-k)} \quad(n \geq 2)
$$

while $\operatorname{det}\left(A_{0}\right)=1$ and $\operatorname{det}\left(A_{1}\right)=-2$,

Determinant

Theorem
A_{n} and B_{n} are invertible for all $n \geq 0$. In fact,

$$
\operatorname{det}\left(A_{n}\right)=(n+1) \cdot \prod_{k=1}^{n} k^{2^{n-1-k}(n+4-k)} \quad(n \geq 2)
$$

while $\operatorname{det}\left(A_{0}\right)=1$ and $\operatorname{det}\left(A_{1}\right)=-2$, and

$$
\operatorname{det}\left(B_{n}\right)=\prod_{k=1}^{n} k^{2^{n-1-k}(n+2-k)} \quad(n \geq 2)
$$

while $\operatorname{det}\left(B_{0}\right)=1$ and $\operatorname{det}\left(B_{1}\right)=-1$.

Determinant

Theorem
A_{n} and B_{n} are invertible for all $n \geq 0$. In fact,

$$
\operatorname{det}\left(A_{n}\right)=(n+1) \cdot \prod_{k=1}^{n} k^{2^{n-1-k}(n+4-k)} \quad(n \geq 2)
$$

while $\operatorname{det}\left(A_{0}\right)=1$ and $\operatorname{det}\left(A_{1}\right)=-2$, and

$$
\operatorname{det}\left(B_{n}\right)=\prod_{k=1}^{n} k^{2^{n-1-k}(n+2-k)} \quad(n \geq 2)
$$

while $\operatorname{det}\left(B_{0}\right)=1$ and $\operatorname{det}\left(B_{1}\right)=-1$.
For comparison,

$$
\operatorname{det}\left(H_{n}\right)=2^{2^{n-1} n} \quad(n \geq 2)
$$

with $\operatorname{det}\left(H_{0}\right)=1$ and $\operatorname{det}\left(H_{1}\right)=-2$.

Möbius inversion

Let Z_{n} be the zeta matrix of the poset P_{n} with respect to set inclusion:

$$
z_{I, J}:= \begin{cases}1, & \text { if } I \subseteq J \\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
Z_{n}=\left(\begin{array}{cc}
Z_{n-1} & Z_{n-1} \\
0 & Z_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $Z_{0}=(1)$. Its inverse is the Möbius matrix $M_{n}=Z_{n}^{-1}$, with entries $m_{l, J}$ defined by

$$
m_{l, J}:= \begin{cases}(-1)^{|J \backslash I|}, & \text { if } I \subseteq J \\ 0, & \text { otherwise }\end{cases}
$$

It satisfies

$$
M_{n}=\left(\begin{array}{cc}
M_{n-1} & -M_{n-1} \\
0 & M_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $M_{0}=(1)$.

$A M$ and $B M$

Denote now $A M_{n}:=A_{n} M_{n}, B M_{n}:=B_{n} M_{n}$ and $H M_{n}:=H_{n} M_{n}$. It follows that

$$
A M_{n}=\left(\begin{array}{cc}
A M_{n-1} & 0 \\
A M_{n-1} & -\left(A M_{n-1}+B M_{n-1}\right)
\end{array}\right) \quad(n \geq 1)
$$

with $A M_{0}=(1)$ and

$$
B M_{n}=\left(\begin{array}{cc}
A M_{n-1} & 0 \\
0 & -B M_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $B M_{0}=(1)$, as well as

$$
H M_{n}=\left(\begin{array}{cc}
H M_{n-1} & 0 \\
H M_{n-1} & -2 H M_{n-1}
\end{array}\right) \quad(n \geq 1)
$$

with $H M_{0}=(1)$.

Determinant computation (1)

By the $B M$ recursion,

$$
\operatorname{det}\left(B M_{n}\right)=\operatorname{det}\left(A M_{n-1}\right) \operatorname{det}\left(-B M_{n-1}\right) \quad(n \geq 1)
$$

Now M_{n} is an upper triangular matrix with 1-s on its diagonal, so that

$$
\operatorname{det}\left(M_{n}\right)=1
$$

We conclude that

$$
\operatorname{det}\left(B_{n}\right)=\delta_{n-1} \operatorname{det}\left(A_{n-1}\right) \operatorname{det}\left(B_{n-1}\right) \quad(n \geq 1)
$$

where

$$
\delta_{n}=(-1)^{2^{n}}= \begin{cases}-1, & \text { if } n=0 \\ 1, & \text { otherwise }\end{cases}
$$

Determinant computation (2)

Similarly, for any scalar t and $n \geq 1$,

$$
A M_{n}+t B M_{n}=\left(\begin{array}{cc}
(t+1) A M_{n-1} & 0 \\
A M_{n-1} & -A M_{n-1}-(t+1) B M_{n-1}
\end{array}\right)
$$

and a similar argument yields

$$
\operatorname{det}\left(A_{n}+t B_{n}\right)=\delta_{n-1} \operatorname{det}\left((t+1) A_{n-1}\right) \operatorname{det}\left(A_{n-1}+(t+1) B_{n-1}\right)
$$

It follows that

$$
\begin{aligned}
\operatorname{det}\left(A_{n}\right) & =\left(\prod_{k=1}^{n} \delta_{n-k} \operatorname{det}\left(k A_{n-k}\right)\right) \cdot \operatorname{det}\left(A_{0}+n B_{0}\right)= \\
& =-(n+1) \cdot \prod_{k=1}^{n} k^{2^{n-k}} \cdot \prod_{k=1}^{n} \operatorname{det}\left(A_{n-k}\right) \quad(n \geq 1)
\end{aligned}
$$

Since $A_{0}=(1)$ it follows that $\operatorname{det}\left(A_{n}\right) \neq 0$ for any nonnegative integer n.

Determinant computation (3)

The solution to this recursion, with initial value $\operatorname{det}\left(A_{1}\right)=-2$, is

$$
\operatorname{det}\left(A_{n}\right)=(n+1) \cdot \prod_{k=1}^{n} k^{2^{n-1-k}(n+4-k)} \quad(n \geq 2)
$$

The $B M$ recursion, with initial value $\operatorname{det}\left(B_{1}\right)=-1$, now yields

$$
\operatorname{det}\left(B_{n}\right)=\prod_{k=1}^{n} k^{2^{n-1-k}(n+2-k)} \quad(n \geq 2)
$$

For comparison,

$$
\operatorname{det}\left(H_{n}\right)=2^{2^{n-1}} \operatorname{det}\left(H_{n-1}\right)^{2} \quad(n \geq 2)
$$

with initial value $\operatorname{det}\left(H_{1}\right)=-2$, so that

$$
\operatorname{det}\left(H_{n}\right)=2^{2^{n-1} n} \quad(n \geq 2)
$$

HM entries

$$
H M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\
1 & -2 & -2 & 4 & -2 & 4 & 4 & -8
\end{array}\right)
$$

HM entries

$$
H M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\
1 & -2 & -2 & 4 & -2 & 4 & 4 & -8
\end{array}\right)
$$

Lemma

- Zero pattern: $\left(H M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$

HM entries

$$
H M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\
1 & -2 & -2 & 4 & -2 & 4 & 4 & -8
\end{array}\right)
$$

Lemma

- Zero pattern: $\left(H M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$
- Signs: $\left(H M_{n}\right)_{I, J} \neq 0 \Longrightarrow \operatorname{sign}\left(\left(H M_{n}\right)_{\iota, J}\right)=(-1)^{|J|}$

HM entries

$$
H M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -2 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -2 & 0 & 4 & 0 \\
1 & -2 & -2 & 4 & -2 & 4 & 4 & -8
\end{array}\right)
$$

Lemma

- Zero pattern: $\left(H M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$
- Signs: $\left(H M_{n}\right)_{I, J} \neq 0 \Longrightarrow \operatorname{sign}\left(\left(H M_{n}\right)_{\iota, J}\right)=(-1)^{|J|}$
- Absolute values: $\left(H M_{n}\right)_{I, J} \neq 0 \Longrightarrow\left|\left(H M_{n}\right)_{I, J}\right|=2^{|J|}$

AM entries (1)

$$
A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right)
$$

AM entries (1)

$$
A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right)
$$

Theorem

- Zero pattern: $\left(A M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$

AM entries (1)

$$
A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right)
$$

Theorem

- Zero pattern: $\left(A M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$
- Signs: $\left(A M_{n}\right)_{I, J} \neq 0 \Longrightarrow \operatorname{sign}\left(\left(A M_{n}\right)_{I, J}\right)=(-1)^{|J|}$

AM entries (1)

$$
A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right)
$$

Theorem

- Zero pattern: $\left(A M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$
- Signs: $\left(A M_{n}\right)_{I, J} \neq 0 \Longrightarrow \operatorname{sign}\left(\left(A M_{n}\right)_{I, J}\right)=(-1)^{|J|}$
- Absolute values: ???

Dispersion

AM entries (2)

Theorem

- Zero pattern: $\left(A M_{n}\right)_{I, J} \neq 0 \Longleftrightarrow J \subseteq I$
- Signs: $\left(A M_{n}\right)_{I, J} \neq 0 \Longrightarrow \operatorname{sign}\left(\left(A M_{n}\right)_{\iota, J}\right)=(-1)^{|J|}$
- Absolute values:

$$
\left(A M_{n}\right)_{ו, J} \neq 0 \Longrightarrow\left|\left(A M_{n}\right)_{\iota, J}\right|=\prod_{k=1}^{t}\left(\left|J_{k}\right|+1\right)^{\delta_{k}(I)}
$$

where J_{1}, \ldots, J_{t} are the runs in J and, for

$$
J_{k}=\left\{m_{k}+1, \ldots, m_{k}+\ell_{k}\right\}(1 \leq k \leq t):
$$

$$
\delta_{k}(I):= \begin{cases}0, & \text { if } m_{k} \in I \\ 1, & \text { otherwise }\end{cases}
$$

Diagonal and last row

Corollary

- All entries in the diagonal and last row of $A M_{n}$ are non-zero.
- Diagonal:

$$
\left|\left(A M_{n}\right)_{J, J}\right|=\prod_{k=1}^{t}\left(\left|J_{k}\right|+1\right)
$$

- Last row:

$$
\left|\left(A M_{n}\right)_{[n], J}\right|= \begin{cases}\left|J_{1}\right|+1, & \text { if } 1 \in J \\ 1, & \text { otherwise }\end{cases}
$$

- Each nonzero entry $\left(A M_{n}\right)_{I, J}$ divides the corresponding diagonal entry $\left(A M_{n}\right)_{J, J}$ and is divisible by the corresponding last row entry $\left(A M_{n}\right)_{[n], J}$.

Diagonal and last row (example)

$$
\begin{aligned}
&=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right) \quad I=\{1,2\} \\
& \\
& \uparrow \\
& J=\{1,2\}
\end{aligned}
$$

Diagonal and last row (example)

$$
\begin{aligned}
& A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right) \quad I=\{2,3\}, \quad \begin{array}{l}
\\
\\
\end{array} \\
& J=\left\{\begin{array}{l}
\uparrow \\
=2,3\}
\end{array}\right.
\end{aligned}
$$

Row sums

Lemma

- The sum of all entries in row I of $A M_{n}\left(\right.$ or $\left.H M_{n}\right)$ is $(-1)^{|I|}$.
- The sum of absolute values of all entries in row I of $A M_{n}$ is

$$
\prod_{k=1}^{t}\left(2^{\left|{ }_{k}\right|+1}-1\right)
$$

In $H M_{n}$ the sum is $3^{|I|}$.

Column sums and square diagonal entries

Theorem

- The sum of absolute values of all the entries in column J of $A M_{n}$ is equal to the (J, J) diagonal entry of A_{n}^{2}, which in turn is equal to

$$
2^{n-t^{*}-\left|J^{*}\right|} \prod_{k=1}^{t^{*}}\left(\left|J_{k}^{*}\right|+2\right)
$$

where $J^{*}:=J \backslash\{1\}$ and $J_{1}^{*}, \ldots, J_{t^{*}}^{*}$ are its runs.

- For comparison, the sum of absolute values of all the entries in column J of $H M_{n}$ is equal to the (J, J) diagonal entry of H_{n}^{2}, namely to the constant 2^{n}.

Column sums and square diagonal entries

Example

$$
A M_{3}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & -2 & -1 & 3 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & -2 & 0 & 0 & -2 & 4 & 0 & 0 \\
1 & 0 & -2 & 0 & -1 & 0 & 3 & 0 \\
1 & -2 & -1 & 3 & -1 & 2 & 1 & -4
\end{array}\right)
$$

$\begin{array}{lllllllllll}\text { column sums: } & & 8 & 8 & 6 & 6 & 6 & 6 & 4 & 4\end{array}$

Column sums and square diagonal entries

Example

$$
A_{3}^{2}=\left(\begin{array}{cccccccc}
8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\
2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 0 & 4
\end{array}\right)
$$

Inverse of $A M$

Theorem

$$
\left(A M_{n}^{-1}\right)_{\iota, J} \neq 0 \Longleftrightarrow J \subseteq I
$$

- For $J \subseteq 1$,

$$
\left(A M_{n}^{-1}\right)_{I, J}=(-1)^{|J|} \prod_{i \in I} \frac{d_{l, J}(i)}{e_{I, J}(i)}
$$

where, for $i \in I_{k}(k$-th run of $I)$:

$$
d_{I, J}(i):= \begin{cases}\max \left(I_{k}\right)-i+1, & \text { if } i \in J \\ 1, & \text { otherwise }\end{cases}
$$

and

$$
e_{I, J}(i):=\max \left(I_{k}\right)-i+2 .
$$

Inverse of $A M$

Equivalently, for $J \subseteq I$,

$$
\left(A M_{n}^{-1}\right)_{I, J}=(-1)^{|J|} \prod_{k=1}^{t} \frac{1}{\left(\left|I_{k}\right|+1\right)!} \prod_{i \in I_{k} \cap J}\left(\max \left(I_{k}\right)-i+1\right)
$$

Note that the denominator $\prod_{k=1}^{t}\left(\left|I_{k}\right|+1\right)$! is the cardinality of the parabolic subgroup $\langle I\rangle$ of S_{n+1} generated by the simple reflections $\left\{s_{i}: i \in I\right\}$.

Inverse of AM

Corollary

- Each nonzero entry of $A M_{n}^{-1}$ is the inverse of an integer.
- In each row of $A M_{n}^{-1}$, the sum of absolute values of all the entries is 1 .
- In each row I of $A M_{n}^{-1}$, the first entry

$$
\left(A M_{n}^{-1}\right)_{I, \emptyset}=\prod_{k=1}^{t} \frac{1}{\left(\left|I_{k}\right|+1\right)!}
$$

divides all the other nonzero entries and the diagonal entry

$$
\left(A M_{n}^{-1}\right)_{\iota, I}=(-1)^{|/|} \prod_{k=1}^{t} \frac{1}{\left|I_{k}\right|+1}
$$

is divisible by all the other nonzero entries.

Inverse of $A M$

Example

$$
A M_{3}^{-1}=\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 2 & -1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & -1 / 2 & 0 & 0 & 0 & 0 & 0 \\
1 / 6 & -1 / 3 & -1 / 6 & 1 / 3 & 0 & 0 & 0 & 0 \\
1 / 2 & 0 & 0 & 0 & -1 / 2 & 0 & 0 & 0 \\
1 / 4 & -1 / 4 & 0 & 0 & -1 / 4 & 1 / 4 & 0 & 0 \\
1 / 6 & 0 & -1 / 3 & 0 & -1 / 6 & 0 & 1 / 3 & 0 \\
1 / 24 & -1 / 8 & -1 / 12 & 1 / 4 & -1 / 24 & 1 / 8 & 1 / 12 & -1 / 4
\end{array}\right)
$$

Eigenvalues

$$
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

Eigenvalues

$$
\begin{aligned}
A_{2} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) \\
A_{2}^{t} & \neq A_{2} \quad A_{2} A_{2}^{t} \neq 4 / 4
\end{aligned}
$$

Eigenvalues

$$
\begin{gathered}
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) \\
A_{2}^{t} \neq A_{2} \quad A_{2} A_{2}^{t} \neq 4 I_{4}
\end{gathered}
$$

Question: What can be said about its eigenvalues?

Eigenvalues

$$
\begin{aligned}
A_{2} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) \\
A_{2}^{t} & \neq A_{2} \quad A_{2} A_{2}^{t} \neq 4 / 4
\end{aligned}
$$

Question: What can be said about its eigenvalues?
Answer: char. poly. $\left(A_{2}\right)=\left(x^{2}-4\right)\left(x^{2}-3\right)$

Eigenvalues

$$
\begin{aligned}
A_{2} & =\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right) \\
A_{2}^{t} & \neq A_{2} \quad A_{2} A_{2}^{t} \neq 4 /_{4}
\end{aligned}
$$

Question: What can be said about its eigenvalues?
Answer: char. poly. $\left(A_{2}\right)=\left(x^{2}-4\right)\left(x^{2}-3\right)$

$$
A_{2}^{2}=\left(\begin{array}{cccc}
4 & 0 & 1 & 0 \\
0 & 4 & -1 & 0 \\
0 & 0 & 3 & 0 \\
1 & 1 & 0 & 3
\end{array}\right)
$$

Eigenvalues

$$
A_{3}^{2}=\left(\begin{array}{cccccccc}
8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\
2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 0 & 4
\end{array}\right)
$$

Eigenvalues

$$
A_{3}^{2}=\left(\begin{array}{cccccccc}
8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\
2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 0 & 4
\end{array}\right)
$$

char. poly. $\left(A_{3}^{2}\right)=(x-8)^{2}(x-6)^{4}(x-4)^{2}$

Eigenvalues

$$
A_{3}^{2}=\left(\begin{array}{cccccccc}
8 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
0 & 8 & -2 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 6 & 0 & -2 & 0 & 0 & 0 \\
2 & 2 & 0 & 6 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 6 & -2 & 0 \\
2 & 0 & 2 & 0 & 0 & 0 & 4 & 0 \\
0 & 2 & 0 & 2 & 1 & 1 & 0 & 4
\end{array}\right)
$$

char. poly. $\left(A_{3}^{2}\right)=(x-8)^{2}(x-6)^{4}(x-4)^{2}$
Alas... A_{3}^{2} is not diagonalizable!

Eigenvalues (conjecture)

Conjecture

The eigenvalues of A_{n}^{2} (counted by algebraic multiplicity) are in $1: 1$ correspondence with the diagonal entries of A_{n}^{2}.

Eigenvalues (conjecture)

Conjecture

The eigenvalues of A_{n}^{2} (counted by algebraic multiplicity) are in $1: 1$ correspondence with the diagonal entries of A_{n}^{2}.
The latter are explicitly known:
Theorem
The (J, J) diagonal entry of A_{n}^{2} is equal to the sum of absolute values of all the entries in column J of $A M_{n}$, which in turn is equal to

$$
2^{n-t^{*}-\left|J^{*}\right|} \prod_{k=1}^{t^{*}}\left(\left|J_{k}^{*}\right|+2\right)=\prod_{k}\left(\mu_{k}+1\right)
$$

where μ is the composition of n corresponding to $J^{*}:=J \backslash\{1\}$.

Back to characters

Fine sets

Definition

Let B be a set of combinatorial objects, and let Des: $B \rightarrow P_{n-1}$ be a map which associates a "descent set" $\operatorname{Des}(b) \subseteq[n-1]$ to each element $b \in B$. Denote by B^{μ} the set of elements in B whose descent set $\operatorname{Des}(b)$ is μ-unimodal. Let ρ be a complex S_{n}-representation. Then B is called a fine set for ρ if, for each composition μ of n, the character value of ρ on a conjugacy class of cycle type μ satisfies

$$
\chi_{\mu}^{\rho}=\sum_{b \in B^{\mu}}(-1)^{|\operatorname{Des}(b) \backslash S(\mu)|} .
$$

Character values and descent sets

Theorem (Fine Set Theorem)
If B is a fine set for an S_{n}-representation ρ, then the character values of ρ uniquely determine the overall distribution of descent sets over B.

Character values and descent sets

Theorem (Fine Set Theorem)

If B is a fine set for an S_{n}-representation ρ, then the character values of ρ uniquely determine the overall distribution of descent sets over B.

Idea of proof
For a subset $J=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq[n-1]$ let $s_{J}:=s_{j_{1}} s_{j_{2}} \cdots s_{j_{k}} \in S_{n}$. Let χ^{ρ} be the vector with entries $\chi^{\rho}\left(s_{J}\right)$, for $J \in P_{n-1}$, and let v^{B} be the vector with entries

$$
v_{J}^{B}:=|\{b \in B: \operatorname{Des}(b)=J\}| \quad\left(\forall J \in P_{n-1}\right)
$$

Then, by definition, B is a fine set for ρ if and only if

$$
\chi^{\rho}=A_{n-1} v^{B}
$$

The result follows since A_{n-1} is an invertible matrix.

Explicit inversion formula

Theorem
Let B be a fine set for an S_{n}-representation ρ. For every $D \subseteq[n-1]$, the number of elements in B with descent set D satisfies

$$
|\{b \in B: \operatorname{Des}(b)=D\}|=\sum_{J} \chi^{\rho}\left(c_{J}\right) \sum_{I: D \cup J \subseteq I}(-1)^{|/ \backslash D|}\left(A M_{n-1}^{-1}\right)_{I, J}
$$

where

$$
\left(A M_{n-1}^{-1}\right)_{I, J}=\frac{(-1)^{|J|}}{|\langle I\rangle|} \prod_{k=1}^{t} \prod_{i \in I_{k} \cap J}\left(\max \left(I_{k}\right)-i+1\right),
$$

I_{1}, \ldots, I_{t} are the runs in I and $c_{J}:=\prod_{j \in J} s_{j}$ is a Coxeter element in the parabolic subgroup $\langle J\rangle$.

Equivalence of classical theorems

For $0 \leq k \leq\binom{ n}{2}$ let R_{k} be the k-th homogeneous component of the coinvariant algebra of the symmetric group S_{n}. For a partition λ, let $m_{k, \lambda}$ be the number of standard Young tableaux of shape λ with major index k.

Theorem (Lusztig-Stanley)

$$
R_{k} \cong \bigoplus_{\lambda \vdash n} m_{k, \lambda} S^{\lambda}
$$

where the sum runs over all partitions of n and S^{λ} denotes the irreducible S_{n}-module indexed by λ.

Equivalence of classical theorems

The major index of a permutation π is $\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i$, and its length $\ell(\pi)$ is the number of inversions in π.
For a subset $I \subseteq[n-1]$ denote $\mathbf{x}^{\prime}:=\prod_{i \in I} x_{i}$.
Theorem (Foata-Schützenberger; Garsia-Gessel)

$$
\sum_{\pi \in S_{n}} \mathbf{x}^{\operatorname{Des}(\pi)} q^{\ell(\pi)}=\sum_{\pi \in S_{n}} \mathbf{x}^{\operatorname{Des}(\pi)} q^{\operatorname{maj}\left(\pi^{-1}\right)}
$$

The Fine Set Theorem implies
Corollary
The Foata-Schützenberger Theorem is equivalent to the Lusztig-Stanley Theorem.

Summary

Summary

- Asymmetric variants of Walsh-Hadamard matrices

Summary

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor

Summary

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics

Summary

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

Summary

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

$$
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

Summary

- Asymmetric variants of Walsh-Hadamard matrices
- Have fascinating properties, with strong combinatorial flavor
- Serve as a bridge between characters and combinatorial permutation statistics
- Eigenvalues are still conjectural

$$
A_{2}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

