Flips, Arrangements and Tableaux

Ron Adin and Yuval Roichman Bar-Ilan University radin, yuvalr @math.biu.ac.il

Flips

■ Triangulations (TFT)

- Flips
- Flip Graph
- Diameter
- Stanley’s Conjecture
- Main Result

Triangle-Free Triangulations

- Definition: A triangulation of a convex polygon is triangle-free (TFT) if it contains no triangle

Triangle-Free Triangulations

- Definition: A triangulation of a convex polygon is triangle-free (TFT) if it contains no "internal" triangle, i.e., a triangle whose 3 sides are diagonals of the polygon. The set of all TFT's of an n-gon is denoted TFT(n).

Colored TFT

- Note: A triangulation is triangle-free iff the dual tree is a path.

Colored TFT

- Note: A triangulation is triangle-free iff the dual tree is a path.

- The triangles of a TFT can be linearly ordered (colored) in two "directions". Denote by CTFT (n) the set of colored TFT's.
- $|\operatorname{CTFT}(n)|=n \cdot 2^{n-4}$

Flip Graph

- Flip = replacing a diagonal by the other diagonal of the same quadrangle.

- The colored flip graph Γ_{n} has vertex set $C T F T(n)$ with edges corresponding to flips.

Diameter of Colored Flip Graph

Diameter of Colored Flip Graph

- Theorem: [A-Firer-Roichman, '09] For $n>4$:
(a) The diameter of Γ_{n} is $n(n-3) / 2$.

Diameter of Colored Flip Graph

- Theorem: [A-Firer-Roichman, '09] For $n>4$:
(a) The diameter of Γ_{n} is $n(n-3) / 2$.

The proof involves an action of an affine Weyl group of type \tilde{C}.

Diameter of Colored Flip Graph

- Theorem: [A-Firer-Roichman, '09] For $n>4$:
(a) The diameter of Γ_{n} is $n(n-3) / 2$.
(b) Any colored TFT and its reverse are antipodal (distance = diameter).
(reverse = same triangulation, opposite direction)

Stanley's Conjecture

- Observation: The diameter $n(n-3) / 2$ of Γ_{n} is also the number of diagonals in the n-gon!

Stanley's Conjecture

- Observation: The diameter $n(n-3) / 2$
of Γ_{n} is also the number of diagonals in
the n-gon!
■ Conjecture: [Stanley]
Each diagonal is flipped (once) in any geodesic between antipodes.

Stanley's Conjecture

- Main Theorem: [A-Roichman, '10]

Each diagonal is flipped (once) in any geodesic between a colored triangulation and its reverse.

Arrangements

- A certain hyperplane arrangement
- Arc permutations
- Flip graph and chamber graph

Hyperplane Arrangements

- The hyperplane arrangement of type A_{n-1} :

$$
x_{i}=x_{j} \quad(1 \leq i<j \leq n)
$$

corresponds to the complete graph K_{n}.

- Remove from K_{n} the edges

$$
(1,2),(2,3), \ldots,(n-1, n),(n, 1)
$$

to get a slightly smaller arrangement H.

Arc Permutations

- Definition: A permutation on $1, \ldots, n$ is an arc permutation if each prefix of it forms, as a set, an interval modulo n (with $n=0$).
- Example:
$\pi=12543 \quad(n=5)$ is an arc permutation:

$$
\begin{array}{lllll}
1 & 12 & 125=120 & 1254 & 12543
\end{array}
$$

$\square \pi=125436 \quad(n=6)$ is not:

$$
125 \neq 120
$$

Flip Graph and Chamber Graph

- Theorem: The colored flip graph Γ_{n} is isomorphic to the graph whose vertices are (equivalence classes of) arc permutations, and whose edges connect permutations separated by a unique hyperplane in H (i.e., are in adjacent chambers).

Tableaux

- Counting geodesics
- Truncated Shifted Shape
- Standard Young tableaux
- Geodesics and tableaux

Counting Geodesics

- Let T_{0} be a (colored) star triangulation.

What is the number of geodesics from T_{0} to its reverse?

Truncated Shifted Shape

- The truncated shifted staircase shape
$(3,3,2,1):$

Truncated Shifted Tableaux

- The standard Young tableaux of truncated shifted staircase shape $(3,3,2,1)$:

1	2	3			1	2	4		1	2	3		1	2	4	
	4	5	6		3	5	6		4	5	7		3	5	7	
	7	8			7	8			6	8			6	8		
		9				9				9				9		

Geodesics and Tableaux

- Theorem: The number of geodesics in Γ_{n} from T_{0} to its reverse is twice the number of standard Young tableaux of truncated shifted shape ($n-3, n-3, n-4, \ldots, 1$).

1	3	4	5	6
1	1	2	4	
2		3	5	6
3			7	8
4				9

13	14	24	15	25	\ldots	36	46
sequence of flipped diagonals							

Fine della lezione.

Grazie per l'attenzione!

