Flips, Arrangements and Tableaux

Ron Adin and Yuval Roichman Bar-Ilan University radin, yuvalr @math.biu.ac.il

1

Flips

- Triangulations (TFT)
- Flips
- Flip Graph
- Diameter
- Stanley's Conjecture
- Main Result

Triangle-Free Triangulations

Definition: A triangulation of a convex polygon is triangle-free (TFT) if it contains no triangle

Triangle-Free Triangulations

Definition: A triangulation of a convex polygon is triangle-free (TFT) if it contains no "internal" triangle, i.e., a triangle whose 3 sides are *diagonals* of the polygon. The set of all TFT's of an *n*-gon is denoted *TFT*(*n*).

Colored TFT

Note: A triangulation is triangle-free iff the dual tree is a path.

Colored TFT

Note: A triangulation is triangle-free iff the dual tree is a path.

The triangles of a TFT can be linearly ordered (colored) in two "directions". Denote by CTFT(n) the set of colored TFT's.

$$\square |CTFT(n)| = n \cdot 2^{n-4}$$

Flip Graph

Flip = replacing a diagonal by the other diagonal of the same quadrangle.

$$\bigwedge \longleftrightarrow \bigwedge$$

The colored flip graph Γ_n has vertex set CTFT(n) with edges corresponding to flips.

Theorem: [A-Firer-Roichman, '09]
For n > 4:
(a) The diameter of Γ_n is n(n-3)/2.

Theorem: [A-Firer-Roichman, '09]
For n > 4:
(a) The diameter of Γ_n is n(n-3)/2.

The proof involves an action of an affine Weyl group of type \tilde{C} .

- Theorem: [A-Firer-Roichman, '09] For n > 4:
 - (a) The diameter of Γ_n is n(n-3)/2.
 - (b) Any colored TFT and its reverse are antipodal (distance = diameter).
 - (reverse = same triangulation, opposite direction)

Stanley's Conjecture

• **Observation:** The diameter n(n-3)/2of Γ_n is also the number of diagonals in the *n*-gon!

Stanley's Conjecture

- **Observation:** The diameter n(n-3)/2of Γ_n is also the number of diagonals in the *n*-gon!
- Conjecture: [Stanley]

Each diagonal is flipped (once) in any geodesic between antipodes.

Stanley's Conjecture

Main Theorem: [A-Roichman, '10] Each diagonal is flipped (once) in any geodesic between a colored triangulation and its reverse.

Arrangements

- A certain hyperplane arrangement
- Arc permutations
- Flip graph and chamber graph

Hyperplane Arrangements

 The hyperplane arrangement of type A_{n-1}: x_i = x_j (1 ≤ i < j ≤ n) corresponds to the complete graph K_n.
Remove from K_n the edges (1,2), (2,3), ..., (n-1,n), (n,1) to get a slightly smaller arrangement H.

Arc Permutations

- **Definition:** A permutation on 1, ..., n is an arc permutation if each prefix of it forms, as a set, an interval modulo n (with n = 0).
- Example:
- $\pi = 12543$ (*n* = 5) is an arc permutation: 1 12 125 = 120 1254 12543 $\pi = 125436$ (*n* = 6) is not: 125 \ne 120

Flip Graph and Chamber Graph

• <u>Theorem</u>: The colored flip graph Γ_n is isomorphic to the graph whose vertices are (equivalence classes of) arc permutations, and whose edges connect permutations separated by a unique hyperplane in H (i.e., are in adjacent chambers).

Tableaux

- Counting geodesics
- Truncated Shifted Shape
- Standard Young tableaux
- Geodesics and tableaux

Counting Geodesics

• Let T_0 be a (colored) star triangulation.

What is the number of geodesics from T_0 to its reverse?

Truncated Shifted Shape

The truncated shifted staircase shape (3,3,2,1):

Truncated Shifted Tableaux

The standard Young tableaux of truncated shifted staircase shape (3,3,2,1):

1	2	3		1	2	4		1	2	3		1	2	4	
	4	5	6		3	5	6		4	5	7		3	5	7
		7	8			7	8			6	8			6	8
			9				9				9				9

Geodesics and Tableaux

• <u>Theorem</u>: The number of geodesics in Γ_n from T_0 to its reverse is twice the number of standard Young tableaux of truncated shifted shape (n-3, n-3, n-4, ..., 1).

Fine della lezione.

Grazie per l'attenzione!