New Product Formulas for Tableaux

Ronald King (U Southampton)
Yuval Roichman (Bar-Ilan U)

Product Formulas

Product formulas for the number of standard Young tableaux were known for two families of shapes - regular and shifted.

We present an unexpected addition to this list, consisting of certain truncated shapes.

Background

Regular Shapes

diagram
$\lambda=(5,4,2)$
$|\lambda|=5+4+2=11$

1	2	4	6	9
3	5	8	11	
7	10			

standard Young tableau
(SYT)

Regular Shapes

Theorem: [Frobenius-Young]
The number of SYT of shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$
$\left(\lambda_{1} \geq \ldots \geq \lambda_{m} \geq 0\right)$ is

$$
f^{\lambda}=\frac{(|\lambda|)!}{\prod_{i}\left(\lambda_{i}+m-i\right)!} \cdot \prod_{i<j}\left(\lambda_{i}-\lambda_{j}-i+j\right)
$$

There is an equivalent hook formula [FRT].

Regular Shapes

Example: For a rectangular shape $\lambda=\left(n^{m}\right)=(n, \ldots, n)$
(m parts),

$$
f^{\left(n^{m}\right)}=(m n)!\cdot \frac{F_{m} F_{n}}{F_{m+n}}
$$

where

$$
F_{m}=\prod_{i=0}^{m-1} i!
$$

Shifted Shapes

shifted diagram

$$
\begin{gathered}
\lambda=(5,4,2) \\
|\lambda|=5+4+2=11
\end{gathered}
$$

1	2	4	6	9
	3	5	8	11
		7	10	

standard Young tableau (SYT)

Shifted Shapes

Theorem: [Schur]

The number of SYT of shifted shape $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ $\left(\lambda_{1}>\ldots>\lambda_{m}>0\right)$ is

$$
g^{\lambda}=\frac{(|\lambda|)!}{\prod_{i} \lambda_{i}!} \cdot \prod_{i<j} \frac{\lambda_{i}-\lambda_{j}}{\lambda_{i}+\lambda_{j}}
$$

There is an equivalent hook formula.

Shifted Shapes

Example: For a shifted staircase shape $\lambda=[m]:=(m, m-1, \ldots, 1)$,
where

$$
g^{[m]}=M!\cdot \prod_{i=0}^{m-1} \frac{i!}{(2 i+1)!}
$$

Main Results

Truncation

Delete one or more cells from the NE (top right) corner of a regular or shifted shape.

Truncation

Delete one or more cells from the NE (top right) corner of a regular or shifted shape.

Truncated Shapes with Product Formulas

- Rectangle minus a square
- Rectangle minus a square, plus outer corner
- Shifted staircase minus a square
- Shifted staircase ninus a square, plus outer corner

Truncated Shapes with Product Formulas

- Rectangle minus a square
- Rectangle minus a square, plus outer corner
- Shifted staircase minus a square
- Shifted staircase ninus a square, plus outer corner

Truncated Shapes with Product Formulas

- Rectangle minus a square
- Rectangle minus a square, plus outer corner
- Shifted staircase minus a square
- Shifted staircase ninus a square, plus outer corner

Truncated Shapes with Product Formulas

- Rectangle minus a square
- Rectangle minus a square, plus outer corner
- Shifted staircase minus a square
- Shifted staircase ninus a square, plus outer corner

Truncated Shapes with Product Formulas

- Rectangle minus a square
- Rectangle minus a square, plus outer corner
- Shifted staircase minus a square
- Shifted staircase ninus a square, plus outer corner

Sample Formulas

- Rectangle minus one cell:

$$
\lambda=\left(n^{m}\right) \backslash(1)
$$

$$
f^{\lambda}=N!\cdot \frac{2 \cdot(2 m-3)!(2 n-3)!}{(2 m+2 n-5)!(m+n-2)} \cdot \frac{F_{m-2} F_{n-2}}{F_{m+n-2}}
$$

where $N=m n-1$ is the size of the shape.

Sample Formulas

- Rectangle minus 2×2 square plus outer corner:

$$
\lambda=\left(n^{m}\right) \backslash(2,1)
$$

$$
f^{\lambda}=N!\cdot \frac{(2 m-4)!(2 n-4)!}{(2 m+2 n-7)!} \cdot \frac{F_{m-2} F_{n-2}}{F_{m+n-2}}
$$

where $N=m n-3$ is the size of the shape.

Sample Formulas

- Shifted staircase minus one cell:

$$
\lambda=[m] \backslash(1)
$$

$$
g^{\lambda}=N!\cdot \frac{4(2 m-5)}{(4 m-7)!(m-1)} \cdot \prod_{i=0}^{m-5} \frac{i!}{(2 i+1)!}
$$

where $N=\binom{m+1}{2}-1$ is the size of the shape.

Sample Formulas

- Shifted staircase minus 2×2 square, plus outer corner:

$$
\begin{aligned}
\lambda & =[m] \backslash(2,1) \\
g^{\lambda} & =N!\cdot \frac{2}{(4 m-9)!(m-2)} \cdot \prod_{i=0}^{m-5} \frac{i!}{(2 i+1)!}
\end{aligned}
$$

where $N=\binom{m+1}{2}-3$ is the size of the shape.

Ideas of Proof

Main Idea: Pivoting

Main Idea: Pivoting

Choose a pivot cell \mathbf{P} (on the NE boundary)

Main Idea: Pivoting

Choose a pivot cell \mathbf{P} (on the NE boundary) In an SYT, this cell contains some value k.

Main Idea: Pivoting

Choose a pivot cell \mathbf{P} (on the NE boundary) In an SYT, this cell contains some value k. Where are the values $<k$? $>k$?

Main Idea: Pivoting

Choose a pivot cell \mathbf{P} (on the NE boundary) In an SYT, this cell contains some value k. Where are the values $<k$? $>k$?

Main Idea: Pivoting

Choose a pivot cell \mathbf{P} (on the NE boundary) In an SYT, this cell contains some value k. Where are the values $<k$? $>k$?

Main Idea: Pivoting

Main Idea: Pivoting

Complementary Ideas

$$
\begin{gathered}
g^{\theta}=\sum_{\lambda \subseteq[m]} g^{\mu \cup \lambda} g^{\mu \cup \lambda^{c}} \\
g^{[m]}=\sum_{\substack{\lambda \subseteq[m] \\
|\lambda|=t}} g^{\lambda} g^{\lambda^{c}}(\forall t) \\
g^{\mu \cup \lambda} g^{\mu \cup \lambda^{c}}=c\left(\mu,|\lambda|,\left|\lambda^{c}\right|\right) \cdot g^{\lambda} g^{\lambda^{c}}
\end{gathered}
$$

Further Comments

Motivation: Triangle-Free Triangulations

- Definition: A triangulation of a convex polygon is triangle-free (TFT) if it contains no "internal" triangle, i.e., a triangle whose 3 sides are diagonals of the polygon. The set of all TFT's of an n-gon is denoted TFT(n).

TFT

non-TFT

Motivation: Colored TFT

- Note: A triangulation is triangle-free iff the dual tree is a path.

- The triangles of a TFT can be linearly ordered (colored) in two "directions". Denote by CTFT (n) the set of colored TFT's.

Motivation: Flip Graph

- Flip = replacing a diagonal by the other diagonal of the same quadrangle.

- The colored flip graph Γ_{n} has vertex set $C T F T(n)$ with edges corresponding to flips.

Motivation: Truncated Shifted Tableaux

- The standard Young tableaux of truncated shifted staircase shape $[4] \backslash(1)=(3,3,2,1)$:

1	2	3			1	2	4	
	4	5	6		3	5	6	
		7	8			7	8	
			9				9	

1	2	3			1	2	4	
	4	5	7			3	5	7
	6	8			6	8		
			9				9	

Motivation: Geodesics and Tableaux

- Theorem: [Adin-Roichman]

The number of geodesics in Γ_{n} from a star TFT to its reverse is twice the number of standard Young tableaux of truncated shifted shape $(n-3, n-3, n-4, \ldots, 1)=[n-2] \backslash(1)$.

1	3	4	5	6
2	1	2	4	
2		3	5	6
3			7	8
4				9

$\begin{array}{llllllll}13 & 14 & 24 & 15 & 25 & \ldots & 36 & 46\end{array}$
sequence of flipped diagonals

Motivation: Numerical Evidence

- Shifted staircase minus one cell:

$$
\begin{aligned}
& \lambda=[10] \backslash(1) \\
& |\lambda|=54
\end{aligned}
$$

$$
f^{\lambda}=116528733315142075200
$$

$$
=2^{6} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 23 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53
$$

Largest prime factor is $\leq|\lambda|$!!!

Parallel Results

Greta Panova (Harvard U) has used quite different methods (including: bijections, Schur functions, polytope volume computation and contour integration) to prove product formulas in the following cases:

- Rectangle minus a staircase
- Rectangle minus a square, plus outer corner
- Shifted staircase minus one cell

Parallel Results

Open Problems

- Conjecture: For a square minus two cells:

$$
\lambda=\left(n^{n}\right) \backslash(2)
$$

$$
f^{\lambda}=\left(n^{2}-2\right)!\cdot \frac{6 \cdot(3 n-4)!^{2}}{(6 n-8)!(2 n-2)!(n-2)!^{2}} \cdot \frac{F_{n-2}^{2}}{F_{2 n-4}}
$$

- Other shapes? Characterization?

Grazie

 per l'attenzione!