Solution to the exam 89-256 for 2007, A

2. Let g be a primitive root modulo prime p and (a, p) = 1. Let $g^i \equiv a \pmod{p}$. If there is such x that $x^n \equiv a \pmod{p}$ then (x, p) = 1 and hence we have $x \equiv g^u \pmod{p}$ for some u. Hence we have $x^n \equiv (g^u)^n \equiv g^i$. This implies that $nu \equiv i \pmod{p-1}$. Denote by k = (n, p-1). The equation (in u) $nu \equiv i \pmod{p-1}$ has k solutions if k|i and no solutions otherwise. If k|i then $i(p-1)/k \equiv 0 \pmod{p-1}$ and hence $a^{(p-1)/k} \equiv g^{i(p-1)/k} \equiv (g^{p-1})^{i/k} \equiv 1 \pmod{p}$ on the other hand if $k \not\mid i$ then $a^{(p-1)/k} \equiv g^{i(p-1)/k} \equiv 1 \pmod{p-1}$.

3. A. Let g be a primitive root modulo $p \neq 2$. We have $g^{\phi(p)} \equiv 1 \pmod{p}$ or $g^{p-1} = 1 + py$ for some integer y. Let g' = g + px, (x, p) = 1 and consider $(g')^{p-1} = (g + px)^{p-1} = 1 + pz$ where $z \equiv y + (p-1)g^{p-2}x \pmod{p}$ according to the binomial formula. Since (p-1, p) = (g, p) = (x, p) = 1 we can choose x such that (z, p) = 1 (i.e., such that $p \not| y + (p-1)g^{p-2}x$).

B. Let g' = g + px with x as above. Let d be the order of g' modulo p^j , i.e., $(g')^d \equiv 1 \pmod{p^j}$. Then according to the Euler theorem we have $d|\phi(p^j) = p^{j-1}(p-1)$. But g' is obviously a primitive root modulo p and hence p-1|d which implies that $d = p^k(p-1)$ for some k < j. As p is odd we have $(1+pz)^{p^k} = 1+p^{k+1}z_k$ for some $(z_k,p) = 1$. But then we have $1 \equiv (g')^d \equiv ((g')^{p-1})^{p^k} \equiv (1+pz)^{p^k} = 1+p^{k+1}z_k \pmod{p^j}$ and hence k+1=j namely that $d = \phi(p^j) = p^{j-1}(p-1)$.

4. The assumption is that there exists a satisfying $a^{n-1} \equiv 1 \pmod{n}$ and $(a^{(n-1)/q}-1, n) = 1$, or what is the same $a^{(n-1)/q} \not\equiv 1 \pmod{n}$, with q prime such that $n = q^k R + 1$, (q, R) = 1. Let prime p|n. Then we also have $a^{n-1} \equiv 1 \pmod{p}$ and $a^{(n-1)/q} \not\equiv 1 \pmod{p}$. This means that the order m of a modulo p satisfy m|n-1 and $m \not|(n-1)/q$. Since $n-1 = q^k R$ we have that $q^k|m$. According to the small Fermat theorem $m|\phi(p) = p-1$. Hence $p-1 = q^k r$ for some r.