July 21, 2007

Solution to the exam 89-256 for 2007, A

2. Let g be a primitive root modulo prime p and $(a, p)=1$. Let $g^{i} \equiv a(\bmod p)$. If there is such x that $x^{n} \equiv a(\bmod p)$ then $(x, p)=1$ and hence we have $x \equiv g^{u}(\bmod p)$ for some u. Hence we have $x^{n} \equiv\left(g^{u}\right)^{n} \equiv g^{i}$. This implies that $n u \equiv i(\bmod p-1)$. Denote by $k=(n, p-1)$. The equation (in $u) n u \equiv i(\bmod p-1)$ has k solutions if $k \mid i$ and no solutions otherwise. If $k \mid i$ then $i(p-1) / k \equiv 0(\bmod p-1)$ and hence $a^{(p-1) / k} \equiv g^{i(p-1) / k} \equiv\left(g^{p-1}\right)^{i / k} \equiv 1(\bmod p)$ on the other hand if $k \nless i$ then $a^{(p-1) / k} \equiv$ $g^{i(p-1) / k} \not \equiv 1(\bmod p-1)$.
3. A. Let g be a primitive root modulo $p \neq 2$. We have $g^{\phi(p)} \equiv 1(\bmod p)$ or $g^{p-1}=1+p y$ for some integer y. Let $g^{\prime}=g+p x,(x, p)=1$ and consider $\left(g^{\prime}\right)^{p-1}=(g+p x)^{p-1}=1+p z$ where $z \equiv y+(p-1) g^{p-2} x(\bmod p)$ according to the binomial formula. Since $(p-1, p)=$ $(g, p)=(x, p)=1$ we can choose x such that $(z, p)=1$ (i.e., such that $\left.p \nmid y+(p-1) g^{p-2} x\right)$.
B. Let $g^{\prime}=g+p x$ with x as above. Let d be the order of g^{\prime} modulo p^{j}, i.e., $\left(g^{\prime}\right)^{d} \equiv$ $1\left(\bmod p^{j}\right)$. Then according to the Euler theorem we have $d \mid \phi\left(p^{j}\right)=p^{j-1}(p-1)$. But g^{\prime} is obviously a primitive root modulo p and hence $p-1 \mid d$ which implies that $d=p^{k}(p-1)$ for some $k<j$. As p is odd we have $(1+p z)^{p^{k}}=1+p^{k+1} z_{k}$ for some $\left(z_{k}, p\right)=1$. But then we have $1 \equiv\left(g^{\prime}\right)^{d} \equiv\left(\left(g^{\prime}\right)^{p-1}\right)^{p^{k}} \equiv(1+p z)^{p^{k}}=1+p^{k+1} z_{k}\left(\bmod p^{j}\right)$ and hence $k+1=j$ namely that $d=\phi\left(p^{j}\right)=p^{j-1}(p-1)$.
4. The assumption is that there exists a satisfying $a^{n-1} \equiv 1(\bmod n)$ and $\left(a^{(n-1) / q}-1, n\right)=$ 1 , or what is the same $a^{(n-1) / q} \not \equiv 1(\bmod n)$, with q prime such that $n=q^{k} R+1,(q, R)=1$. Let prime $p \mid n$. Then we also have $a^{n-1} \equiv 1(\bmod p)$ and $a^{(n-1) / q} \not \equiv 1(\bmod p)$. This means that the order m of a modulo p satisfy $m \mid n-1$ and $m \chi(n-1) / q$. Since $n-1=q^{k} R$ we have that $q^{k} \mid m$. According to the small Fermat theorem $m \mid \phi(p)=p-1$. Hence $p-1=q^{k} r$ for some r.
