March 12, 2007
Solutions to the exam on Linear Algebra 1 (88-112), Fall 2006-7, "Moed" A

1. A) Let A, B be matrices s.t. $A B=0$. We have then $(A B)^{j}=A\left(B^{j}\right)=0$ for any $1 \leq j \leq k$. This means that each column of B is a solution to $A X=0$. Hence $C(B) \subset \operatorname{Null}(A)$. Reversing the argument we prove the opposite claim.
B) According to A) $A B=0$ if and only if $C(B) \subset \operatorname{Null}(A)$. We have $\operatorname{dim} C(B)=$ $\operatorname{rank}(B)=2$ and $\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{rank}(A)=3-2=1$. Hence $\operatorname{dim} C(B)>$ $\operatorname{dim} \operatorname{Null}(A)$ and $C(B) \not \subset \operatorname{Null}(A)$.
C) As in B) with $A=B . A^{2}=0$ implies that $C(A) \subset N u l l(A)$ and hence $\operatorname{dim} C(B) \leq$ $\operatorname{dim} \operatorname{Null}(A)$. We have $\operatorname{dim} \operatorname{Null}(A)=n-\operatorname{rank}(A)$ and $\operatorname{dim} C(A)=\operatorname{rank}(A)$. This implies that $\operatorname{rank}(A) \leq n-\operatorname{rank}(A)$ or $\operatorname{rank}(A) \leq n / 2$.
2. A) 1. For an upper-triangular matrix A we have $A=-A^{t}$ implies $A=0$. Hence $U \cap W=0$.
3. We now prove that $V=U+W$. There are two ways. One is to compute the dimensions. An upper-triangular matrix is determined by its elements on and above the diagonal. There are $n(n+1) / 2$ such elements and hence $\operatorname{dim} W=n(n+1) / 2$ (for example standard matrices $E_{i j}$ with $i \leq j$ form a basis of W.

On the other hand, antisymmetric matrices are determined by their elements above the diagonal. There are $n(n-1) / 2$ such elements and hence $\operatorname{dim} U=n(n-1) / 2$ (matrices $E_{i j}-E_{j i}, i \neq j$ for a basis of $\left.U\right)$. Since $U \cap W=0$ form the theorem about the dimension of the sum we see that $\operatorname{dim}(U+W)=n(n-1) / 2+n(n+1) / 2=n=\operatorname{dim} V$. Hence $U+W=V$.

Another way to see that $V=U+W$ is to show that any matrix is a sum of an antisymmetric and of an upper-triangular matrices. For $A \in M a t_{n \times n}(F)$ denote by $L(A) \in M a t_{n \times n}(F)$ its lower-triangular part (i.e. A and $L(A)$ have the same elements below the diagonal and all elements of $L(A)$ on and above the diagonal are 0). Denote by $B=L(A)-L(A)^{t}$. We have then $A-B$ being upper-triangular and $B=-B^{t}$.
B) As $A=\left\{v_{i}\right\}$ spans V, for any $v \in V$ there are scalars a_{i} such that $\sum_{i} a_{i} v_{i}=v$. We obtain a nontrivial relation $\sum_{i} a_{i} v_{i}+(-1) v=0$ for the set $A \cup v$. Hence it is linearly dependent.
3. A) Let P be a change of basis matrix from S to S^{\prime} (i.e. $v_{i}^{\prime}=\sum p_{j i} v_{j}$) and Q be a change of basis matrix from S^{\prime} to S (i.e. $v_{j}=\sum q_{k j} v_{k}^{\prime}$). Then the matrix $Q P$ gives an expression for vectors in the basis S^{\prime} through itself (i.e. $\left.v_{i}^{\prime}=\sum_{k}\left(\sum_{j} q_{k j} p_{j i}\right) v_{k}^{\prime}\right)$. However, there is only one such an expression, namely $v_{i}^{\prime}=v_{i}^{\prime}$ since S^{\prime} is linearly independent. Hence $Q P=I$ and P is invertible.
B) $\operatorname{tr}(A B)=\sum_{i}(A B)_{i i}=\sum_{i}\left(\sum_{j} a_{i j} b_{j i}\right)=\sum_{i} \sum_{j} a_{i j} b_{j i}=\sum_{j}\left(\sum_{i} b_{j i} a_{i j}\right)=\sum_{j}(B A)_{j j}=$ $\operatorname{tr}(B A)$.
4. Any vector space of dimension 2 is isomorphic (after a choice of basis) to $\left(\mathbb{Z}_{2}\right)^{2}$. If $U \subset V$ then $\operatorname{dim} U \leq 2$. If $\operatorname{dim} U=0$ then $U=0$, if $\operatorname{dim} U=2$ then $U=V$. If $\operatorname{dim} U=1$ the it is spanned by a non-zero vector (and consists of multiples of this vector). There are 3 different non-zero vectors in $\left(\mathbb{Z}_{2}\right)^{2}:(1,0),(0,1),(1,1)$. These vectors are not multiples of each other and hence there are 3 different subspaces of the dimension 1. Hence there are 5 different subspaces in $\left(\mathbb{Z}_{2}\right)^{2}$.
5. We have $A \cdot \operatorname{adj}(A)=\operatorname{det} A \cdot I_{n \times n}$ or $\operatorname{adj}(A)=\operatorname{det}(A) A^{-1}$. Also $\operatorname{det}(\alpha A)=\alpha^{n} \operatorname{det}(A)$. Hence $\operatorname{adj}(\operatorname{adj}(A))=\operatorname{adj}\left(\operatorname{det}(A) A^{-1}\right)=\operatorname{det}\left(\operatorname{det}(A) A^{-1}\right)\left(\operatorname{det}(A) A^{-1}\right)^{-1}$.

We have $\operatorname{det}\left(\operatorname{det}(A) A^{-1}\right)=\operatorname{det}(A)^{n} \operatorname{det}(A)^{-1}$ and $\left(\operatorname{det}(A) A^{-1}\right)^{-1}=\operatorname{det}(A)^{-1} A$. Hence we arrive at $\operatorname{adj}(\operatorname{adj}(A))=\operatorname{det}(A)^{n-2} A$.

