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Solutions to the exam on Linear Algebra 1 (88-112), Fall 2006-7, ”Moed” A

1. A) Let A, B be matrices s.t. AB = 0. We have then (AB)j = A(Bj) = 0 for
any 1 ≤ j ≤ k. This means that each column of B is a solution to AX = 0. Hence
C(B) ⊂ Null(A). Reversing the argument we prove the opposite claim.

B) According to A) AB = 0 if and only if C(B) ⊂ Null(A). We have dim C(B) =
rank(B) = 2 and dim Null(A) = n − rank(A) = 3 − 2 = 1. Hence dim C(B) >
dim Null(A) and C(B) 6⊂ Null(A).

C) As in B) with A = B. A2 = 0 implies that C(A) ⊂ Null(A) and hence dim C(B) ≤
dim Null(A). We have dim Null(A) = n − rank(A) and dim C(A) = rank(A). This
implies that rank(A) ≤ n− rank(A) or rank(A) ≤ n/2.

2. A) 1. For an upper-triangular matrix A we have A = −At implies A = 0. Hence
U ∩W = 0.

2. We now prove that V = U + W . There are two ways. One is to compute the
dimensions. An upper-triangular matrix is determined by its elements on and above the
diagonal. There are n(n+1)/2 such elements and hence dim W = n(n+1)/2 (for example
standard matrices Eij with i ≤ j form a basis of W .

On the other hand, antisymmetric matrices are determined by their elements above the
diagonal. There are n(n − 1)/2 such elements and hence dim U = n(n − 1)/2 (matrices
Eij−Eji, i 6= j for a basis of U). Since U ∩W = 0 form the theorem about the dimension
of the sum we see that dim(U + W ) = n(n − 1)/2 + n(n + 1)/2 = n = dim V . Hence
U + W = V .

Another way to see that V = U + W is to show that any matrix is a sum of an
antisymmetric and of an upper-triangular matrices. For A ∈ Matn×n(F ) denote by
L(A) ∈ Matn×n(F ) its lower-triangular part (i.e. A and L(A) have the same elements
below the diagonal and all elements of L(A) on and above the diagonal are 0). Denote
by B = L(A)− L(A)t. We have then A−B being upper-triangular and B = −Bt.

B) As A = {vi} spans V , for any v ∈ V there are scalars ai such that
∑

i aivi = v. We
obtain a nontrivial relation

∑
i aivi + (−1)v = 0 for the set A ∪ v. Hence it is linearly

dependent.

3. A) Let P be a change of basis matrix from S to S ′ (i.e. v′i =
∑

pjivj) and Q be a
change of basis matrix from S ′ to S (i.e. vj =

∑
qkjv

′
k). Then the matrix QP gives an

expression for vectors in the basis S ′ through itself (i.e. v′i =
∑

k(
∑

j qkjpji)v
′
k). However,

there is only one such an expression, namely v′i = v′i since S ′ is linearly independent.
Hence QP = I and P is invertible.
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B) tr(AB) =
∑

i(AB)ii =
∑

i(
∑

j aijbji) =
∑

i

∑
j aijbji =

∑
j(

∑
i bjiaij) =

∑
j(BA)jj =

tr(BA).

4. Any vector space of dimension 2 is isomorphic (after a choice of basis) to (Z2)
2. If

U ⊂ V then dim U ≤ 2. If dim U = 0 then U = 0, if dim U = 2 then U = V . If dim U = 1
the it is spanned by a non-zero vector (and consists of multiples of this vector). There are
3 different non-zero vectors in (Z2)

2: (1, 0), (0, 1), (1, 1). These vectors are not multiples
of each other and hence there are 3 different subspaces of the dimension 1. Hence there
are 5 different subspaces in (Z2)

2.

5. We have A · adj(A) = detA · In×n or adj(A) = det(A)A−1. Also det(αA) = αndet(A).
Hence adj(adj(A)) = adj(det(A)A−1) = det(det(A)A−1)(det(A)A−1)−1.

We have det(det(A)A−1) = det(A)ndet(A)−1 and (det(A)A−1)−1 = det(A)−1A. Hence we
arrive at adj(adj(A)) = det(A)n−2A.


