January 26, 2007 Solution to the exam Number Theory (88/89-576), Spring 2005, "Moed" A

1. Answers: 99, 243.

2. Any integer has the representation $a = \pm p_1^{e_1} \dots p_k^{e_k}$ for all j. As for any p|a also $p^2|a$ we have $e_j \ge 2$. Then we can choose $b = \prod_{e_j - even} p_j^{e_j/2} \cdot \prod_{e_j - odd} p_j^{(e_j-3)/2}$ and $c = \prod_{e_j - odd} p_j$.

Remark: In fact, the proof is immediate once we notice that any non-negative number e is representable in the form e = 2x + 3y with $x, y \in \mathbb{Z}$ and non-negative.

3. We have $b \equiv a^{-1}$ and hence $b^h \equiv (a^{-1})^h \equiv (a^h)^{-1} \equiv 1 \pmod{p}$. Hence ord(b)|ord(a). Changing the role of a and b we get ord(a)|ord(b) and hence ord(a) = ord(b).

4. We have to prove that $x^x \equiv (x + p(p-1))^{x+p(p-1)} \pmod{p}$. We have:

$$(x+p(p-1))^{x+p(p-1)} \equiv x^{x+p(p-1)} \equiv x^x \cdot x^{p(p-1)} \pmod{p}.$$

If $x \equiv 0 \pmod{p}$ then $x^x \equiv (x + p(p-1))^{x+p(p-1)} \equiv 0 \pmod{p}$. If $x \not\equiv 0 \pmod{p}$ then $x^{p(p-1)} \equiv (x^p)^{p-1} \equiv x^{p-1} \equiv 1 \pmod{p}$ by Fermat theorem and hence in this case $x^x \equiv (x + p(p-1))^{x+p(p-1)} \pmod{p}$ too.

We have to show that p(p-1) is the minimal period. The period have to be divisible by p since $x^x \equiv 0 \pmod{p}$ for any x divisible by p. Let g be a primitive root mod p. If kp is the period then $g^{kp} \equiv (g^p)^k \equiv g^k \equiv 1 \pmod{p}$ and hence p-1|k.

5. Let p > 2 be a prime. The equation $x^2 \equiv 1 \pmod{p}$ has only two roots ± 1 . Let g be a primitive root mod p. We have $(g^{(p-1)/2})^2 \equiv g^{p-1} \equiv 1$ and hence $g^{(p-1)/2} \equiv -1$ (otherwise $ord(g) \neq p-1$).

Let $p \equiv 3 \pmod{4}$ i.e., p = 4m + 3 and (p - 1)/2 = 2m + 1 is odd.

Then $(-g)^{(p-1)/2} \equiv (-1)^{2m+1}g^{(p-1)/2} \equiv (-1) \cdot (-1) \equiv 1 \pmod{p}$. Hence $ord(-g) \leq (p-1)/2$ – it is not a primitive root.

Let $p \equiv 1 \pmod{4}$ i.e., p = 4m + 1 and (p - 1)/2 = 2m is even.

We want to compute ord(-g) i.e., find minimal k > 0 such that $g^k \equiv 1 \pmod{p}$. If ord(-b) < p-1 then ord(-g) can not be even since $(-g)^{2l} \equiv g^{2l} \not\equiv 1$.

We have $(-g)^{(p-1)/2} \equiv (-1)^{2m} g^{(p-1)/2} \equiv (1) \cdot (-1) \equiv -1 \pmod{p}$. Hence $ord(-g) \not| (p-1)/2$.

But p-1 = 4m and (p-1)/2 = 2m have the same odd divisors and if ord(-b) < p-1 then it is odd. We have ord(-b)|p-1 by Fermat theorem and hence ord(-g) = (p-1) – it is a primitive root.

Remark: There are many similar solutions.