January 26, 2007
Solution to the exam Number Theory (88/89-576), Spring 2005, "Moed" A

1. Answers: 99, 243.
2. Any integer has the representation $a= \pm p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ for all j. As for any $p \mid a$ also $p^{2} \mid a$ we have $e_{j} \geq 2$. Then we can choose $b=\prod_{e_{j}-\text { even }} p_{j}^{e_{j} / 2} \cdot \prod_{e_{j}-\text { odd }} p_{j}^{\left(e_{j}-3\right) / 2}$ and $c=\prod_{e_{j}-o d d} p_{j}$.
Remark: In fact, the proof is immediate once we notice that any non-negative number e is representable in the form $e=2 x+3 y$ with $x, y \in \mathbb{Z}$ and non-negative.
3. We have $b \equiv a^{-1}$ and hence $b^{h} \equiv\left(a^{-1}\right)^{h} \equiv\left(a^{h}\right)^{-1} \equiv 1(\bmod p)$. Hence $\operatorname{ord}(b) \mid \operatorname{ord}(a)$. Changing the role of a and b we get $\operatorname{ord}(a) \mid \operatorname{ord}(b)$ and hence $\operatorname{ord}(a)=\operatorname{ord}(b)$.
4. We have to prove that $x^{x} \equiv(x+p(p-1))^{x+p(p-1)}(\bmod p)$. We have:
$(x+p(p-1))^{x+p(p-1)} \equiv x^{x+p(p-1)} \equiv x^{x} \cdot x^{p(p-1)}(\bmod p)$.
If $x \equiv 0(\bmod p)$ then $x^{x} \equiv(x+p(p-1))^{x+p(p-1)} \equiv 0(\bmod p)$. If $x \not \equiv 0(\bmod p)$ then $x^{p(p-1)} \equiv\left(x^{p}\right)^{p-1} \equiv x^{p-1} \equiv 1(\bmod p)$ by Fermat theorem and hence in this case $x^{x} \equiv(x+p(p-1))^{x+p(p-1)}(\bmod p)$ too.
We have to show that $p(p-1)$ is the minimal period. The period have to be divisible by p since $x^{x} \equiv 0(\bmod p)$ for any x divisible by p. Let g be a primitive root $\bmod p$. If $k p$ is the period then $g^{k p} \equiv\left(g^{p}\right)^{k} \equiv g^{k} \equiv 1(\bmod p)$ and hence $p-1 \mid k$.
5. Let $p>2$ be a prime. The equation $x^{2} \equiv 1(\bmod p)$ has only two roots ± 1. Let g be a primitive root $\bmod p$. We have $\left(g^{(p-1) / 2}\right)^{2} \equiv g^{p-1} \equiv 1$ and hence $g^{(p-1) / 2} \equiv-1$ (otherwise $\operatorname{ord}(g) \neq p-1)$.
Let $p \equiv 3(\bmod 4)$ i.e., $p=4 m+3$ and $(p-1) / 2=2 m+1$ is odd.
Then $(-g)^{(p-1) / 2} \equiv(-1)^{2 m+1} g^{(p-1) / 2} \equiv(-1) \cdot(-1) \equiv 1(\bmod p)$.
Hence $\operatorname{ord}(-g) \leq(p-1) / 2$ - it is not a primitive root.
Let $p \equiv 1(\bmod 4)$ i.e., $p=4 m+1$ and $(p-1) / 2=2 m$ is even.
We want to compute $\operatorname{ord}(-g)$ i.e., find minimal $k>0$ such that $g^{k} \equiv 1(\bmod p)$. If $\operatorname{ord}(-b)<p-1$ then $\operatorname{ord}(-g)$ can not be even since $(-g)^{2 l} \equiv g^{2 l} \not \equiv 1$.
We have $(-g)^{(p-1) / 2} \equiv(-1)^{2 m} g^{(p-1) / 2} \equiv(1) \cdot(-1) \equiv-1(\bmod p)$.
Hence $\operatorname{ord}(-g) \quad X(p-1) / 2$.
But $p-1=4 m$ and $(p-1) / 2=2 m$ have the same odd divisors and if $\operatorname{ord}(-b)<p-1$ then it is odd. We have $\operatorname{ord}(-b) \mid p-1$ by Fermat theorem and hence $\operatorname{ord}(-g)=(p-1)$ - it is a primitive root.

Remark: There are many similar solutions.

