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1. Introduction

1.1. In this paper, we consider Hecke characters of a quadratic field. Although arguments presented
here are valid for a general quadratic number field E , in order to simplify the presentation, we will
first deal with the simplest case of Gauss numbers, and describe the general case in Section 3.2.
Hence, let E = Q(i). For an integer n ∈ Z, consider the Hecke character of E given by χn(a) = (a/|a|)4n .
The corresponding Hecke L-function is given by the series L(s,χ) = ∑

a∈I∗(OE ) χ(a)N(a)−s , for
Re(s) > 1 (where the summation is over all non-zero integer ideals of E , i.e., over Z[i]/{±1,±i} for
E = Q(i)).
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We consider a double Dirichlet series given by

D E(s, w) = L(s,χ0) +
∑

n∈Z\0

L(s,χn)|n|−w , (1.1)

for (s, w) ∈ C2, Re(s) � 1, Re(w) � 1.

Theorem 1.2. The series D E (s, w) defines the function which extends to a meromorphic function on C2 .

It turns out that it is more convenient to consider the function

D̃ E(s, w) = 2
w
2

Γ ( 1−w
2 )

· D E(s, w), (1.2)

and we prove the meromorphic continuation for this function.

1.3. Torus periods

One quickly recognizes that the above theorem is related to periods of automorphic functions. In
fact, our proof of the meromorphic continuation is based on two well-known facts. First, we invoke
classical results of E. Hecke [H] (see also H. Maass [M] and C. Siegel [Si]) about torus periods of
Eisenstein series. Namely, we consider the automorphic representation Eiss generated by the (normal-
ized) Eisenstein series Es(z) for PGL2 over Q. Let T E ⊂ PGL2 be the torus corresponding to E , and
ē ∈ T E (Q) \ T E (AQ) be the class of the identity element. The (Fourier) expansion of the Eisenstein
series Es(z) along the orbit T E (Q) \ T E (AQ) ⊂ PGL2(Q) \ PGL2(AQ) is given in terms of Hecke charac-
ters of E , and naturally leads to Hecke L-functions L(s,χ) for Hecke characters χ of the field E . This
allows us to realize the series D E (s, w) as the spectral expansion of Es(v w , ē), w ∈ C, for the function
Es(v w , x) ∈ Eiss corresponding to some special vector v w . The family of vectors v w is constructed ex-
plicitly in the induced model of the representation isomorphic to Eiss . We note that the vector v w is
not smooth, and belongs to an appropriate Sobolev space completion of Eiss . In particular, we invoke
the meromorphic continuation of smooth Eisenstein series as opposed to K -finite Eisenstein series
(for a general treatment, see [BK,L]; for a congruence subgroup of PGL2(Z), an elementary treatment
based on Fourier expansion of Es(z) is also available).

To prove the meromorphic continuation of Es(v w , ē), we use Hecke operators and the classical
technique going back to at least M. Riesz [R] (and might be attributed to Euler) of the analytic con-
tinuation strip by strip (which the author learned from the seminal paper [B]). The main observation
that allows us to apply this technique is the fact that modulo higher Sobolev spaces, the vector v w

is an approximate eigenvector of (appropriately understood) Hecke operators (see Lemma 2.5). This
is verified in a standard model of an abstract representation of the principal series, and does not use
the theory of automorphic functions.

Finally, we would like to point out that for the method we use, the meromorphic continuation of
Es(v w , ē) is what comes naturally, and the series D E (s, w) is used in order to express this fact in the
classical language of automorphic functions on H.

1.4. Cusp forms

One can apply the same argument to a Hecke–Maass cusp form φ instead of the Eisenstein series
E(s). The resulting series is a usual Dirichlet series in one variable built from the coefficients an which
are (twisted) torus periods of the cusp form φ. We now recall the definition of these coefficients.

Let φ be a Hecke–Maass form for the group Γ = PGL2(Z) (one can easily extend our arguments
to a congruence subgroup). In particular, φ is an eigenfunction of the Laplace–Beltrami operator �

on the Riemann surface PSL2(Z) \ H with the eigenvalue which we denote by Λ(φ) = (1 − τ 2)/4
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for τ = τ (φ) ∈ iR ∪ (0,1) (of course, for PGL2(Z), the parameter τ is pure imaginary, and this is
expected to hold for congruence subgroups). We normalize φ by its L2-norm. We denote by (Vτ ,πτ )

the isomorphism class of the (smooth) automorphic representation of G = PGL2(R) generated by φ.
The structure of such a representation is well-known, and in particular Vτ has an orthonormal basis
of K -types {en}n∈2Z which we fix (here K = PSO(2,R) � S1 is a maximal connected compact subgroup
of G). We consider the Taylor-like expansion of φ at z = i (generally we consider a CM-point z ∈H; in
fact such an expansion exists at any point of H). Denote by Fτ (n, g) = 〈πτ (g)e0, en〉πτ , n ∈ 2Z, matrix
coefficients in the representation πτ . Functions Fτ (n, g) are right K -invariant and hence could be
viewed as functions of z ∈H � PGL+

2 (R)/K . Functions Fτ (n, z) are eigenfunctions of � on H with the

same eigenvalue as φ, and spherically equivariant Fτ

(
n,

(
cos θ − sin θ

sin θ cos θ

)
z
)

= einθ Fτ (n, z). It is also well-

known that functions Fτ (n, z) have simple integral representation and could be expressed through
the Legendre function (see [Vi]). We have the following well-known expansion (first considered by
H. Petersson [P] for holomorphic forms and later by A. Good [Go] in general; also see [Sa]):

φ(z) =
∑

n∈2Z

an Fτ (n, z), (1.3)

where an = an(φ) ∈ C. Of course, coefficients an depend on the normalization of functions Fτ (n, z),
which we fix in Section 2.3.3 (by choosing a basis {en} of πτ ). This normalization will essentially
coincide with one of the classical normalizations of the special function Fτ (n, z). In particular, this
will not depend on φ but only on the parameter τ . We note that the analogous expansion is valid for
the Eisenstein series E(s, z) as well, and gives an(E(s)) = L(s,χ−n).

We consider the Dirichlet series

D E(φ, w) = a0 +
∑

n∈2Z\0

an|n|−w (1.4)

defined for |w| � 1. As with the Eisenstein series we consider the function

D̃ E(φ, w) = 2
w
2

Γ ( 1−w
2 )

· D E(φ, w). (1.5)

Theorem 1.5. The Dirichlet series D̃ E (φ, w) extends to a holomorphic function on C.

1.6. Hyperbolic periods

A similar treatment is available for real quadratic fields. These correspond to (compact) closed
geodesics on the Riemann surface Y = PGL2(Z) \ PGL2(R). In fact, from the adelic point of view, there
is no difference in the treatment of CM-points and of closed geodesics.

Let l ⊂ Y be a closed geodesic. Such a geodesic corresponds to a closed orbit of the diagonal sub-
group A = {diag(a,b)} ⊂ G acting on the right on X = Γ \ G . We denote this orbit by the same letter
l ⊂ X . Consider the corresponding pointwise stabilizer Al = StabA(l). We will assume that it is cyclic
and we will choose a generator al = diag(ul,±u−1

l ) ∈ Al . This choice gives the corresponding hyper-

bolic element γl ∈ Γ which is conjugate to al = glγl g−1
l . Eigenvalues of al (and of γl) generate the

group of units in a quadratic field E . In fact, there is a finite number of closed geodesics correspond-
ing to the same field and this is reflected in the class number of the field.

For a closed geodesic l as above, we obtain an expansion of automorphic functions similar to
the expansion at a CM-point we discussed above. Such an expansion is valid for cusp forms and for
Eisenstein series (e.g., see [Gol]). To describe these in classical terms, one introduces special functions
similar to Fτ (n, z) above. This time we use characters χ : Al \ A → C× of the compact group Al \
A � S1. For any such a character, we consider the function Gτ (χ, z) on H which is an eigenfunction
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of �, is right K -invariant, and satisfies Gτ (χ, g−1
l agl ◦ z) = χ(a)Gτ (χ, z). In fact, we can view the

function Gτ (χ, z) as defined on the hyperbolic cylinder Hl = Γl \ H for which l is the “neck” (i.e.,
the shortest geodesic). We have to normalize functions Gτ (χ, z) which we do in Section 2.3.3 by
presenting an explicit integral representation for these functions (the function Gτ (χ, z) classically
is given in terms of the Gauss hypergeometric function as could be seen from its explicit integral
representation as a matrix coefficient). We obtain the expansion analogous to (1.3)

φ(z) =
∑
j∈Z

b j Gτ ( j, z), (1.6)

where b j = bχ j (φ) ∈ C are the coefficients of this hyperbolic expansion, and functions Gτ ( j, z) =
Gτ (χ j, z) are indexed by characters χ j in the group Âl \ A � Z. With this for |w| � 1, we define the
Dirichlet series

D E(φ, w) = b0 +
∑

j∈Z\0

b j| j|−w . (1.7)

As before, we consider the function

D̃ E(φ, w) = 2
w
2

Γ ( 1−w
2 )

· D E(φ, w). (1.8)

Theorem 1.7. The Dirichlet series D̃ E (φ, w) extends to a holomorphic function on C.

We hope that by denoting the series by the same symbol as in the CM-case, we will not cause too
much of a confusion (and in fact from the adelic point of view the treatment of these two cases is
identical).

1.8. Remarks

(1) In definitions (1.1), (1.4) and (1.7) of the corresponding Dirichlet series one clearly can omit the
zero’s term in the sum. One also can take the sum over positive n only. Our method is applicable to
such series as well.

(2) Under the normalization, we chose in (1.3), coefficients an satisfy a mean-value bound cφ �
T −1 ∑

|n|�T |an|2 � Cφ for appropriate constants Cφ, cφ > 0 as T → ∞. Hence coefficients an are not
exponentially small on the average, and this is not a reason behind the meromorphic continuation of
the series D E (φ, w). The same is true for bn ’s in (1.6).

(3) Coefficients an and bn are related to L-functions in a more subtle way than for the Eisenstein
series. Namely, the theorem of J.-L. Waldspurger (see [W,JC,KW]) relates the value of |an|2 and of
|bn|2 to the ratio of L-functions L(1/2, BC E (φ) ⊗ χn)/L(1, Ad(φ)), where BC E (φ) is the base change
of the cusp form φ. In spite of this relation, our method naturally treats coefficients an and not
quantities |an|2.

(4) The proof that we give shows that the polar divisor of D E (s, w) is contained in the union of
the line s = 1 with the union of two families of lines

w = 2 − 2s − j, or w = 1 − j, j = 0,1,2, . . . . (1.9)

A somewhat more symmetric form of D̃ E (s, w) and of its polar set is discussed in Remark 3.1. For
a Hecke–Maass cusp form φ, we show that the series D̃ E (φ, w) is holomorphic. One can also obtain
polynomial bounds in s and w for the resulting function D̃ E (s, w).
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After announcing the results of the paper, the author was kindly informed by the referee that one
can deduce the meromorphic continuation, and the exact locations of poles for the series D E (s, w)

from properties of the Lerch zeta function (see [LG]), and from the functional equation for the Hecke
L-functions L(s,χ). While this approach is more elementary, it could not cover the case of cusp forms.
On the other hand, for the Eisenstein series, this approach leads to the exact location of poles, while
our method only gives the potential polar divisor of D E (s, w).

It is also apparently possible to deduce meromorphic continuation of D E (φ, w) for cusp forms
which are not necessarily Hecke forms, using methods of [BLZ], as was demonstrated by R. Bruggeman
(personal communication). It is however less clear how to extend this approach to cover real quadratic
fields or the Eisenstein series.

(5) The set of all Hecke characters χn(a) = (a/|a|)4n , n ∈ Z, of E = Q(i) could be described as the
set Xun(E) of all (maximally) unramified Hecke characters of E . One can consider a slightly more
general series by prescribing the ramification of Hecke characters. Let S be a finite set of primes of
a quadratic field E , including all primes ramified in E , and let XS be the set of Hecke characters
unramified outside S . The natural extension of our method then gives the meromorphic continuation
for the series

∑
χ∈XS

L S (s,χ)R S (χ
S )|χ∞|−w , where L S (s,χ) is the partial L-function, R S (χ

S ) is a

rational in qs
i function for qi that are norms of primes in S , and χ S is the ramified part of χ .

(6) An important issue in the theory of (double) Dirichlet series is the presence of functional
equation(s). The theory of Eisenstein series provides the functional equation in s relating D E (s, w)

and D E (1 − s, w). It is not clear if there is a functional equation involving w .
(7) Finally, we note that from the point of view of the method we present, there is nothing special

about series D E (s, w) and D E (φ, w). Namely, one can change the weight |n|−w to many other similar
weight functions, and still obtain the meromorphic continuation by the same method. As a result, it
is possible that one might have to modify these series in order to study their possible arithmetical
properties (e.g., special values).

2. Torus periods

We refer to [Bu] for standard facts about automorphic functions and automorphic representations
(of real and adele groups).

2.1. Torus periods of Eisenstein series

We recall the classical result of E. Hecke. We present it in (a more transparent to us) adelic
language. Let G = PGL2. By specifying an isomorphism E× ⊂ AutQ(E) � AutQ(Q2), we obtain the

corresponding tori T E ⊂ PGL2 defined over Q. For s ∈ C, s �= 1, let Es � ⊗̂
p�∞Es,p be the auto-

morphic representation of GAQ
corresponding to the classical normalized Eisenstein series (given by

Es(z) = ∑
c,d ys/|cz + d|2s for Re(s) > 1, where the summation is over (c,d) ∈ Z2 \ (0,0)). In this nor-

malization, the unitary Eisenstein series corresponds to Re(s) = 1/2. We consider vectors in E which
are pure tensors of the form v∞ ⊗ v f ∈ Es where v f = ⊗

p<∞ v p is the standard K f -fixed vector
for the maximal compact subgroup K f of G over finite adeles, and v∞ is an arbitrary vector in the
infinite component Es,∞ of Es . Recall that the theory of Eisenstein series provides the automorphic
realization Es(v, g) (i.e., a function on XA) for a vector v ∈ Ds in the principal series representation
Ds of GAQ

, where Ds is the space of homogeneous functions with respect to the A×
Q

action on the

space ZAQ
= NAQ

\ GAQ
= ∏′

p�∞ NQp \ GQp . The space Ds has the natural structure of the (restricted)

tensor product Ds � ⊗̂
p�∞Ds,p coming from the above product structure of ZAQ

(unlike the space
Es where the tensor product is not described in terms of the underlying space XA = GQ \ GA). Here
local components are the spaces Ds,p of homogeneous functions on N p \ G p . Hence when talking
about models of the local representations Es,p , we can use the spaces Ds,p (in fact, we only use
p = ∞ since we will not discuss ramified Hecke characters).

According to Hecke (via the standard by now, unfolding) (see [G,Gol]) we have the following
relation. Let v = v∞ ⊗ v f ∈ Es be a vector with almost everywhere unramified standard finite com-
ponents. We have then
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∫
T E (Q)\T E (AQ)

Es(v, t)χ(t)dt = I∞(s,χ∞, v∞)
∏
p∈S

Iν(s,χp, v p) · LS(s,χ), (2.1)

for any character χ = χ∞ ⊗ χ f : ZG(AQ)T E (Q) \ T E (AQ) →C× (i.e., for a Hecke character of E trivial
on A×

Q
⊂ A×

E ). Here the functional I∞(s,χ∞, ·) : Es,∞ → C is given by

I∞(s,χ∞, v∞) =
∫

T E (R)

v∞(t)χ∞(t)dt, (2.2)

for a vector v ∈ Ds,∞ , and similarly for ramified primes p ∈ S . L S(s,χ) denotes the partial L-function
with Euler factors removed at ramified primes.

Note that for E = Q(i), the group T E (R) could be naturally identified with the subgroup K∞ =
PSO(2,R) ⊂ PGL2(R) (i.e., K∞ = PSO(2,R) is the standard maximal connected compact subgroup
of G∞ = PGL2(R)). Hence for a Hecke character χn , the resulting functional I∞(s,χn,∞, ·) could be
identified with the projection to the particular norm one n-th K∞-type in the representation Es,p .
Moreover, in the realization of Es,∞ as Ds,∞ , this functional is given by the integration against
the character itself on the image of the compact subgroup K∞ ⊂ Z∞ = N∞ \ G∞ coming from the
archimedean part (T E )∞ ⊂ G∞ of the torus T E . For other CM-fields, we obtain a compact subgroup
conjugated to PSO(2,R), and hence have to consider types with respect to the corresponding sub-
group.

By abuse of notations, we denote by e ∈ GQ \ GAQ
the image of the identity. From the Plancherel

formula for T E (Q) \ T E (AQ) (i.e., the Fourier expansion w.r.t. characters of T E (AQ) trivial on T E (Q)),
and the Hecke formula (2.1), we see that the following expansion holds for a vector v = v∞ ⊗ v f ∈ Es:

Es(v, e) =
∑

χn∈Xun

L(s,χn) · I∞(s,χn,∞, v∞). (2.3)

2.2. Periods of cusp forms

Periods of cusp forms could be defined in the same way as for the Eisenstein series. However there
is an important difference concerning their normalization.

Let π � ⊗̂
p�∞πp be an automorphic cuspidal representation of G(A) in the space of smooth

vectors Vπ � ⊗̂
p�∞Vπp , together with the isometric realization νπ : Vπ → C∞(XA). Let T E (Q) \

T E (AQ) ⊂ PGL2(Q) \ PGL2(AQ) be the orbit of T E (A). For a Hecke character χ of E , we consider
the corresponding χ -equivariant functional daut

χ ∈ HomT E (A)(π,χ) given by the integral (as for the
Eisenstein series)

daut
χ (v) =

∫
T E (Q)\T E (AQ)

φv(t)χ̄ (t)dt, (2.4)

where φv = νπ (v) ∈ C∞(X) is the automorphic function corresponding to the smooth vector v ∈ Vπ

under the isometry νπ (i.e., the automorphic realization of the vector v). It is well-know that the
space of local equivariant functionals is at most one-dimensional dim HomT p (πp,χp) � 1, and hence
we have a decomposition daut

χ = ⊗
p dχp for some local functionals dχp ∈ HomT p (πp,χp). However,

unlike in the case of Eisenstein series, the lack of unfolding for the integral (2.4) does not allow us to
choose easily a specific element in the space HomT p (πp,χp). In fact, one can normalize dχp up to a
constant with absolute value one (this is connected to the Waldspurger theorem alluded before, and
discussed in great generality in [II]), but for our purposes it is not enough since we are interested in
the period itself and not in its absolute value. Hence, we will choose the trivial normalization of local
functionals in the following way.
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We assume that the representation π is unramified everywhere, i.e., that the Hecke–Maass form φ

is invariant under the full group PSL2(Z) (in fact, we can easily deal with any congruence subgroup).
The notion of restricted tensor product assumes that we have chosen a K p-invariant vector ep ∈
Vπp of norm one for every finite p (in general for almost all p). We have dim HomT p (πp,χp) = 1
since we assumed that πp is unramified for all p. It is known (see [GP]) that a non-zero invariant
functional does not vanish on the vector ep . We denote by dmod

χp
∈ HomT p (πp,χp) the functional

satisfying dmod
χp

(ep) = 1. We consider the corresponding functional dmod
χ f

= ⊗
p<∞ dmod

χp
for finite adeles

which clearly satisfies dmod
χ f

(e f ) = 1 for e f = ⊗
p<∞ ep . Hence for any choice of a non-zero functional

dmod
χ∞ ∈ HomT∞(π∞,χ∞), we obtain the coefficient of proportionality aχ = aχ (νπ ,dχ∞) ∈ C such that

daut
χ = aχ · dmod

χ∞ ⊗ dmod
f . (2.5)

In fact, since we will only consider vectors of the form v = v∞ ⊗ e f , we can write daut
χ (v∞) =

aχ · dmod
χ∞ (v∞). We now specify the functional dmod

χ∞ . As we mentioned, for E = Q(i), we can naturally
identify T∞ = T E (R) with the subgroup K∞ . Characters of T∞ related to equivariant functionals on ir-
reducible representations of G∞ are parameterized by even integers n ∈ 2Z, and naturally correspond
to projectors onto (one-dimensional) K∞-types. Let {en}n∈2Z be an orthonormal basis of Vπ∞ consist-
ing of K∞-types. We denote by dmod

n ∈ HomT∞(π∞,χn) the functional given by dmod
n (v∞) = 〈v, en〉π∞ ,

where the character χn is given by χn

((
cos θ − sin θ

sin θ cos θ

))
= einθ .

Hence we have the decomposition analogous to (2.3)

φv∞(e) := νπ (v∞)(e) =
∑

χn∈Xun

an · dmod
n (v∞). (2.6)

It is easy to see that this expansion coincides with the expansion (1.3) given in classical terms on H.

2.3. Test vectors

In order to realize the series D E (s, w) and D E (φ, w) as the right hand side of formulas (2.3)
and (2.6), we need to construct a vector v w in the principal series representation satisfying certain
properties. We construct such a vector and make computations in a well-known model of induced
representations of PGL2(R).

2.3.1. The plane realization
The basic affine space Z∞ is isomorphic to the punctured plane R2 \ 0. This leads to the standard

realization of the principal series representation in even homogeneous functions on the plane. For
a complex parameter τ ∈ C and ε ∈ {0,1}, the (smooth part of the) representation πτ,ε of principal
series has the realization in the space of homogeneous functions on R2 \0 of the homogeneous degree

τ − 1. The twisted action πτ,ε(g) f (t) = f (g−1t)|det g| τ−1
2 det(g)ε , t ∈ R2 \ 0, defines a representation

of GL2(R) with the trivial center character, and hence defines a representation of PGL2(R). The trivial
representation is the subrepresentation for τ = 1, ε = 0 (and the quotient for τ = −1). The standard
Casimir operator acts on πτ,ε by multiplication by the scalar 1−τ 2

4 . The dual representation to πτ,ε

could be naturally identified with π−τ ,ε . Representations πτ,ε are unitarizable for τ ∈ iR∪ (−1,1).
Taking the restriction of functions on R2 \ 0 to the circle S1 ⊂ R2 \ 0, we obtain the circle (or

compact) model for the space of πτ,ε . This means that we realize the space of the representation
as the space of smooth even functions C∞

ev (S1) on the circle S1 (or on K∞ � S1). Hence in such
a model, a K∞-equivariant functional is given by the integration against the exponent einθ , i.e., the
scalar product with a norm one n-th K∞-type.

Taking the restriction of functions on the plane to a line L ⊂ R2 \ 0, we obtain a line (or unipotent)
model for the space of πτ,ε .
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An easy computation shows that in the above described normalization of the principal series and
the identification Z∞ � R2 \ 0, the infinity component Es,∞ is isomorphic to the representation of the
principal series with the parameter τ = 1 − 2s.

In what follows we will treat “even” representations only (i.e., ε = 0). The treatment of “odd”
representations is identical. Hence in what follows, we denote representations of PGL2(R) by πτ sup-
pressing ε. We note that, for PSL2(Z), representations appearing as Eisenstein series are automatically
even.

2.3.2. Test vectors
In order to realize the series D E (s, w) (and the corresponding series D E (φ, w)), we construct

the test vector v w in the representation of the principal series π1−2s (respectively in πτ ) of G∞ =
PGL2(R) with the K∞-types components satisfying v̂ w(n) := 〈v w , en〉 = |n|−w for an even integer
n �= 0, and v̂ w(0) = 1. Clearly, such a vector exists in an appropriate completion of the corresponding
smooth representation. For the unitary principal series πτ , the vector v w belongs to the L2-Sobolev
space Sσ (πτ ) of index σ = Re(w) − 1/2 (see [BR]). Moreover, it is easy to see that such a vector has
“local” singularities in the natural spherical model of the representation. This fact is central for our
approach. We now describe the construction and the structure of singularities of the test vector.

The (smooth part of the) representation π1−2s of principal series has the above mentioned re-
alization in the space C∞

ev (S1) of smooth even functions on the circle S1. We denote by θ the
parameter on S1 (e.g., θ ∈ [0,2π)), and by en(θ) = einθ the standard orthonormal basis. For a smooth
even function f ∈ C∞

ev (S1), we denote by f̂ (n) its Fourier coefficients. This defines the isometry
ˆ : L2

ev(S1) → L2(Z). Hence for any w ∈ C with Re(w) > 1/2, we have a function v w ∈ L2
ev(S1) such

that v̂ w(n) = |n|−w for n �= 0, and v̂ w(0) = 1. For w � 1/2, we should view v w as a distribution on
C∞

ev (S1). It turns out that it is not convenient to work directly with the vector v w since it does not
“localize” (i.e., it is not supported in a small neighborhood of θ = 0, the fixed point of a Borel sub-
group). Instead we construct a vector uw (i.e., a function in C∞

ev (S1)) which has small support and
asymptotically has essentially the same Fourier coefficients as v w .

Well-known properties of the Fourier transform suggest that the vector with a local behavior
|θ |w−1 near θ = 0 should give us the desired Fourier coefficients |n|−w , at least for |n| → ∞. It is also

well-known that, as an analytic family, the distribution 2
1−w

2

Γ (w/2)
· |t|w−1 (on R) and its Fourier trans-

form 2w/2

Γ ( 1−w
2 )

· |ξ |−w behave better than the distribution |t|w−1 and its Fourier transform (see [G1]).

This explains our multiplication of the series D E (s, w) by the factor 2w/2

Γ ( 1−w
2 )

.

Let f ∈ C∞
ev (S1) be a smooth even function which is supported in a small neighborhood (to be

specified later) of points θ = 0, π , and f (θ) ≡ 1 in some (smaller) neighborhood of 0, π . We consider
the vector in the circle model given by

uw(θ) = 2
1−w

2

Γ ( w
2 )

· |θ |w−1 f (θ), (2.7)

for |θ | near 0, and then extended to an even function on S1 (i.e., we define uw near θ = 0 and then
extend it to an even function on S1). We have then, for an even integer n �= 0,

ûw(n) =
∫

S1

uw(θ)e−inθ dθ = 2
w
2

Γ ( 1−w
2 )

· |n|−w[
1 + r( f , w,n)

]
, (2.8)

where r( f , w,n) is a holomorphic function in w for every n, which is decaying at least as |n|−1 for
every fixed f and w . Moreover, the function r has an asymptotic expansion in |n|−1 with coefficients
effectively bounded in terms of w and derivatives of f . Namely, we have for any N � 1 and n �= 0,
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r( f , w,n) =
N∑

k=1

ck( f , w)|n|−k + rN( f , w,n), (2.9)

for some coefficients ck( f , w) holomorphically depending on w for a fixed f . Here the remainder
satisfies the bound

∣∣rN( f , w,n)
∣∣ � CN( f , w)|n|−N−1, (2.10)

for a constant CN ( f , w) depending on w and f .
The relation (2.8) is valid for Re(w) > 0, but could be extended to the whole C if we view the

family of functions uw as a distribution analytically depending on w ∈C for a fixed f .
Together with the relation (2.3) and known properties of K -finite Eisenstein series (moderate

growth in the type and analyticity in s), the relation (2.8) implies that

Es(uw , e) =
∑

n

an
(

E(s)
) · ûw(n) = D̃ E(s, w) + R( f , s, w), (2.11)

where R( f , s, w) = ∑
n �=0 an(E(s)) ·r( f , w,n). Here we denote by an(E(s)) = L(s,χ−n) the correspond-

ing coefficients for the Eisenstein series. This relation holds as long as Es(uw , e) is well-defined. The
theory of smooth Eisenstein series [BK,L] implies that the value at a point for an Eisenstein series
for a non-K -finite vector is well-defined as long as the defining vector is smooth enough (e.g., be-
longs to a certain Sobolev space). In particular, Es(uw , e) is well-defined for Re(w) > T (s) with some
T (s) ∈ R depending on s (e.g., for unitary Eisenstein series E(s), Re(s) = 1/2, we can take T (s) = 1
although this is immaterial to us). For Re(w) > T (s), the series D E (s, w) is absolutely convergent. We
point out the crucial fact for us that the series R( f , s, w) is absolutely convergent in a bigger domain
Re(w) > T (s) − 1 as follows from the expansion (2.9) and the bound (2.10).

Hence in order to meromorphically continue the series D̃ E (s, w) (and as a result the series
D E (s, w)), it is enough to analytically continue Es(uw , e). We do this strip by strip in the variable
w for each fixed s. Analyticity in s comes from the theory of smooth Eisenstein series. We point out
that for the method we use, the meromorphic continuation of Es(uw , e) is what comes naturally.
The series D E (s, w) is used in order to translate this fact into the classical language of automorphic
functions on H.

For a Hecke–Maass cusp form φ in a representation πτ , the construction of the test vector uw is
identical, and we have

φuw (e) = D̃ E(φ, w) + R( f , νπ , w), (2.12)

where the function R is holomorphic in a bigger domain. This relation holds as long as φuw (g) is
well-defined. According to [BR], this is satisfied if the vector uw belongs to the 1/2-Sobolev space for
the representation πτ . The last condition holds if Re(w) > 1. Hence (2.12) is valid for Re(w) > 1.

2.3.3. Normalization of functions Fτ (n, z) and Gτ (χ, z)
In order to construct the Dirichlet series D E (φ, w), it seems that we have to normalize matrix

coefficients Fτ (n, z), and hence the coefficients an in the expansion (1.3) (and similarly for the expan-
sion in (1.6)). In fact it is not needed. Consider any orthonormal basis {en} of K -types, corresponding
matrix coefficients Fτ (n, z) = 〈πτ (g)e0, en〉, and the expansion (1.3) φ(z) = ∑

n∈2Z an Fτ (n, z). We have
then D E (φ, w) = a0 +∑

n∈2Z\0 an〈v w , en〉πτ . This expression does not depend on the choice of the ba-
sis {en}. We note that for the Eisenstein series the unfolding provides the natural choice of the basis
and hence the normalization of functions Fτ (n, z). In particular, we can choose the same normaliza-
tion for cusp forms as well.

The same is true for special functions Gτ (χ, z) appearing in the hyperbolic expansion (1.6). Func-
tions Gτ (χ, z) could be defined via the generalized matrix coefficient Gτ (χ̄ , g) = 〈πτ (g)e0,dχ 〉,
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where dχ is an explicit χ -equivariant functional on the representation Vτ (e.g., see Section 3.3).
It is easy to write down explicitly such a functional in one of the models of the representation πτ .
For example, in a line model such a functional is given essentially by the character χ itself, twisted
by τ in order to compensate for the action of A in the line model of πτ . Hence in such a realization
the functional dχ is given by the (shifted) Mellin transform.

2.4. Automorphic functionals

We now switch to a more classical language of automorphic representations of GR = PGL2(R). Let
Γ = PGL2(Z) and XR = Γ \ GR . We will view automorphic representations through the Frobenius
reciprocity (see [BR]).

2.4.1. Cusp forms
Let e ∈ XR be the class of the identity element. Evaluation at this point defines a Γ -invariant func-

tional on the space of smooth functions C∞(XR). Let (π, Vπ ,νπ ) be an automorphic cuspidal repre-
sentation, where Vπ is the space of smooth vectors of π and νπ : Vπ → L2(X) is an isometry. It is
well-known that νπ : Vπ → C∞(XR). Hence we obtain the Γ -invariant functional �ν ∈ HomΓ (Vπ ,C)

given by �ν(v) = νπ (v)(e) for any v ∈ Vπ . The Frobenius reciprocity of Gelfand and Fomin [G6] (also
see [BR] for the quantitative version) is the isomorphism HomG(Vπ , C∞(XR)) � HomΓ (Vπ ,C). Given
� ∈ HomΓ (Vπ ,C) we obtain ν� : Vπ → C∞(XR) by ν�(v)(g) = �(π(g)v). It is also well-known that a
cuspidal νπ : Vπ → C∞(XR) extends to the map of Hilbert spaces νπ : Lπ → L2(XR), where Lπ is the
completion of Vπ with respect to the invariant Hermitian norm.

2.4.2. Eisenstein series
Let Es(g) be the normalized non-holomorphic Eisenstein series for PGL2(Z) as in Section 2.1.

The theory of (smooth) Eisenstein series implies that the function Es(g) generates an irreducible
(for s �= 1) smooth representation Eiss ⊂ C∞(XR) which is isomorphic to the (generalized) princi-
pal series representation π1−2s . Hence the evaluation at e ∈ XR defines a Γ -invariant functional
�2s−1 ∈ HomΓ (π1−2s,C). The automorphic function (i.e., the automorphic realization) φv correspond-
ing to a vector v ∈ Vπ1−2s is given by φv(x) = �2s−1(π1−2s(g)v).

It is natural to view the functional �2s−1 as a (generalized) vector in the dual representation π2s−1
(i.e., in the usual notations �2s−1 ∈ V −∞

π2s−1
). We have the canonical pairing 〈·, ·〉 : π1−2s ⊗ π2s−1 → C.

We assume that this pairing coincides with the pairing on automorphic functions given by the integral
over XR . Hence we have 〈�2s−1, v〉 = Es(v, g)|g=e for a vector v ∈ Vπ1−2s .

2.4.3. Hecke operators
We consider Hecke operators acting on automorphic representations of GR . The theory of Hecke

operators provides for each integer prime p, a collection of elements γi ∈ PGL2(Q), 0 � i � p, such
that the Hecke operator acting on the space C∞(XR) is given by

T p( f )(x) = 1√
p

∑
i

f (γi x). (2.13)

The Eisenstein series Es(g) is an eigenvector of an operator T p with the eigenvalue λp(s) = p
1
2 −s +

ps− 1
2 . For a cuspidal representation (π,ν), we denote the corresponding eigenvalues by λp(π) sup-

pressing the dependence on ν (in fact, if π stands for a representation of the adele group, then the
multiplicity one for automorphic representations of PGL2 implies that π determines the image of ν
uniquely).

The operator T p is a scalar operator on the space Eiss (or in fact on any automorphic representation
of GR coming from an adele automorphic representation). It turns out that, as a result, the functional
�2s−1 is an eigenfunctional of some operators with the same eigenvalue λp(s) (or rather with λp(1 −
s) = λp(s)) with respect to the usual action on the right by GR on the automorphic representation
Eis1−s (the dual of Eiss). We emphasize that there is no group algebra “action” of T p on π . It is acting
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as a scalar operator on the automorphic realization of π! The formula (2.13) does not come from
the group algebra action of PGL2(R) on XR , but from the action of the adele group. However, on the
special vector �, this scalar action coincides with the action of an operator coming from the group
algebra action of PGL2(R) on π .

2.4.4. Hecke and Frobenius
Let ν : Vπ → C∞(X) be an automorphic representation. Hence a vector v ∈ Vπ (in an abstract

representation π ) has the corresponding automorphic realization φv(x) = ν(π(g)v) ∈ C∞(X). Let �ν ∈
Hom(π,C) be the corresponding automorphic functional given by �ν(v) = ν(v)(x)|x=e for any smooth
vector v ∈ Vπ in π . We write �π suppressing ν and view it as a (generalized) vector in the dual
representation π∗ . We denote by 〈·, ·〉 : π ⊗π∗ →C the natural pairing. We assume it coincides with
the pairing on X for automorphic realizations of π and π∗ (at least for cuspidal ν).

It turns out that the functional �π is an eigenfunction of some similarly looking operators with
the same eigenvalue λp(π) with respect to the usual action of GR on the right on functions on XR .

Consider elements γi ∈ GR from the expression (2.13) for Hecke operators. Let Tp = 1√
p

∑
i γ

−1
i be

an element of the group algebra of GR . We want to show that π∗(Tp)�π = λp(π) · �π . We have

〈
π∗(Tp)�π , v

〉 = 1√
p

∑
i

〈
π∗(γ −1

i

)
�π , v

〉 = 1√
p

∑
i

〈
π(γi)

∗�π , v
〉

= 1√
p

∑
i

〈
�π ,π(γi)v

〉 =
[

1√
p

∑
i

ν(v)(xγi)

]∣∣∣∣
x=e

= [
T p

(
ν(v)

)
(x)

]∣∣
x=e = λp(π) · ν(v)(e) = λp(π) · 〈�π , v〉

for any v ∈ Vπ . Hence we have

π∗(Tp)�π = 1√
p

∑
i

π∗(γi)�π = λp(π) · �π . (2.14)

We stress again that this is not the action of the classical Hecke operator on the automorphic repre-
sentation (π,ν) (since T p acts by the scalar λp(π) on the whole space Vπ ).

We also have (essentially from the definition)

〈
π∗(Tp)�π , v

〉 = 〈
�π ,π

(
T ′

p

)
v
〉
, (2.15)

where π(T ′
p) = 1√

p

∑
i π(γi) is the action of an element in the group algebra of GR .

2.5. Approximate eigenvectors

It will be crucial for us that all elements γi appearing in the description (2.13) of Hecke opera-
tors could be chosen in the same Borel subgroup. The (convenient for us) classical choice for these

elements is γi =
(

p 0
i 1

)
for 0 � i � p − 1 and γp =

(
1 0
0 p

)
.

The main observation is that all elements γi preserve the point θ = 0 (under the natural action
on S1), the singularity of the vector uw . As a result, the vector uw is essentially an eigenvector of the
operator T ′

p . We have the following elementary

Lemma. Let πτ be a principal series representation of PGL2(R), p be an integer prime, elements γi as above,

and T ′
p = p− 1

2
∑

γi be the corresponding element in the group algebra. For any σ ∈ C and a smooth function

g ∈ C∞(S1) with a small enough support around θ = 0, the following relation holds:
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πτ

(
T ′

p

)(|θ |σ · g(θ)
) = βp(τ ,σ ) · |θ |σ gp,τ ,σ (θ), (2.16)

where functions gp,τ ,σ are smooth functions (in θ ) holomorphically depending on τ and σ , and βp(τ ,σ ) =
p

τ
2 −σ + pσ− τ

2 . Moreover, we have gp,τ ,σ (0) = g(0) for all τ and σ .

Here we view all functions of the variable θ (possibly depending on complex parameters τ and σ )
as (a family of) vectors in the representation πτ (realized in the same model space C∞

ev (S1), but with
the action of PGL2(R) depending on τ ).

Proof of the lemma. It is easier to write formulas in the line (or unipotent) model of πτ . We recall
that the principal series representation πτ of PGL2(R) with the trivial character (i.e., representation
of PGL2(R)) has a realization in the space of functions on the real line, and the action is given by

restricting the action πτ (g) f (x) = f (g−1x)|det g| τ−1
2 , x ∈ R2, on the plane to the line {x = (t,1)}.

Specializing to the (lower) Borel subgroup, we have

πτ

((
a 0
b c

))
f (t) = f

(
ct

−bt + a

)
|−bt + a|τ−1|ac| 1−τ

2 .

Consider a vector v(θ) = |θ |σ · g(θ), θ ∈ S1, in the circle model of the representation πτ . Assume
that g is a smooth function and has small support around θ = 0 (and hence |θ |σ makes sense).
Clearly, in the line model such a vector is given by v(t) = |t|σ g̃τ ,σ (t) for some smooth function g̃τ ,σ

supported near t = 0, and depending holomorphically on τ and σ .
Hence for γi as above and f ∈ C∞(R) supported in a small enough neighborhood of 0 ∈R, we have

πτ (γi)(|t|σ f (t)) = p−σ+ τ−1
2 |t|σ fτ ,σ ,i(t) for 0 � i � p −1, and πτ (γp)(|t|σ f (t)) = pσ− τ−1

2 |t|σ fτ ,σ ,p(t),
where functions fτ ,σ ,i are smooth compactly supported functions on R (depending on τ , σ and γi ).
Hence we have πτ (T ′

p)(|t|σ f (t)) = (p−σ+ τ
2 + pσ− τ

2 )|t|σ gp,τ ,σ (t) for some smooth function gp,τ ,σ .
Taking the limit t → 0 on both sides, we obtain the last claim in the lemma. �
3. Meromorphic continuation

3.1. We have the following main result

Theorem. Let E(s, z) be the classical (normalized) Eisenstein series for Γ = PGL2(Z) and �2s−1 the corre-
sponding automorphic functional on the irreducible representation π1−2s of the principal series of PGL2(R).
Let uw,z ∈ Vπ1−2s be a vector such that in the line model of π1−2s it is given by uw,z(t) = |t|w−1 F z(t), where
w ∈ C, Re(w) � 1, and Fz ∈ C∞(R), is a holomorphic family (in z) of smooth functions of compact support.
Then the function defined for Re(w) � 1, by �2s−1(uw,z), is a meromorphic function in s, w and z.

The same claim holds for the function �π (uw,z) associated to a Hecke–Maass cuspidal representation π .

In other words, the value at the identity for the Eisenstein series E(s, uw,z, g) is a meromorphic
function in s, w and z. The same holds for the cuspidal function φuw,z (g) evaluated at g = e.

Proof of the theorem. We first treat the case of cusp forms and then discuss a more delicate case of
the Eisenstein series. The main difference between these two cases concerns the issue of boundness
of the corresponding automorphic functional in an appropriate norm. For cusp forms, there is a clear
answer in terms of Sobolev norms provided by [BR]. For the Eisenstein series, we will use the Fourier
expansion instead.

Let {F z}z∈Z be an analytic family of compactly supported smooth functions on R, and uw,z(t) =
|t|w−1 F z(t) the corresponding family of functions which we view as an analytic family of vectors in
the line model of an appropriate representation of the principal series. Consider an automorphic cus-
pidal representation π � πτ of the principal series, and the corresponding automorphic functional �π .
The main theorem of [BR] claims that the functional �π belongs to some Sobolev space completion
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of the dual representation π∗ � π−τ . This implies that the value of the corresponding automorphic
function at the identity, which is given by the pairing

φuw,z (e) = 〈
�π , |t|w−1 F z(t)

〉
,

is well-defined for Re(w) � T for some T > 0 which is large enough. Moreover, the function φuw,z (e)
is analytic in parameters w ∈ C and z ∈ Z wherever it is well-defined. In fact, we can choose T = 1
since the above quoted theorem from [BR] states that �π is bounded in the L2-Sobolev norm of index
σ for any σ > 1/2.

Consider the operator T ′
p from Lemma 2.5, and the function

gw(t) = βp(τ , w − 1) · uw,z − πτ

(
T ′

p

)
(uw,z).

This is an analytic family of vectors in the space Vπτ . Lemma 2.5 implies (via the computation of the
germ at t = 0) that gw(t) = |t|w g̃p,τ ,w,z(t), where g̃p,τ ,w,z is a smooth compactly supported function
analytically depending on all parameters. Hence the function gw belongs to the Sobolev space on
which the functional �π is well-defined for w in a bigger region Re(w) � T − 1. This implies the
meromorphic continuation of 〈�π , uw,z〉 to a bigger strip. Namely, it follows from (2.15) and (2.14)
that

〈�π , gw〉 = 〈
�π ,βp(τ , w − 1) · uw,z − πτ

(
T ′

p

)
(uw,z)

〉
= βp(τ , w − 1)〈�π , uw,z〉 − 〈

π−τ (Tp)�π , uw,z
〉

= [
βp(τ , w − 1) − λp(π)

] · 〈�π , uw,z〉.

The left hand side is defined for Re(w) > T − 1. Hence we obtain the meromorphic continuation of
〈�π , uw,z〉 to the half-plane Re(w) > T − 1 which is to the left of the half-plane Re(w) � T where
〈�π , uw,z〉 was originally defined. This continuation is defined off the zero set of the function

bp(τ , w − 1) = βp(τ , w − 1) − λp(τ ) = p1−w+ τ
2 + p−1+w− τ

2 − λp(τ ).

However, if w0 ∈ C is a zero of bp(τ , w − 1) for a given p, we can change the prime p. For cuspidal
representations, it is well-known that not all eigenvalues of Hecke operators are of the form λp(π) =
pλ + p−λ for the same λ ∈ C independent of p, and hence the above argument shows that D̃ E (φ, w)

is holomorphic.
For the Eisenstein series, the treatment is in principle identical. The only issue we have to resolve

is the existence of an appropriate norm on the representation π2s−1 with respect to which the func-
tional �2s−1 is bounded. Results form [BR] are not directly applicable in this case since it was required
there that the representation appear discretely in L2(Γ \ G). One can however deduce from the the-
ory of smooth Eisenstein series (e.g., [BK] and [L]) that the functional �2s−1 is bounded in a smooth
enough Sobolev norm. A more elementary treatment is also available from the Fourier expansion of
the Eisenstein series (e.g., from the fact that Fourier coefficients are at most polynomial for fixed s).
Hence the value

E
(
s, |t|w−1 F z(t), e

) = 〈
�2s−1, |t|w−1 F z(t)

〉

is well-defined for Re(w) � T (s) with T (s) depending on s. The rest of the argument goes as in the
cuspidal case, and gives the meromorphic continuation of D̃ E (s, w). This continuation is defined off
the zero set of the function
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bp(1 − 2s, w − 1) = βp(1 − 2s, w − 1) − λp(s)

= pw+s−1/2 + p−w−s+1/2 − (
ps−1/2 + p1/2−s).

Values of w which are zeros of all functions bp(1 − 2s, w − 1) for all primes p are w = 1 and w =
2 − 2s. However, once w0 is a potential pole, all values w0 − j, j = 0,1,2, . . . are potential poles due
to the iterative process of the continuation strip by strip. Hence the potential polar divisor of D̃ E (s, w)

is contained in the set

w = 1 − j and w = 2 − 2s − j, for j = 0,1,2, . . . . (3.1)

Using the Fourier expansion for the Eisenstein series, one can see that there are in fact poles at
w = 1,2 − 2s. �
Remark. One can see that the main property of the test vector uw we use is that it is essentially an
eigenvector in Vπτ for a Borel subgroup. This is achieved by considering a vector which is essentially
a small piece of a multiplicative character of a torus (in that Borel subgroup). Hence it would be
more natural from the point of view of representation theory to parameterize vectors uw by that
character and not by the “artificial” parameter w appearing in D E (s, w). This introduces a shift by the
infinitesimal parameter of the representation. Namely, uw corresponds to the character diag(a,a−1) �→
|a|−α of the diagonal subgroup, where α = −2 + 2s + 2w . Accordingly, the polar set (3.1) takes a more
symmetric form (with respect to the natural change s �→ 1 − s) α = −2 + 2s − 2 j and α = −2s − 2 j,
j = 0,1,2, . . . .

3.2. General CM-points

Let z ∈ H be a CM-point corresponding to an imaginary quadratic field E . There exists a non-
trivial element γz ∈ PGL2(Q) which fixes z. Consider the connected compact subgroup Kz ⊂ PGL2(R)

fixing z. We have γz ∈ Kz. Let h ∈ PGL+
2 (R) be an element such that Kz = h−1 PSO(2,R)h. Consider

the set Sz = Kz · (1,0)t ⊂ R2 \ 0 (i.e., Sz = h−1 S1 for the standard circle S1). Note that we have a
rational point sz = γz · (1,0)t ∈ Sz on this ellipse. Let Bz ⊂ PGL2(Q) be the rational Borel subgroup
having a rational eigenvector sz. Now we can repeat our construction of the test vector uw from
Section 2.3.2. We consider the orthonormal basis {ezn = π(h−1)en}n∈2Z of Kz-types. This allows us to
normalize corresponding matrix coefficients by F z

τ (n, g) = 〈π(g)ez0, ezn〉πτ , and obtain the expansion
φ(z) = ∑

n∈2Z azn F z
τ (n, z) analogous to the expansion (1.3) (this is the spherical expansion of φ cen-

tered at z). The corresponding test vector is given by uz
w = π(h−1)uw , and as a function on Sz has

the singularity at the point sz. The proof that the vector uz
w is an approximate eigenvector of Hecke

operators given in Section 2.5 now proceeds as before once we notice that one can choose represen-
tatives γi for a Hecke operator in the rational Borel subgroup Bz. The rest of the proof of Theorem 3.1
is identical to the case we considered.

3.3. Real quadratic periods

Only a slight modification is needed in order to treat real quadratic fields, and, as is well-known,
adelically one can treat CM and real quadratic fields simultaneously.

Let � ⊂ H be a geodesic corresponding to a real quadratic field E (the equivalence class of
such geodesics corresponds to an appropriate class group of E). There exists a non-trivial element
γ� ∈ PGL2(Q) fixing �, which is conjugate to a diagonal matrix hγ�h−1 = diag(u, u−1), where u is a
unit in E . We will assume that γ� generates the corresponding group of units (i.e., u is a fundamen-
tal unit), and choose two linearly independent eigenvectors v1, v2 ∈ R2 of γ� (note that vi /∈ Q2).
Consider a character of the diagonal group χα(diag(a,b)) = |a/b|−α . To any such a character, we as-
sociate the equivariant functional dα : Vπτ → C given in the plane model by the kernel dα(x, y) =
|x|α+τ/2−1/2|y|−α+τ/2−1/2 (i.e., π−τ (diag(a,b))dα = χα(diag(a,b))dα ). The functional d�

α = π−τ (h)dα
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is γ�-equivariant (i.e., satisfies π−τ (γ�)dα = χα(u)dα ). We consider characters χi = χαi , i ∈ Z, which
are trivial on the unit group, i.e., |u|αi = 1 (this implies that αi = iα1). We define then special func-
tions for the hyperbolic expansion (1.6) by Gτ (i, g) = 〈πτ (g)e0,dχi 〉.

Let B(Q) be a rational Borel subgroup, and ξ ∈ R2 \0 be an eigenvector of B(Q). Consider an affine
line L ⊂ R2 \ 0 generated by the eigenvector v1 of γ� (it is transversal to ξ ). We denote by 0L the
point of intersection of L with the line Rv2, and introduce the linear parameter t on L such that t = 0
corresponds to 0L . Let Hπτ be the plane realization of the principal series representation Vπτ (i.e.,
Hπτ is the space of homogeneous functions of the homogeneous degree τ − 1). We restrict functions
in Hπτ to the affine line L, and obtain the standard (twisted) linear fractional action of G on the line
model for πτ . All elements in B(Q) are fixing the point bL = L ∩ Rξ , which we assume corresponds
to t = 1. Hence we can repeat our construction by choosing Hecke operators with representatives
in B(Q), and construct the test vector uw(t) = |t − 1|w−1 f (t − 1) through the coordinate t as in
Section 2.3.2. The computation of the spectral expansion of uw with respect to d�

α is straightforward
since on L the functional d�

α coincides with the Mellin transform in t (and hence, 〈uw ,d�
α〉 is given

essentially by the Beta function).
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