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Abstract. We study a period de®ned for three automorphic functions on GL�2�. We give a
lower bound on the average size of such a period which is essentially sharp. We deduce from
this bound a non-vanishing result for this period. As an application we obtain non-vanishing of
certain L-functions at 1

2.
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0 Introduction

0.1. Periods and L-functions. Relations between periods of automorphic functions,
automorphic L-functions, and their special values, is one of the central themes in
number theory. Non-vanishing of L-functions is even a more classical subject. There
are many examples of an interplay between these topics.

In this note we will discuss non-vanishing of certain periods of automorphic functions
on GL�2�. We will provide applications of these results to non-vanishing of L-functions.

There are many di¨erent techniques for showing non-vanishing of L-functions
(see [MM], for example). Most notable are the celebrated positivity argument of
Hadamard±de la Vallee Poussin, Selberg's theory of Eisenstein series (see [JS]), as
well as more recent works, especially of Iwaniec and Sarnak ([IS]). Those methods
usually use deep arithmetic information (like Euler products of L-functions, estimates
of exponential sums etc.).

We would like to present a simple example of non-vanishing of certain periods of
automorphic functions which does not require any arithmetical input (except of a
lattice). We study a period which is de®ned for a three automorphic representations
of GL�2� considered as the automorphic representation of the group GL�2�3. The
period is de®ned then as the integral over the diagonal imbedding of GL�2�. This
period was extensively studied in recent years in a connection with a conjecture of
H. Jacquet (see [HK]).

We give a lower bound on the average size of such a period. This bound is essen-
tially sharp. We deduce from this that for in®nitely many representations such a
period is nonzero.



For arithmetic lattices (or more precisely for congruence subgroups) this could be
translated into non-vanishing of certain L-functions at 1

2 due to a known relation of
these periods to L-functions.

Our method is that of an analysis in automorphic representations which we in-
troduced in [BR]. The method is elementary in a sense that it does not use any
arithmetical information. The construction we use was suggested by the work [S] of
Peter Sarnak.

0.2. Triple products. Let G � SL�2;R� and GHG be a lattice. For simplicity of the
exposition we will mostly discuss only co-compact lattices (for example arising from
quaternion algebras). The general case could be treated analogously (see 2.4 where
we discuss how to extend our results to this case).

Let X � GnG. It is well known that L2�X� decomposes into a discrete sum of
irreducible unitary representations of SL�2;R� (since X is compact). All unitary
representations of SL�2;R� are classi®ed: these are representations of principal and
complementary series and representations of discrete series. For simplicity we will
discuss only class 1 representations (i.e. those which have K-®xed vectors w.r.t the
maximal compact subgroup K � SO�2�). These are representations of principal and
complementary series. Such representations pl are parameterized by a number l A C
(see 1.1) and belong to the principal series �l A iR� or to the complementary series
�l A �0; 1��.

Let fpig be those representations of class 1 which appear in the decomposition
of L2�X� into irreducible representations. Each pi has a unique K-®xed vector fi

of norm one. Hence ffig is a basis for L2�X�K . These fi's are known classically as
Maass forms. Namely, let pi � pli

be an automorphic representation of class 1 and fi

the (unique) K-®xed vector in it. Such an automorphic function could be viewed as a
function on G=K � H where it turns out to be an eigenfunction of the hyperbolic
Laplacian D with the eigenvalue mi � 1

4 �1ÿ l2
i � (see [B]).

To state the problem, we ®x one automorphic function as above, f, and consider
the function f2 on X. Since f2 A L2�X�, we may consider its spectral decomposition
with respect to the basis ffig. Since f2 is K-invariant it will have non-zero projections
only to representations which have a non-zero K-®xed vector.

We have then:

f2 �Pcifi:

Here coe½cients are the triple scalar products

ci � hf2; fii �
�

X

f � f � fi dx:

Clearly, we can view these as a period of f � f � fi, de®ned on X 3, over the diagonal
copy of X.

Later we will explain why these triple products are of interest and how they are
related to the theory of L-functions (see also [S], which was our starting point). First
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we remark that these ci are small. Namely we showed in [BR] that the coe½cients ci

decay exponentially as exp ÿ p

4
jlij

� �
.

More precisely, let us introduce (normalized) coe½cients bi � jcij2 exp
p

2
jlij

� �
.

The main result of the paper [BR] was the proof of the following theorem which
settled a conjecture of P. Sarnak (see [S]):

Theorem 1. There exists a constant C > 0 such that

P
li

bie
ÿjli je UC � jln ej3 as e! 0:

The aim of the present note is to prove that in®nitely many of these triple products
are nonzero. We establish a lower bound on the average size of the coe½cients ci.
This bound is essentially sharp i.e. it di¨ers by a power of logarithm from the upper
bound above.

Theorem 2. There exists a constant c > 0 such that

P
li

bie
ÿjli je V c � jln ej as e! 0:

Corollary 1. For any given f as above there are in®nitely many automorphic functions

fi such that
�

X
f � f � fi dx0 0.

Remark. Constants c and C above are e¨ectively computable.

0.3. Non-vanishing of L-functions. One of main interests in triple products and their
bounds stems from their relation to the theory of automorphic L-functions. This re-
lation exists of course only for arithmetic lattices and cuspidal functions which are
eigenfunctions of Hecke operators. In that case we can translate the above Theorems
into the language of automorphic forms on adele groups (see [B]).

Let G be GL�2� or the group of units of a quaternian algebra both de®ned over
Q and G�A� the corresponding adele group. Recall that any automorphic p has
the form pF py np pp, where py is the archimedean and pp are non-archimedean
components.

We consider the period de®ned in 0.2. Namely, let pi, i � 1; 2; 3, be in®nite
dimensional irreducible cuspidal representations of G�A� with the trivial central
character. De®ne the trilinear form

I � Ip1;p2;p3
: p1 n p2 n p3 ! C

by
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f1 n f2 n f3 7!
�

A�G�Q�nG�A�
f1�g� f2�g� f3�g� dg:

Here fi A pi.
Taking into account that pF �p for representations discussed in 0.2 we have

ci � Ip;p;pi
�f0 n f0 n f0

i �, where f0 means the K�A�-®xed vector in p and f0
i in pi.

The period I is non-zero if it is non-zero for some choice of fi's.
We will use now the following result of B. Roberts. We formulate only a part

of it.

Theorem ([R]). If for some p the period Ip; �p;s is non-zero then L�s; 1=2�0 0.

This together with Corollary 1 gives the following (see 2.4 for the proof ):

Corollary 2. For in®nitely many cuspidal representations pi with py
i of class one the

value L�pi;
1
2�0 0.

The next application is to the non-vanishing of a more complicated L-function. Let
L�p1 n p2 n p3; s� be the Garrett triple L-function (see [B] for example). It is also
connected with the triple period. Namely, D. Jiang proved the following:

Theorem ([J]). Let G FGL�2�. The nonvanishing of Ip1;p2;p3
implies that the value at

s � 1=2 of L�p1 n p2 n p3; s� is nonzero.

This together with the Corollary 1 gives the following (see 2.4 for the proof )

Corollary 3. For a ®xed cuspidal representation p there are in®nitely many cuspidal pi

with py
i of class one such that the value L�pn �pn pi;

1
2�0 0.

Remarks. 1. Non-vanishing of L�pi; 1=2� for in®nitely many i was proven earlier by
Y. Motohashi ([M]) using Kuznetsov's formula. His method possibly gives a quan-
titative result as well. Non-vanishing for L�pi; 1=2� also can be proven by other
means such as those in [IS].

2. The main interest in the non-vanishing of triple periods stems from the conjec-
ture of H. Jacquet which suggests that L�p1 n p2 n p3;

1
2�0 0 if and only if (an

appropriate) triple period is nonzero. It is proven in many cases (see [HK] and [J]).
3. Recently Iwaniec and Sarnak proved a remarkable result on non-vanishing of

L�pk;
1
2� for holomorphic cusp forms pk of weight k (see [IS]). Namely, they showed

that for at least 50% of pk holds the bound jL�pk;
1
2�jg jln�k�jÿ2 as k !y. Their

proof uses sophisticated number theory.
We emphasize that we do not use any arithmetic information and in particular

Corollary 1 is true for f's which are not Hecke eigenfunctions.
4. Our method fails in an attempt to prove non-vanishing of a similar L-function

L�p1 n p2 n pi;
1
2� for the case p1 C �p2. In particular our method does not naturally
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apply to non-vanishing of L�p; 1
2� for holomorphic cuspidal representations. In that

sense we also use positivity in a crucial way.
5. Finally, we would like to remark on the upper bound following from the Theo-

rem 1. This bound is implicitly contained in [BR], but it is not emphasized enough
since the main objective there was to give bounds on Fourier coe½cients of cuspidal
functions. Theorem 1 gives a bound for the second moment of the usual Rankin-
Selberg L-functions L�p1 n p2; s� on the critical line:

� T

0 jL�p1 n p2; 1=2� it�j2 dtf
T 2�e.

Similar result can be obtained from the approximate functional equation. We note,
however, that our proof does not use the explicit form of the functional equation for
the involved Eisenstein series (i.e. that the constant term of these Eisenstein series is
expressed in terms of the Riemann zeta function). In particular our proof gives non-
trivial bounds in non-arithmetic cases as well.

1 Analytic continuation

1.1. Analytic vectors and their analytic continuation. Proof of the Theorem 2 is based
on the principle of analytic continuation of vectors in a representation of G. We dis-
cussed it in [BR] in more details and here will only remind the idea.

Let G � SL�2;R� and �p;G;V� be a continuous representation of G in a topolog-
ical vector space V. A vector v A V is called analytic if the function xv : g 7! p�g�v is a
real analytic function on G with values in V. This means that there exists a neigh-
borhood U of G in its complexi®cation GC � SL�2;C� such that xv extends to
a holomorphic function on U. In other words, for the elements g A U we can
unambiguously de®ne the vector p�g�v as xv�g�, i.e., we can extend the action of G to
a somewhat larger set.

We consider a typical representation of GÐa representation �pl;G;Dl� of the
principal series. Namely, ®x l A C and consider the space Dl of smooth homoge-
neous functions of degree lÿ 1 on R2n0, i.e., Dl � ff A Cy�R2n0� : f�ax; ay� �
jajlÿ1

f�x; y�g; we denote by pl the natural representation of G in the space Dl.
The restriction on S1 gives an isomorphism Dl FCy

even�S1� and for basis vectors
of Dl one can take the vectors ek � exp�2iky�. If l � it, then �pl;Dl� is a unitary

representation of G with the invariant norm kfk2 � 1

2p

�
S 1 jfj2 dy.

Consider the vector v � e0 A Dl. We claim that v is an analytic vector and we want
to exhibit a large set of elements g A GC for which the expression p�g�v makes sense.

The vector v is represented by the function �x2 � y2��lÿ1�=2 A Dl. For any a > 0
consider the diagonal matrix ga � diag�a; aÿ1�. Then

xv�ga� � pl�ga�v � �a2x2 � aÿ2 y2��lÿ1�=2:

The last expression makes sense as a vector in Dl for any complex a such that
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jarg�a�j < p

4
(since in this case R�a2x2 � aÿ2 y2� > 0). Hence, we see that the function

xv analytically extends to the subset I � ga : jarg�a�j < p

4

� �
H SL�2;C�.

As g approaches the boundary of I, the vector p�g�v A Dl has very speci®c
asymptotic behavior that we will use in order to get an information about this vector.

1.2. The method. We describe here the idea behind the proof of Theorem 2.
Let Li HL2�X� be the space corresponding to the automorphic function fi as

above (see 0.2). Let pri : L2�X� ! Li be the orthogonal projection. Since the function
f2 is K-invariant and there is at most one K-®xed vector in each irreducible repre-
sentation of SL�2;R�, we have pri�f2� � cifi.

Since the G-action commutes with the multiplication of functions on X,

pri��p�g�f�2� � pri�p�g��f2�� � cipi�g�fi:

By the principle of analytic continuation, the same identity holds for the complex
points g A I (see 1.1). Since all the spaces Li are orthogonal, we get the following
basic relation for the complex points g:

�1:1� k�p�g�f�2k2 �P
i

jcij2kpi�g�fik2:

Here k � k � k � kL2 denotes the L2-norm in L2�X�.
It is important that in (1.1) we deal with complex points g and for such g the

operators p�g� are non-unitary. As a result, relation (1.1) gives a non-trivial infor-
mation.

Now, consider the behavior of the function �p�g�f�2 near the boundary of I.
Take e > 0 and an element ge A I which is approximately at the distance e from the

boundary of I. For example, set ge � diag�aÿ1
e ; ae� for ae � exp

p

4
ÿ e

� �
i

� �
.

With shorthand notations ve � p�ge�e0 and fe � n�ve� formula (1.1) becomes

�1:2� kf2
e k2 �Pjcij2kfi; ek2:

Our goal is to give an lower bound on the left hand side of (1.2) and a upper bound
of each of the kfi; ek2 as i!y and e! 0. The later problem is invariantly de®ned in
terms of representation theory and so can be computed in any model of the repre-
sentation pi (e.g., in Dli

). A direct computation gives

�1:3� kfi; ek2 UC � jln ej � exp
p

2
ÿ e

� �
jlij

� �
for some C > 0:

On the other hand, vol�GnG� � kf2
e k2 V kfek4, by Cauchy-Schwartz, and a simple
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computation shows that

�1:4� kfek2 V cjln ej;

with some c > 0.
Bounds 1.3 and 1.4 imply Theorem 2. (see 2.2)

2 Proofs

2.1. We restate bounds claimed in 1.3 and 1.4.

Proposition. Let �p;G;L� be an irreducible unitary representation of SL�2;R� and

v A L a unit K-®xed vector. Consider ge and ve � p�ge�v as above. Then

(1) There exists c > 0 such that kvek2 V cjln�e�j as e! 0.
(2) There exists C > 0 such that if pF pl is a representation of the principal series,

then kvek2 < Cjln ej exp
p

2
ÿ e

� �
jlj

� �
for any l and e < 0:1.

2.2. Proof of Theorem 2. We have the following basic relation (1.2)

kf2
e k2 �Pjcij2kfi; ek2:

Using (1) in the Proposition we have the lower bound:

kf2
e k2 V vol�GnG�ÿ1 � kfek4 V vol�GnG�ÿ1 � c�ln�e��2:

Using (2) in the Proposition we arrive at

C �Pjcij2 � jln ej exp
p

2
ÿ e

� �
jlij

� �
V vol�GnG�ÿ1 � c�ln�e��2

which is equivalent to Theorem 2.

2.3. Proof of Proposition. What we claim in the Proposition could be computed in
any model of the representation p. We use the model Dl as in 1.1. Hence the vector ve

is given by

ve�x; y� � �a2x2 � aÿ2 y2��lÿ1�=2;

with arg�a� � p

4
ÿ e. Let Qe�x; y� � a2x2 � aÿ2 y2. Then kvek2 � �

S 1 jQ�lÿ1�=2
e j2 dt. Let

�x; y� � t A S1 and denote me�t� � jQe�t�j and ae�t� � arg�Qe�t��. We have kvek2 ��
S 1 ejlja�t�mÿ1

e �t� dt. It is easy to see that for jtj < 0:1 we have the following c1jtÿ iejV
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me�t�V c2jtÿ iej and for jtjV 0:1 me�t�U c3. Hence
�

S 1 mÿ1
e �t� dt � cjln�e�j, which

the claim in (1). Claim in (2) follows from this and Cauchy-Schwartz since
ae�t�U p=2ÿ 2e.

2.4. Proof of Corollaries 2 and 3. If G is co-compact this is simply a reformulation of
the Theorem 2. However if G is not co-compact we have an extra term arising from
the Eisenstein series. We claim that this term is negligible.

We assume that G � SL�2;Z� and hence there is one cusp and we denote E�s� the

corresponding Eisenstein series. We denote b�t� �
���� f2;E

1

2
� it

� �� �����2 exp
p

2
jtj

� �
.

We have then as in 1.2:

P
li

bijln ejeÿjli je �
�y
ÿy

b�t�jln ejeÿjtje dtV kf2
e k2 V cjln ej2:

We claim that

���
�

b�t�eÿjtje dt � O�1�; as e! 0:

The bound ��� immediately implies claims in Corollaries.
The bound ��� follows from a bound on the usual Rankin-Selberg L-function

L�s� � L�fn f; s�. Namely, b�t� � g�t�jL�fn f; s�=z�2s�j2. Here z is the Riemann
zeta function and the function g�t� has an explicit expression in terms on G-functions
(see [B]) from which we infer that g�t� � 1=t2 � �1� o�1�� as t!y. Hence ��� would
follow from a bound

����
�2T

T

jL�1=2� it�j2 dtfT A

with any A < 2. This could be shown by noting that L�s� � Lsym�f; s�z�s�, where
Lsym�f; s� is the symmetric square L-function. Lsym�f; s� is of order three L-function
which has three G-factors at in®nity. Hence the integral

� 2T

T
jLsym�f; 1=2� it�j2 dt

could be bounded, by the use of approximate functional equation, by T 3=2 as in [Iw].
Using the classical Weyl bound jz�1=2� it�jf t1=6 and taking into account that
j1=z�1� it�jf ln t we obtain A � 11=6 in ����.
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