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p. 308 2.1.10' Given L < R and a € R define La™! = {r € R:ra € L}. If L is
a maximal left ideal in R then so is La™?!, for any a # 0 in R, and core(La~') D
core (L).
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2.5.4" A more explicit way of viewing theorem 2.5.22. Say a ring R is special
if there is a non-nilpotent element a such that every nonzero ideal of R contains
a power of a. Prove that every prime special ring R satisfying the conditions of
theorem 2.5.22 is primitive. (Hint: The left ideal > (I — a') is comaximal with
every nonzero two-sided ideal.) Consequently any ring R satisfying the conditions
of theorem 2.5.22 and having no nonzero nil ideals is a subdirect product of special
primitive rings. (Hint: Requires the proof of proposition 2.6.7.)

2.10.0 The following properties of a module M are equivalent: (i) M is injective;
(ii) Any map f: N — E satisfies f(IN) C M, where M is viewed as a submodule
of its injective hull E; (iii) As in (ii), but for any essential extension E of M. Note
that complications arise when we dualize condition (iii) to check projectivity, since
M could be a non-projective module without any proper covers.
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2.5.39 Suppose that R is a domain such that for any a,b in R there is n = n(a,b)
such that [a,[a,...,[a,b]...]] =0 (taken n times.) Then R is commutative.

2.5.40 Here is an interesting application of exercise 39, due to Avram Klein,
extending an earlier result of Makar-Limanov: Suppose R is a noncommutative
domain. Then the polynomial ring R[A, u] contains a free multiplicative semigroup.
(Hint: Write Z = Z(R), and ad a for [a,_]. Take a,b such that (ad™a)b # 0
for all n. (Such a,b exist by exercise 39.) The claim is that ¢’ = a + A and
b =b+ (a+ \)u generate a free semigroup. Indeed otherwise there are monomials
f # ¢ in noncommuting indeterminates such that f(a’,b) = g(da’,V’); matching
degrees first in p and then in A enables one to assume degy, f = degy g = d
and degy f = degx g. One may assume f ends in Y and ¢g ends in X. Write
(XY =Xpu—g(X,Y —Xpu) = hiu?~t, where h; € ZX,Y. Then hy(a+\,b) =0,
and by induction on degh; one can show (ad ™a)b = 0. The trick is to rewrite
hi = hy(X,[X,Y]) + BY X", using the equation XY = Y X + [X,Y], and note
iLl(a + A, [z, b]) = 0; clearly deg hy < degh — 1, providing the inductive step.
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2.8.2" Given R-modules M, N, say M is N-projective if every map M — N/L
lifts to a map M — N. (Thus “projective” means N-projective for every N.)
Prove that if M is N-projective and 7 : M’ — M is any cover (i.e. K = kerw is
small in M’ then for any map f: M’ — N one has fK = 0. (Hint: f induces an
epic f: M = M'/K — N/f(K), so there is g: M — N such that ng = f, where
7: N — fK is the canonical map. Let h = gm. For any « in M’, (f — h)x = fy for
some y in K, so (f —h)(x —y) =0.
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2.8.33 In Schanuel’s lemma, show that there is an isomporphism P, @ Ky —

K, & P, which lifts to an isomorphism P; & P, — P, & Ps.
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Artinian modules are semi-LE. The following exercises sketch a proof of the
Camps-Dicks theorem that if M is an Artinian R-module then T' =Endg(M) is a
semilocal ring.

2.9.24 For M Artinian, iff f: M — M is monic then f is an isomorphism. (Hint:
fiT = fT for some i.) 25 (Does not require M Artinian.) For any f,g in T
show ker(f — fgf) =ker f @ ker(1 — gf). (Hint: z = (1 —gf)z + gfx.)

2.9.26 T is semilocal. (Extensive hint: Let J =Jac(T). One must show T = T/.J
is semisimple Artinian as a module over itself.

Step 1. Define a relation < on £(M) by saying K < N if K is a proper submodule
of N. Looking at complements, show L£(M) satisfies ACC with respect to this
relation.

Step 2. Suppose f € T'\ J. For any g € T such that 1 — gf is not invertible, one
has 1-gf not monic, and thus ker(f — fgf) > ker f.

Step 3. Let S = {f € T\ J : f is idedmpotent (in T') and T/(1— f) is semisimple
Artinian. 1 € §. Take f in § with ker f maximal with respect to <, and g € T
with gf ¢ J, such that ker gf is maximal possible with ker(gf — fhgf) > kergf,
so gf — fhgf € J,ie. gf = fhgf. Conclude that fhgf is idempotent in fTf, so
f — fhgf is idempotent. Furthermore Tgf is simple, since for any a € T for which
agf # 0 one has h satisfying gf = fhagf € Tgf. Conclude T(1 — (f — fhgf)) =
T(1— f)®Thgf is semisimple Artinian, but f — fhgf € S, so f — fhgf € J. Hence
T =T(1— (f — fhgf) is semisimple Artinian.)
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Matlis’ conjecture.

Suppose M & N is a direct sum of indecomposable injectives. Is M a direct sum
of indecomposable injectives? This is known as Matlis’ conjecture (and sometimes
is asked more generally for LE-modules, in view of exercise 2.10.9). The next two
exercises give some sample results along these lines, under the above hypothesis.

2.10.25. M is a sum (not necessarily direct) of indecomposable injectives. (Hint:
Any x in M is contained in a finite direct sum of indecomposable injectives. But
the kernel of the natural projection £ — M intersects Rz trivially, so is 0, i.e. x is
contained in a copy of E inside M.)

2.10.26. Prove Matlis’ conjecture when R is left Noetherian. (Hint: M has a
large submodule which is a direct sum of indecomposable injectives and hence is
injective, and thus equals M)

p. 451 0’ If L is a maximal left ideal of R and a € R\ L then La™! is a maximal
left ideal of R.

VoLuME II
p. 176 0. R has subexponential growth iff lim,, . ( log Gs(n))/n = 0.

(after corollary 6.2.25") Surprisingly a PI-ring R can have a nilpotent ideal N
for which GK-dim R/N >GK-dim R, as described in exercises 6.3.20ff .

Digression 6.3.28’ For use in invariant theory one would like to adjoin the char-
acteristic coefficients of all the elements of R (not just “enough”); let us call this
C, and let T(R) = RC C Q. We shall see now when C is a field that also C' is
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affine over C, and thus Noetherian; since T(R) is f.g. over C (as in (iv)), it follows
that both T'(R) and its center are affine over C. In fact, modulo a result from
commutative algebra to be quoted in the proof, we have

Proposition. (Notation as above) C is f.g. as C'-module, and thus is affine over

C.

Proof. We view R =C{ry1,...,m} in Q ®c K ~ M, (K), where K is the algebraic
closure of Z(Q). Then each r; can be identified with the matrix (fgf), and the
@
C’[&EJ’?) :1<4,j<n, 1 <k<t]. Now take any ¢ in C. Writing ¢ = 3_ ¢, a¥" ... oM,
where each «; is a characteristic coefficient of a suitable element a; of R, we see each
a; is integral over C” (by Shirshov’s theorem), so its conjugates are also integral
over C’, and thus each «; is integral over C’, i.e. each «; is contained in the integral
closure C' of C’ in C’[fg-c)]. Hence ¢ € C’, thereby proving C € C’. But ¢’ is f.g.
as a C’-module, by a standard result of commutative algebra, cf. Zariski-Samuel,
vol. 1, p. 267 or Matsamura [ ], p. 240. Hence C' is a Noetherian C’-module, so
its submodule C is Noetherian and in particular f.g.

characteristic polynomial of r is det(A -1 — (;:”), whose coeffients are certainly in

0.

The Gelfand-Kirillov dimension modulo nilpotent ideals. The next few
exercises describe how the GK dimension passes modulo a nilpotent ideal.
6.3.20 Suppose M is an R — T bimodule, where R,T are F-algebras. Let

W = 20 cf. example 1.9. Then GK-dim W <GK-dim R+GK-dim T (Hint: Any

finite dimensional subspace is contained in a suitable space V = ’g g , where A, B,C
are respective finite dimensional subspaces of R, M, T. Then V" C %" A73C" ; take

logarithms mod n and then let n — oo.

6.3.21 If I, J < R with IJ = 0 then GK-dim R <GK-dim R/I+GK-dim R/J.
(Hint: Apply Proposition 6.3.14 to exercise 20.) 6.3.22 If N < R and N* = 0 then
GK-dim R/N < t-GK-dim R.

6.3.23 Let R = FX1, X2/ < Xo >™ . Then R/Nil(R) ~ FX; = F[Xi] has
GK-dimension 1, but GK-dim (R) = m. (Hint: ¢ follows from exercise 22; “" is
because there are (mfil) monomials of degreee m — 1 in Xs.
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40. If k is relatively prime to index(R) then R®* ~ R. (Hint: Reduce to symbols
via Merkurjev-Suslin.)

41. If D is a division algebra of degree pt, p prime, then there is a field L D F =
Z(D) such that [L : F] is prime to p and D ® L has a maximal subfield Ey with a
chain Ey D Ey--- 2 E; = L in which each [F; : E;11] = p. (Hint: In proposition
7.2.11 take Ey = KL in E, noting Gal(E/L) is solvable.)

42. If p divides m = index(R) then index(R®?) divides m/p. (Hint: Assume R
is a division ring and compute index(R?) where Ry = Cpgr(E1), notation as in
exercise 41.)

Group Algebras satisfying a PI. Passman [89] has found a much shorter proof
of the Isaacs-Passman Theorem, that the group algebra F[G] satisfies a PI (where
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char(F) = 0) iff G has an Abelian subgroup of finite index; we present the proof
here. By theorem 8.1.52, one may assume G = A(G).

Lemma 8.1.53. Suppose G = A(G), and W is a finite central subgroup of G. If
0+# a€ FW] and af (X1,...,X,) is a multilinear identity of F[G] (over FIW])
then G has subgroups A O B such that B is finite, A has finite index in G, B C
Z(A), and A/B is commutative.

Proof. One is done unless G’ € W. Take x,y in G such that z = zyx~ly~! ¢ W.
Let C = Cg(z) N Cq(y), which has finite index in G.

We proceed by induction on the number of monomials m = m(f) of f. Clearly
m > 2, so one may assume that X; occurs before X5 in some but not all monomials

of f. Let g be the sum of those monomials in which X; occurs before X, and
h=f—g. Then

0=yzaf(cr,...,cn) =yzalgler,...,cn) + h(cr, ..., cn))

and
0 =af(xcr,ycs, ... cn) = xyag(cr,...,cn) +yxah(cy, ... cn)

Subtracting these two equations yields

0=a(zy —yx)g(cr,y ..., cn) = ayx(z — Dg(er, ..., cn).

If z ¢ C then the coefficient of 1 yields ayxg(cy,...,cn) =0, s0 g(c,...,¢,) =0
for all ¢; in C; replacing G by C and f by g, one is done by induction.

If z € C then z € Z(C) has finite period, by corollary 8.1.33, so W' =W < z >
is a finite subgroup of C, and we replace G by C, W by W', and f by g, and again
are done by induction.

Proof of the Isaacs-Passman Theorem. Take A, B,G as in exercise 27. Replacing
G by A, we may assume G’ is finite and central; take HG of finite index, with H’
minimal possible. Then K’ = H’ for any subgroup K of H having finite index.
For any prime ideal P of F[H] let S be the central localization of F[H|/P. S is
generated over its center by the image of a finite number of elements of H, whose
common centralizer C' thus has finite index in H. Thus the image of C in § is
central. Hence H' = C’ C 1+ P. Since F[H] is semiprime, we conclude H' =1, i.e.
H is Abelian.

The original Isaacs-Passman proofs have explicit bounds on the index of the
Abelian subgroup in terms of the PI-degree; part of this can be gleaned from exercise
27.

Exercise 8.1.27 Using an ultraproduct argument, show that the index of the
Abelian subgroup of G can be bounded by a function of the PI-degree of F[G].



