Vol. I.

p. 308 **2.1.10'** Given L < R and $a \in R$ define $La^{-1} = \{r \in R : ra \in L\}$. If L is a maximal left ideal in R then so is La^{-1} , for any $a \neq 0$ in R, and $\operatorname{core}(La^{-1}) \supseteq \operatorname{core}(L)$.

p. 312

- **2.5.4'** A more explicit way of viewing theorem 2.5.22. Say a ring R is special if there is a non-nilpotent element a such that every nonzero ideal of R contains a power of a. Prove that every prime special ring R satisfying the conditions of theorem 2.5.22 is primitive. (Hint: The left ideal $\sum (l-a^i)$ is comaximal with every nonzero two-sided ideal.) Consequently any ring R satisfying the conditions of theorem 2.5.22 and having no nonzero nil ideals is a subdirect product of special primitive rings. (Hint: Requires the proof of proposition 2.6.7.)
- **2.10.0** The following properties of a module M are equivalent: (i) M is injective; (ii) Any map $f: N \to E$ satisfies $f(N) \subseteq M$, where M is viewed as a submodule of its injective hull E; (iii) As in (ii), but for any essential extension E of M. Note that complications arise when we dualize condition (iii) to check projectivity, since M could be a non-projective module without any proper covers.

p. 316

- **2.5.39** Suppose that R is a domain such that for any a, b in R there is n = n(a, b) such that $[a, [a, \ldots, [a, b] \ldots]] = 0$ (taken n times.) Then R is commutative.
- **2.5.40** Here is an interesting application of exercise 39, due to Avram Klein, extending an earlier result of Makar-Limanov: Suppose R is a noncommutative domain. Then the polynomial ring $R[\lambda,\mu]$ contains a free multiplicative semigroup. (Hint: Write Z=Z(R), and ad a for $[a,_]$. Take a,b such that $(\mathrm{ad}^n a)b \neq 0$ for all n. (Such a,b exist by exercise 39.) The claim is that $a'=a+\lambda$ and $b'=b+(a+\lambda)\mu$ generate a free semigroup. Indeed otherwise there are monomials $f\neq g$ in noncommuting indeterminates such that f(a',b')=g(a',b'); matching degrees first in μ and then in λ enables one to assume $\deg_Y f=\deg_Y g=d$ and $\deg_X f=\deg_X g$. One may assume f ends in Y and g ends in X. Write $f(X,Y-X\mu-g(X,Y-X\mu))=\sum h_i\mu^{d-i}$, where $h_i\in ZX,Y$. Then $h_1(a+\lambda,b)=0$, and by induction on $\deg h_1$ one can show $(\mathrm{ad}^n a)b=0$. The trick is to rewrite $h_1=\tilde{h}_1(X,[X,Y])+\beta YX^n$, using the equation XY=YX+[X,Y], and note $\tilde{h}_1(a+\lambda,[x,b])=0$; clearly $\deg \tilde{h}_1\leq \deg h-1$, providing the inductive step.

p. 324

2.8.2' Given R-modules M, N, say M is N-projective if every map $M \to N/L$ lifts to a map $M \to N$. (Thus "projective" means N-projective for every N.) Prove that if M is N-projective and $\pi: M' \to M$ is any cover (i.e. $K = \ker \pi$ is small in M' then for any map $f: M' \to N$ one has fK = 0. (Hint: f induces an epic $\bar{f}: M = M'/K \to N/f(K)$, so there is $g: M \to N$ such that $\eta g = f$, where $\eta: N \to fK$ is the canonical map. Let $h = g\pi$. For any x in M', (f - h)x = fy for some y in K, so (f - h)(x - y) = 0.

p. 329

2.8.33 In Schanuel's lemma, show that there is an isomporphism $P_1 \oplus K_2 \to K_1 \oplus P_2$ which lifts to an isomorphism $P_1 \oplus P_2 \to P_1 \oplus P_2$.

p. 331

Artinian modules are semi-LE. The following exercises sketch a proof of the Camps-Dicks theorem that if M is an Artinian R-module then $T = \operatorname{End}_R(M)$ is a semilocal ring.

- **2.9.24** For M Artinian, iff $f: M \to M$ is monic then f is an isomorphism. (Hint: $f^iT = f^{i+1}T$ for some i.) **25** (Does not require M Artinian.) For any f, g in T show $\ker(f fgf) = \ker f \oplus \ker(1 gf)$. (Hint: x = (1 gf)x + gfx.)
- **2.9.26** T is semilocal. (Extensive hint: Let $J = \operatorname{Jac}(T)$. One must show $\overline{T} = T/J$ is semisimple Artinian as a module over itself.
- Step 1. Define a relation < on $\mathcal{L}(M)$ by saying K < N if K is a proper submodule of N. Looking at complements, show $\mathcal{L}(M)$ satisfies ACC with respect to this relation.
- Step 2. Suppose $f \in T \setminus J$. For any $g \in T$ such that 1 gf is not invertible, one has 1-gf not monic, and thus $\ker(f fgf) > \ker f$.
- Step 3. Let $\mathcal{S}=\{f\in T\setminus J: \bar{f} \text{ is idedmpotent (in } \bar{T}) \text{ and } \bar{T}/(1-\bar{f}) \text{ is semisimple Artinian. } 1\in \mathcal{S}.$ Take f in \mathcal{S} with ker f maximal with respect to <, and $g\in T$ with $gf\notin J$, such that $\ker gf$ is maximal possible with $\ker(gf-fhgf)>\ker gf$, so $gf-fhgf\in J$, i.e. $gf=\overline{fhgf}$. Conclude that \overline{fhgf} is idempotent in \overline{fTf} , so $\overline{f-fhgf}$ is idempotent. Furthermore \overline{Tgf} is simple, since for any $a\in T$ for which $\overline{agf}\neq 0$ one has h satisfying $\overline{gf}=\overline{fhagf}\in \overline{Tgf}$. Conclude $\overline{T}(1-(f-fhgf))=\overline{T}(1-\overline{f})\oplus \overline{Thgf}$ is semisimple Artinian, but $f-fhgf\in \mathcal{S}$, so $f-fhgf\in J$. Hence $\overline{T}=\overline{T}(1-(f-fhgf))$ is semisimple Artinian.)

Matlis' conjecture.

Suppose $M \oplus N$ is a direct sum of indecomposable injectives. Is M a direct sum of indecomposable injectives? This is known as Matlis' conjecture (and sometimes is asked more generally for LE-modules, in view of exercise 2.10.9). The next two exercises give some sample results along these lines, under the above hypothesis.

- **2.10.25.** M is a sum (not necessarily direct) of indecomposable injectives. (Hint: Any x in M is contained in a finite direct sum of indecomposable injectives. But the kernel of the natural projection $E \to M$ intersects Rx trivially, so is 0, i.e. x is contained in a copy of E inside M.)
- **2.10.26.** Prove Matlis' conjecture when R is left Noetherian. (Hint: M has a large submodule which is a direct sum of indecomposable injectives and hence is injective, and thus equals M.)
- p. 451 **0'** If L is a maximal left ideal of R and $a \in R \setminus L$ then La^{-1} is a maximal left ideal of R.

Volume II

p. 176 **0.** R has subexponential growth iff $\lim_{n\to\infty} (\log G_S(n))/n = 0$.

(after corollary 6.2.25') Surprisingly a PI-ring R can have a nilpotent ideal N for which GK-dim R/N >GK-dim R, as described in exercises 6.3.20ff .

Digression 6.3.28' For use in invariant theory one would like to adjoin the characteristic coefficients of all the elements of R (not just "enough"); let us call this \tilde{C} , and let $\tilde{T}(R) = R\tilde{C} \subseteq Q$. We shall see now when C is a field that also \tilde{C} is

affine over C, and thus Noetherian; since $\tilde{T}(R)$ is f.g. over \tilde{C} (as in (iv)), it follows that both $\tilde{T}(R)$ and its center are affine over C. In fact, modulo a result from commutative algebra to be quoted in the proof, we have

Proposition. (Notation as above) \tilde{C} is f.g. as C'-module, and thus is affine over

Proof. We view $R = C\{r_1, \ldots, r_t\}$ in $Q \otimes_C K \approx M_n(K)$, where K is the algebraic closure of Z(Q). Then each r_k can be identified with the matrix $(\xi_{ij}^{(k)})$, and the characteristic polynomial of r_k is $\det(\lambda \cdot 1 - (\xi_{ij}^{(k)}))$, whose coefficients are certainly in $C[\xi_{ij}^{(k)}: 1 \leq i, j \leq n, \ 1 \leq k \leq t]$. Now take any \tilde{c} in \tilde{C} . Writing $c = \sum c_u \alpha_1^{u_1} \dots \alpha_t^{u_t}$, where each α_i is a characteristic coefficient of a suitable element a_i of R, we see each a_i is integral over C' (by Shirshov's theorem), so its conjugates are also integral over C', and thus each α_i is integral over C', i.e. each α_i is contained in the integral closure \bar{C}' of C' in $C[\xi_{ij}^{(k)}]$. Hence $c \in \bar{C}'$, thereby proving $\tilde{C} \subseteq \bar{C}'$. But \bar{C}' is f.g. as a C'-module, by a standard result of commutative algebra, cf. Zariski-Samuel, vol. 1, p. 267 or Matsamura [], p. 240. Hence \bar{C}' is a Noetherian C'-module, so its submodule \tilde{C} is Noetherian and in particular f.g.

 \Box .

The Gelfand-Kirillov dimension modulo nilpotent ideals. The next few exercises describe how the GK dimension passes modulo a nilpotent ideal.

- **6.3.20** Suppose M is an R-T bimodule, where R,T are F-algebras. Let $W = {R \atop 0} {M \atop T}$, cf. example 1.9. Then GK-dim $W \leq$ GK-dim R+ GK-dim T. (Hint: Any finite dimensional subspace is contained in a suitable space $V = {A \atop 0} {B \atop C}$, where A, B, C are respective finite dimensional subspaces of R, M, T. Then $V^n \subseteq {A^n \atop C} {A^n \atop C} {A^n \atop C}$; take logarithms mod n and then let $n \to \infty$.
- **6.3.21** If $I, J \triangleleft R$ with IJ = 0 then GK-dim $R \leq$ GK-dim R/I + GK-dim R/J. (Hint: Apply Proposition 6.3.14 to exercise 20.) **6.3.22** If $N \triangleleft R$ and $N^t = 0$ then GK-dim $R/N \le t \cdot \text{GK-dim } R$.
- **6.3.23** Let $R = FX_1, X_2/< X_2>^m$. Then $R/\mathrm{Nil}(R) \approx FX_1 = F[X_1]$ has GK-dimension 1, but GK-dim (R) = m. (Hint: "'follows from exercise 22; "" is because there are $\binom{n}{m-1}$ monomials of degree m-1 in X_2 .
- **40.** If k is relatively prime to index(R) then $R^{\otimes k} \approx R$. (Hint: Reduce to symbols via Merkurjev-Suslin.)
- **41.** If D is a division algebra of degree p^t , p prime, then there is a field $L \supseteq F =$ Z(D) such that [L:F] is prime to p and $D\otimes L$ has a maximal subfield E_0 with a chain $E_0 \supseteq E_1 \cdots \supseteq E_t = L$ in which each $[E_i : E_{i+1}] = p$. (Hint: In proposition 7.2.11 take $E_0 = KL$ in E, noting Gal(E/L) is solvable.)
- **42.** If p divides $m = \operatorname{index}(R)$ then $\operatorname{index}(R^{\otimes p})$ divides m/p. (Hint: Assume R is a division ring and compute index $(R_1^{\otimes p})$ where $R_1 = C_{D \otimes L}(E_1)$, notation as in exercise 41.)

Group Algebras satisfying a PI. Passman [89] has found a much shorter proof of the Isaacs-Passman Theorem, that the group algebra F[G] satisfies a PI (where

 $\operatorname{char}(F) = 0$) iff G has an Abelian subgroup of finite index; we present the proof here. By theorem 8.1.52, one may assume $G = \Delta(G)$.

Lemma 8.1.53. Suppose $G = \triangle(G)$, and W is a finite central subgroup of G. If $0 \neq \alpha \in F[W]$ and $\alpha f(X_1, \ldots, X_n)$ is a multilinear identity of F[G] (over F[W]) then G has subgroups $A \supseteq B$ such that B is finite, A has finite index in G, $B \subseteq Z(A)$, and A/B is commutative.

Proof. One is done unless $G' \not\subseteq W$. Take x, y in G such that $z = xyx^{-1}y^{-1} \notin W$. Let $C = C_G(x) \cap C_G(y)$, which has finite index in G.

We proceed by induction on the number of monomials m = m(f) of f. Clearly $m \ge 2$, so one may assume that X_1 occurs before X_2 in some but not all monomials of f. Let g be the sum of those monomials in which X_1 occurs before X_2 , and h = f - g. Then

$$0 = yx\alpha f(c_1, \dots, c_n) = yx\alpha(g(c_1, \dots, c_n) + h(c_1, \dots, c_n))$$

and

$$0 = \alpha f(xc_1, yc_2, \dots, c_n) = xy\alpha g(c_1, \dots, c_n) + yx\alpha h(c_1, \dots, c_n)$$

Subtracting these two equations yields

$$0 = \alpha(xy - yx)g(c_1, \dots, c_n) = \alpha yx(z - 1)g(c_1, \dots, c_n).$$

If $z \notin C$ then the coefficient of 1 yields $\alpha yxg(c_1, \ldots, c_n) = 0$, so $g(c_1, \ldots, c_n) = 0$ for all c_i in C; replacing G by C and f by g, one is done by induction.

If $z \in C$ then $z \in Z(C)$ has finite period, by corollary 8.1.33, so W' = W < z > is a finite subgroup of C, and we replace G by C, W by W', and f by g, and again are done by induction.

Proof of the Isaacs-Passman Theorem. Take A, B, G as in exercise 27. Replacing G by A, we may assume G' is finite and central; take HG of finite index, with H' minimal possible. Then K' = H' for any subgroup K of H having finite index. For any prime ideal P of F[H] let S be the central localization of F[H]/P. S is generated over its center by the image of a finite number of elements of H, whose common centralizer C thus has finite index in H. Thus the image of C in S is central. Hence $H' = C' \subseteq 1 + P$. Since F[H] is semiprime, we conclude H' = 1, i.e. H is Abelian.

The original Isaacs-Passman proofs have explicit bounds on the index of the Abelian subgroup in terms of the PI-degree; part of this can be gleaned from exercise 27.

Exercise 8.1.27 Using an ultraproduct argument, show that the index of the Abelian subgroup of G can be bounded by a function of the PI-degree of F[G].