Vol. I.

p. 160 l. -12 Specializing $\lambda_{\gamma} \mapsto 0$
l. $-3,-1 \sigma_{\gamma}\left(g_{t}\right)$ instead of $\rho_{\gamma} g_{t}$
p. 170

Corollary 2.3 .12 requires a condition such as every left ideal contains a minimal left ideal. Clearly it is false when R has socle 0 .
p. 308
2.1.10 ${ }^{\prime}$ Given $L<R$ and $a \in R$ define $L a^{-1}=\{r \in R: r a \in L\}$. If L is a maximal left ideal in R then so is $L a^{-1}$, for any $a \neq 0$ in R, and $\operatorname{core}\left(L a^{-1}\right) \supseteq$ core (L).
p. 312
2.5.4 ${ }^{\prime}$ A more explicit way of viewing Theorem 2.5.22. Say a ring R is special if there is a non-nilpotent element a such that every nonzero ideal of R contains a power of a. Prove that every prime special ring R satisfying the conditions of Theorem 2.5.22 is primitive. (Hint: The left ideal $\sum\left(l-a^{i}\right)$ is comaximal with every nonzero two-sided ideal.) Consequently any ring R satisfying the conditions of Theorem 2.5.22 and having no nonzero nil ideals is a subdirect product of special primitive rings. (Hint: Requires the proof of proposition 2.6.7.)
2.10.0 The following properties of a module M are equivalent: (i) M is injective; (ii) Any map $f: N \rightarrow E$ satisfies $f(N) \subseteq M$, where M is viewed as a submodule of its injective hull E; (iii) As in (ii), but for any essential extension E of M. Note that complications arise when we dualize condition (iii) to check projectivity, since M could be a non-projective module without any proper covers.
p. 316
2.5.39 Suppose that R is a domain such that for any a, b in R there is $n=n(a, b)$ such that $[a,[a, \ldots,[a, b] \ldots]]=0$ (taken n times.) Then R is commutative.
2.5.40 Here is an interesting application of exercise 39, due to Avram Klein, extending an earlier result of Makar-Limanov: Suppose R is a noncommutative domain. Then the polynomial ring $R[\lambda, \mu]$ contains a free multiplicative semigroup. (Hint: Write $Z=Z(R)$, and ad a for $\left[a, _\right]$. Take a, b such that $\left(\operatorname{ad}^{n} a\right) b \neq 0$ for all n. (Such a, b exist by exercise 39.) The claim is that $a^{\prime}=a+\lambda$ and $b^{\prime}=b+(a+\lambda) \mu$ generate a free semigroup. Indeed otherwise there are monomials $f \neq g$ in noncommuting indeterminates such that $f\left(a^{\prime}, b^{\prime}\right)=g\left(a^{\prime}, b^{\prime}\right)$; matching degrees first in μ and then in λ enables one to assume $\operatorname{deg}_{Y} f=\operatorname{deg}_{Y} g=d$ and $\operatorname{deg}_{X} f=\operatorname{deg}_{X} g$. One may assume f ends in Y and g ends in X. Write $f\left(X, Y-X \mu-g(X, Y-X \mu)=\sum h_{i} \mu^{d-i}\right.$, where $h_{i} \in Z X, Y$. Then $h_{1}(a+\lambda, b)=0$, and by induction on $\operatorname{deg} h_{1}$ one can show $\left(\operatorname{ad}^{n} a\right) b=0$. The trick is to rewrite ${\underset{\sim}{h}}_{h_{1}}=\tilde{h}_{1}(X,[X, Y])+\beta Y X^{n}$, using the equation $X Y=Y X+[X, Y]$, and note $\tilde{h}_{1}(a+\lambda,[x, b])=0$; clearly $\operatorname{deg} \tilde{h}_{1} \leq \operatorname{deg} h-1$, providing the inductive step.
p. 324
2.8.2 ${ }^{\prime}$ Given R-modules M, N, say M is N-projective if every map $M \rightarrow N / L$ lifts to a map $M \rightarrow N$. (Thus "projective" means N-projective for every N.) Prove that if M is N-projective and $\pi: M^{\prime} \rightarrow M$ is any cover (i.e. $K=\operatorname{ker} \pi$ is small in M^{\prime} then for any map $f: M^{\prime} \rightarrow N$ one has $f K=0$. (Hint: f induces an epic $\bar{f}: M=M^{\prime} / K \rightarrow N / f(K)$, so there is $g: M \rightarrow N$ such that $\eta g=f$, where $\eta: N \rightarrow f K$ is the canonical map. Let $h=g \pi$. For any x in $M^{\prime},(f-h) x=f y$ for
some y in K, so $(f-h)(x-y)=0$.
p. 329
2.8.33 In Schanuel's lemma, show that there is an isomporphism $P_{1} \oplus K_{2} \rightarrow$ $K_{1} \oplus P_{2}$ which lifts to an isomorphism $P_{1} \oplus P_{2} \rightarrow P_{1} \oplus P_{2}$.
p. 331

Artinian modules are semi-LE. The following exercises sketch a proof of the Camps-Dicks Theorem that if M is an Artinian R-module then $T=\operatorname{End}_{R}(M)$ is a semilocal ring.
2.9.24 For M Artinian, iff $f: M \rightarrow M$ is monic then f is an isomorphism. (Hint: $f^{i} T=f^{i+1} T$ for some i.) 25 (Does not require M Artinian.) For any f, g in T show $\operatorname{ker}(f-f g f)=\operatorname{ker} f \oplus \operatorname{ker}(1-g f)$. (Hint: $x=(1-g f) x+g f x$.)
2.9.26 T is semilocal. (Extensive hint: Let $J=\mathrm{Jac}(T)$. One must show $\bar{T}=T / J$ is semisimple Artinian as a module over itself.

Step 1. Define a relation $<$ on $\mathcal{L}(M)$ by saying $K<N$ if K is a proper submodule of N. Looking at complements, show $\mathcal{L}(M)$ satisfies ACC with respect to this relation.

Step 2. Suppose $f \in T \backslash J$. For any $g \in T$ such that $1-g f$ is not invertible, one has 1-gf not monic, and thus $\operatorname{ker}(f-f g f)>\operatorname{ker} f$.

Step 3. Let $\mathcal{S}=\{f \in T \backslash J: \bar{f}$ is idedmpotent (in $\bar{T})$ and $\bar{T} /(1-\bar{f})$ is semisimple Artinian. $1 \in \mathcal{S}$. Take f in \mathcal{S} with ker f maximal with respect to $<$, and $g \in T$ with $g f \notin J$, such that $\operatorname{ker} g f$ is maximal possible with $\operatorname{ker}(g f-f h g f)>\operatorname{ker} g f$, so $g f-f h g f \in J$, i.e. $\overline{g f}=\overline{f h g f}$. Conclude that $\overline{f h g f}$ is idempotent in $\overline{f T f}$, so $\overline{f-f h g f}$ is idempotent. Furthermore $\overline{T g f}$ is simple, since for any $a \in T$ for which $\overline{a g f} \neq 0$ one has h satisfying $\overline{g f}=\overline{\text { fhagf }} \in \overline{T g f}$. Conclude $\bar{T}(1-(f-f h g f))=$ $\bar{T}(1-\bar{f}) \oplus \overline{T h g f}$ is semisimple Artinian, but $f-f h g f \in \mathcal{S}$, so $f-f h g f \in J$. Hence $\bar{T}=\overline{T(1-(f-f h g f)}$ is semisimple Artinian.)
p. 335

Matlis' conjecture.

Suppose $M \oplus N$ is a direct sum of indecomposable injectives. Is M a direct sum of indecomposable injectives? This is known as Matlis' conjecture (and sometimes is asked more generally for LE-modules, in view of exercise 2.10.9). The next two exercises give some sample results along these lines, under the above hypothesis.
2.10.25. M is a sum (not necessarily direct) of indecomposable injectives. (Hint: Any x in M is contained in a finite direct sum of indecomposable injectives. But the kernel of the natural projection $E \rightarrow M$ intersects $R x$ trivially, so is 0 , i.e. x is contained in a copy of E inside M.)
2.10.26. Prove Matlis' conjecture when R is left Noetherian. (Hint: M has a large submodule which is a direct sum of indecomposable injectives and hence is injective, and thus equals M.)
p. 451

New Exercise $\mathbf{0}^{\prime}$ If L is a maximal left ideal of R and $a \in R \backslash L$ then $L a^{-1}$ is a maximal left ideal of R.

Volume II

p. $1760 . R$ has subexponential growth iff $\lim _{n \rightarrow \infty}\left(\log G_{S}(n)\right) / n=0$.
(after corollary 6.2.25') Surprisingly a PI-ring R can have a nilpotent ideal N for which GK-dim $R / N>$ GK-dim R, as described in exercises 6.3.20ff .

Digression 6.3.28' For use in invariant theory one would like to adjoin the characteristic coefficients of all the elements of R (not just "enough"); let us call this \tilde{C}, and let $\tilde{T}(R)=R \tilde{C} \subseteq Q$. We shall see now when C is a field that also \tilde{C} is affine over C, and thus Noetherian; since $\tilde{T}(R)$ is f.g. over \tilde{C} (as in (iv)), it follows that both $\tilde{T}(R)$ and its center are affine over C. In fact, modulo a result from commutative algebra to be quoted in the proof, we have
Proposition. (Notation as above) \tilde{C} is f.g. as C^{\prime}-module, and thus is affine over C.

Proof. We view $R=C\left\{r_{1}, \ldots, r_{t}\right\}$ in $Q \otimes_{C} K \approx M_{n}(K)$, where K is the algebraic closure of $Z(Q)$. Then each r_{k} can be identified with the matrix $\left(\xi_{i j}^{(k)}\right.$, and the characteristic polynomial of r_{k} is $\operatorname{det}\left(\lambda \cdot 1-\left(\xi_{i j}^{(k)}\right)\right.$, whose coefficients are certainly in $C\left[\xi_{i j}^{(k)}: 1 \leq i, j \leq n, 1 \leq k \leq t\right]$. Now take any \tilde{c} in \tilde{C}. Writing $c=\sum c_{u} \alpha_{1}^{u_{1}} \ldots \alpha_{t}^{u_{t}}$, where each α_{i} is a characteristic coefficient of a suitable element a_{i} of R, we see each a_{i} is integral over C^{\prime} (by Shirshov's Theorem), so its conjugates are also integral over C^{\prime}, and thus each α_{i} is integral over C^{\prime}, i.e. each α_{i} is contained in the integral closure \bar{C}^{\prime} of C^{\prime} in $C\left[\xi_{i j}^{(k)}\right]$. Hence $c \in \bar{C}^{\prime}$, thereby proving $\tilde{C} \subseteq \bar{C}^{\prime}$. But \bar{C}^{\prime} is f.g. as a C^{\prime}-module, by a standard result of commutative algebra, cf. Zariski-Samuel, vol. 1, p. 267 or Matsamura [], p. 240. Hence \bar{C}^{\prime} is a Noetherian C^{\prime}-module, so its submodule \tilde{C} is Noetherian and in particular f.g.

The Gelfand-Kirillov dimension modulo nilpotent ideals.

The next few exercises describe how the GK dimension passes modulo a nilpotent ideal.
6.3.20 Suppose M is an $R-T$ bimodule, where R, T are F-algebras. Let $W=\left(\begin{array}{cc}R & M \\ 0 & T\end{array}\right)$, cf. Example 1.9. Then GK-dim $W \leq$ GK-dim $R+$ GK-dim T. (Hint: Any finite dimensional subspace is contained in a suitable space $V=\left(\begin{array}{cc}A & B \\ 0 & C\end{array}\right)$, where A, B, C are respective finite dimensional subspaces of R, M, T. Then $V^{n} \subseteq$ $\left(\begin{array}{cc}A^{n} & A^{n} B C^{n} \\ 0 & C^{n}\end{array}\right)$; take logarithms mod n and then let $n \rightarrow \infty$.
6.3.21 If $I, J \triangleleft R$ with $I J=0$ then GK-dim $R \leq$ GK-dim $R / I+$ GK-dim R / J. (Hint: Apply Proposition 6.3.14 to exercise 20.) 6.3.22 If $N \triangleleft R$ and $N^{t}=0$ then GK-dim $R / N \leq t$-GK-dim R.
6.3.23 Let $R=F\left\{X_{1}, X_{2}\right\} /<X_{2}>^{m}$. Then $R / \operatorname{Nil}(R) \approx F X_{1}=F\left[X_{1}\right]$ has GK-dimension 1, but GK-dim $(R)=m$. (Hint: By exercise 22; also there are $\binom{n}{m-1}$ monomials of degree $m-1$ in X_{2}.
p. 281
40. If k is relatively prime to index (R) then $R^{\otimes k} \approx R$. (Hint: Reduce to symbols via Merkurjev-Suslin.)
41. If D is a division algebra of degree p^{t}, p prime, then there is a field $L \supseteq F=$ $Z(D)$ such that $[L: F]$ is prime to p and $D \otimes L$ has a maximal subfield E_{0} with a chain $E_{0} \supseteq E_{1} \cdots \supseteq E_{t}=L$ in which each $\left[E_{i}: E_{i+1}\right]=p$. (Hint: In proposition 7.2.11 take $E_{0}=K L$ in E, noting $\operatorname{Gal}(E / L)$ is solvable.)
42. If p divides $m=\operatorname{index}(R)$ then index $\left(R^{\otimes p}\right)$ divides m / p. (Hint: Assume R is a division ring and compute index $\left(R_{1}^{\otimes p}\right)$ where $R_{1}=C_{D \otimes L}\left(E_{1}\right)$, notation as in
exercise 41.)
Group Algebras satisfying a PI. Passman [89] has found a much shorter proof of the Isaacs-Passman Theorem, that the group algebra $F[G]$ satisfies a PI (where $\operatorname{char}(F)=0$) iff G has an Abelian subgroup of finite index; we present the proof here. By Theorem 8.1.52, one may assume $G=\Delta(G)$.

Lemma 8.1.53. Suppose $G=\triangle(G)$, and W is a finite central subgroup of G. If $0 \neq \alpha \in F[W]$ and $\alpha f\left(X_{1}, \ldots, X_{n}\right)$ is a multilinear identity of $F[G]$ (over $F[W]$) then G has subgroups $A \supseteq B$ such that B is finite, A has finite index in $G, B \subseteq$ $Z(A)$, and A / B is commutative.

Proof. One is done unless $G^{\prime} \nsubseteq W$. Take x, y in G such that $z=x y x^{-1} y^{-1} \notin W$. Let $C=C_{G}(x) \cap C_{G}(y)$, which has finite index in G.

We proceed by induction on the number of monomials $m=m(f)$ of f. Clearly $m \geq 2$, so one may assume that X_{1} occurs before X_{2} in some but not all monomials of f. Let g be the sum of those monomials in which X_{1} occurs before X_{2}, and $h=f-g$. Then

$$
0=y x \alpha f\left(c_{1}, \ldots, c_{n}\right)=y x \alpha\left(g\left(c_{1}, \ldots, c_{n}\right)+h\left(c_{1}, \ldots, c_{n}\right)\right)
$$

and

$$
0=\alpha f\left(x c_{1}, y c_{2}, \ldots, c_{n}\right)=x y \alpha g\left(c_{1}, \ldots, c_{n}\right)+y x \alpha h\left(c_{1}, \ldots, c_{n}\right)
$$

Subtracting these two equations yields

$$
0=\alpha(x y-y x) g\left(c_{1}, \ldots, c_{n}\right)=\alpha y x(z-1) g\left(c_{1}, \ldots, c_{n}\right) .
$$

If $z \notin C$ then the coefficient of 1 yields $\alpha y x g\left(c_{1}, \ldots, c_{n}\right)=0$, so $g\left(c_{1}, \ldots, c_{n}\right)=0$ for all c_{i} in C; replacing G by C and f by g, one is done by induction.

If $z \in C$ then $z \in Z(C)$ has finite period, by corollary 8.1.33, so $W^{\prime}=W<z>$ is a finite subgroup of C, and we replace G by C, W by W^{\prime}, and f by g, and again are done by induction.

Proof of the Isaacs-Passman Theorem. Take A, B, G as in Exercise 27. Replacing G by A, we may assume G^{\prime} is finite and central; take $H G$ of finite index, with H^{\prime} minimal possible. Then $K^{\prime}=H^{\prime}$ for any subgroup K of H having finite index. For any prime ideal P of $F[H]$ let S be the central localization of $F[H] / P . S$ is generated over its center by the image of a finite number of elements of H, whose common centralizer C thus has finite index in H. Thus the image of C in S is central. Hence $H^{\prime}=C^{\prime} \subseteq 1+P$. Since $F[H]$ is semiprime, we conclude $H^{\prime}=1$, i.e. H is Abelian.

The original Isaacs-Passman proofs have explicit bounds on the index of the Abelian subgroup in terms of the PI-degree; part of this can be gleaned from Exercise 27.

Exercise 8.1.27 Using an ultraproduct argument, show that the index of the Abelian subgroup of G can be bounded by a function of the PI-degree of $F[G]$.

