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I Introduction and basic concepts

Concerning the outcome, some games have a simple outcome (either win or lose,
or possibly draw), and thus only one of two or three possible payoffs,. Other games
involve a variable payoff, such as many card games where the payoff is tied to
the number of points one accumulates. In a zero-sum game, a win (resp. loss) is
counted as a positive (resp. negative) payoff.

Basic question: What is the definition of a game?

Definition 1.1. A game (of strategy) is a finite sequence of actions (“moves”) taken
in some discrete order by a finite number n of players, according to a given set of
rules which includes a given starting position, and in which the outcome consists of
a certain payoff for each of them which depends on the position after each move.
(Often the payoff is distributed only at the end of the game, but it convenient
to consider payoffs as accumulated at each move). Thus, the payoff is a vector,
(p1, . . . , pn), where the i-th player receives payoff pi. Actually, for various games
such as those involving negotiations, each payoff pi might be a vector of several
components, say in R(m), so the payoff is in R(mn).) In some games, the payoff
might depend on some random event, such as the result of rolling dice.

Unless otherwise stipulated, we also assume “Local finiteness”: At each turn, a
player must choose his move from a finite number of choices.

Note that sports games, which often involve continuous action, are not games
under this definition, unless somehow one separates the moves. It would not be
difficult to define continuous games, but we shall not be concerned with that here.
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Also at least one famous board game, Monopoly, does not satisfy the criterion that
there are a finite number of moves until the outcome. Chess does because of the 50
move limit between taking pieces and/or advancing pawns.

Local finiteness excludes the following candidate for a game:

Definition 1.2. A non-locally finite game:
A picks a natural number;
B picks a natural number less than that of A;
A picks a natural number less than that of B; and so forth; The game ends when

some player reaches 0 (and that player loses). Clearly A can win by starting with
1, but the point here is that in this example A has infinitely many choices in the
first move, so there could be arbitrarily long played games, although all have finite
length.

Definition 1.3. The length of a played game is its number of moves.

Although in many games the players move simultaneously, it is convenient to
stipulate that moves are made one at a time, and simply to separate a simultaneous
move into two (or more) moves by adding the condition that each player is ignorant
of the move made by the other players at this stage.

Example 1.4. Consider the game “paper, scissors, or stone,” (PScSt) where two
players choose “paper, scissors, or stone,” and the winner is determined by the rule
“Scissors cuts paper, stone breaks scissors, and paper covers stone.” Even though
both players make their move simultaneously, one could consider the first person
as writing his move down secretly and then the second player choosing his move.
Thus there are two moves made, leading to 32 = 9 possible final positions.

One must distinguish between the abstract game G and the actual game that
is played out, which we shall call the played game arising from G. For example, a
world championship match of chess might have 12 played games.

The mathematical theory of games is the attempt to determine the outcome of
all possible played games. Since relatively easy games of strategy normally give
rise to billions or trillions of played games, the object of the theory is to be able
to control the payoff vector, presumably to maximize the payoff of one player (In
a competitive game, this could involve minimizing the payoff to other players). A
planned sequence of plays is called a strategy, and our main goal will be to find
optimal strategies. The value of a game to a player is the best payoff which one
side can obtain regardless of the strategy of the opponent, and an optimal strategy
is one which will give this value. A player selecting the optimal strategy is rational.
A game in which the rational strategy of each side leads to the same outcome is
called a strictly determined game.

The question of rationality is more subtle than at first glance, especially in
cooperative games of imperfect information. (cf. Chicken, cf. below) So perhaps a
better definition of rational player would be one who knows the payoffs and would
like to maximize his/her payoff over the course of time. We shall consider this point
later.

Of course the rational strategy, as well as a proper determination of the payoff,
might depend on knowledge, such as in quiz shows. Here is another example:

A picks a number x > 0; B then picks y, z > 0. B wins if x2 + y2 = z2; A wins if
it was impossible to pick such y, z; the game is a draw if there was a solution which
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B missed. It is easy to see that A wins if he picks 1 or 2 and B can win otherwise.
(Indeed x2 = (z + y)(z − y) with x odd has the solution z + y = x2, z − y = 1, i.e.
z = x2+1

2 ; y = x2−1
2 . For x = 2k one can use the Pythagorean triple: let y = k2 − 1

and z = k2 + 1.
But what if we used xn +yn = zn? Until Wiles’ solution of Fermat’s Conjecture,

even the judge would not know if A wins by choosing a number randomly. Thus,
we shall call a player wise if he can determine his best strategy.

A game has perfect information when the moves alternate and, at the time of
his move, the player knows all previous moves, and also knows what future moves
are available to the other player (e.g. in chess). Otherwise the game has imperfect
information (e.g. PScSt or poker). Note that in a game with perfect information,
the players may not necessarily be wise. Thus the three concepts of “rational, wise,
perfect information” all differ.

For any game, we designate an oriented graph whose edges correspond to the
different moves, and whose vertices correspond to the position of the game before
and after the move (i.e. edge) connecting them. For example the graph of PScSt is

starting move by move by Payoff
position First Player Second Player

· (P, P ) ( 1
2 , 1

2 )

↗

P · −→ · (P, Sc) (0, 1)

↘
↗ · (P, St) (1, 0)

· (Sc, P ) (1, 0)

↗

0 · −→ Sc · −→ · (Sc, Sc) ( 1
2 , 1

2 )

↘

· (Sc, St) (0, 1)

↘ · (St, P ) (0, 1)
↗

St · −→ · (St, Sc) (1, 0)

↘

· (St, St) ( 1
2 , 1

2 )

The graph cannot have any cycles, since otherwise the game could give rise to
an infinite played game, contrary to the definition. Thus the graph is a tree, called
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the ”game tree,” also called extensive form. Note that there might be payoffs at
various stages, and also the branches of the tree might be made more complicated
by the introduction of random events. Note that our definition of “position” must
be broad enough to take into account the history of the game, since in chess if a
position repeats four times there is a draw. (In fact, without this rule, chess would
not be a game under our definition.) Since there are a finite number of vertices,
the game tree has a path of maximal length, obviously starting at 0, which is called
the “length” of the game. Note that any tree gives rise to a game (once we insert
the payoff vectors), so in a sense game theory is equivalent to the theory of trees.

In a game with perfect information, each player knows at each move precisely
where he is located in the tree. For example, PScSt is a game with imperfect
information, and after the first turn the second player does not know whether he is
located at point P , Sc, or St.

Note that even a trivial game such as PScSt has a rather complicated game
graph, so the full game graph is not such an applicable tool unless the game is
particularly simple. When possible, it is easier to describe the payoff in matrix
form

Payoff Matrix for PScSt
Second Player

Paper Scissors Stone
Paper ( 1

2 , 1
2 ) (0, 1) (1, 0)

First player Scissors (1, 0) ( 1
2 , 1

2 ) (0, 1)
Stone (0, 1) (1, 0) ( 1

2 , 1
2 )

The matrix is also called the normal form of the game.
Sometimes one strategy always produces at least as good a payoff then another

strategy. In this case we call the first strategy is dominant or dominates, the second
strategy, and we can eliminate the second strategy from consideration.

For example if we changed the rules in PScSt so that St always beat P , we would
have the normal form

Second Player
Paper Scissors Stone

Paper ( 1
2 , 1

2 ) (0, 1) (0, 1)
First player Scissors (1, 0) ( 1

2 , 1
2 ) (0, 1)

Stone (1, 0) (1, 0) ( 1
2 , 1

2 )

In this game, the dominant strategy for each side is to play stone, and thus the
outcome is strictly determined (a draw of stone vs. stone).

Games as sources of ideas.
The beauty of game theory lies in the ability to encapsulate some fundamental

ideas with a minimum of assumptions, thereby enabling one to formulate
Games come up in many possible forms, and, in addition to helping one to profit

in Las Vegas, are aids in economics, finance, politics, negotiations, and enable
one to reformulate various mathematical concepts, including number systems and
information retrieval. Here is an example from a popular game show.

Example 1.5. The host displays 3 doors, and asks the contestant to choose one
of them. Behind one of the doors is a choice prize (often an automobile), and
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behind the other two doors are prizes of lesser value. The contestant chooses one
door, say number 1; then the host opens a different door (which does not yield the
automobile), say number 2, and says ”You are fortunate not to have chosen this
door. Now would you like to switch your choice?” At this stage what should the
contestant do? What is his chance of being correct?

The reader familiar with probability theory would apply the rule of restricted
choice and switch doors. However, a much easier solution is obtained by picking
an intuitive strategy for the game. Since one intends to switch doors, choose the
door which does not contain the prize and then switch doors. If one has guessed
correctly at the outset (obviously 2

3 chance) then by switching one must land on
the correct door (since one door is excluded by the guess, and one door is excluded
by the host). Thus the strategy of switching doors gives a win 2

3 of the time, so not
switching wins only 1

3 of the time.

Here is an interesting example, due to Nash, of a game that must have a winning
strategy, although it is not known in general.

One says two squares on a checkerboard are connected if they are adjacent or if
they touch on the diagonal going up to the right. Two players alternately choose
squares; the object of the first player is to get a connected path from the right edge
to the left edge, and the object of the second player is to get a connected path from
top to bottom. (This can be formulated equivalently using hexagonal boxes; one
says two hexagons are connected if they have a common edge, and the objective
again is to obtain a connected path from one end of the board to the other.)

Clearly one player winning will block the other player, and comparing connected
components shows that someone must win. One way of stating this formally is to
take some maximal connected component of one player. If it does not win, then it
is bounded on all sides by the other player, so that giving the component to the
other player does not affect the outcome. But this has created a larger connected
component, so iterating this procedure, one continues, and someone does not win,
eventually the whole board would be given to one player, a contradiction.

Proposition 1.6. The first player must win at Nash’s game with the proper
strategy.

Proof. If not then the second player would have a winning strategy. We show this
leads to a contradiction by providing a winning strategy for the first player. The
first player makes a random first move in square T1, and pretends that he is the
second player, ignoring the square T1 unless his strategy calls for him to occupy it,
in which case he makes another random move, and so forth. ¤

Theorem 1.7. For any game G, there is a bound to the length of any played
game (and thus, for G locally finite, there are a finite number of played games
arising from G

Proof. By contradiction. Assume G gives rise to played games of arbitrarily long
length. For any choice of first move, we could define a new game Gi, each of whose
starting positions is after this corresponding first move. (For example, if the game is
chess, there are 20 possible opening moves for White, 16 pawn moves and 4 possible
night moves, and each of this could define a new game starting with Black’s first
move.) By assumption, one of these, call it G11 must give rise to played games of
arbitrarily long length. Continue and get a played game which does not terminate.
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One can also devise a proof by constructing a game for the occasion. We devise
a game in which each player receives a shekel for each turn played. We shall call a
game “promising” if it has a continuation of arbitrarily long length. Obviously at
any stage, a player can choose a promising continuation, and this is in his interest.
Thus the game goes on indefinitely. ¤

We have really proved a significant result in graph theory, called the Konigsburg
Graph Theorem (Every graph either has paths of infinite length, or else there is a
bound for the length of each path).

Theorem 1.7 has a startling corollary.

Theorem 1.8. (Perfect Information Theorem) Any game G of perfect information
is strictly determined.

Proof. Induction on the length ` of G. Suppose the first player has n1 possible
moves. This leads to n1 games starting after the first player’s move, each strictly
determined, by induction, so the first player simply chooses that game which will
produce the best payoff for him. ¤

In fact, as each player chooses his best move, there will be an ideal game For
example, chess is a strictly determined game, although nobody knows whether
White must win or not since so far we do not have players wise enough to determine
the strategy for the ideal game. Nevertheless, given any strictly determined game,
in theory at least, we can assign a value for the game, which is the payoff for the
ideal game. Likewise. Nash’s game is strictly determined.

Classifying games.
Different types of games to be discussed below: Geometrical games (including

board games), combinatorical games (dice, cards, dominos, shesh-besh), deductive
games, optimization games (zero-sum, nonzero-sum) As in many mathematical sit-
uations, our task in analyzing games is made easier by sorting out different kinds
of games.

Definition 1.9. Two games are equivalent if they have identical optimal strategies.
This would happen with a modification of payoffs by some linear transformation
f(x) = ax + b where a > 0.

As a special case, we have:

Definition 1.10. Two games are isomorphic if there is a 1:1 correspondence of their
graphs which yield identical payoffs.

In a sense, an isomorphism is just a renaming of the “same” game.
Games are called competitive if the payoff of each person depends inversely on

the outcome of the others. One case of a competitive game is when the sum of
all payoffs are constant, whichever played game one chooses; such a game is called
a fixed-sum game. For example, in tournaments, the sum of the payoff of a chess
game is always 1 (winner gets 1, loser gets 0, or both side get 1

2 in a draw. A
fixed-sum game is zero-sum if this sum is zero; this is normally the case with games
played for monetary payoff. In a zero-sum game between two players A and B, we
usually consider the value in terms of the first player A, since the value for B is the
negative of the value for A.

Games which are not competitive are called cooperative.
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Remark 1.11. Every fixed-sum game is equivalent to a zero-sum game. Indeed if
the sum of the game is c, then we could invent a new game G′ where the payoffs
are

(p1 − c

n
, . . . , pn − c

n
)

instead of the payoff (p1, . . . , pn) of G.

II. GAMES OF PERFECT INFORMATION

We start with games based on positional play, all of which have perfect informa-
tion. Their analysis often involves interesting mathematical principles.

0. Dots. One of the most famous games, familiar to all since childhood. The
players alternate, and anyone filling a box gets an extra turn.

Conway is reputed to have challenged his class in game theory to a round of dots
in a 3× 3 board (the simplest nontrivial case). He claimed he could win in the first
position and (at least) draw in the second position, and invariably did so!

Let us consider. If all players play until all available places are filled (before
a box can be completed) then each box will have two lines. (Anyone who gives
a box up at the beginning will not win, except in the exceptional case of a box
and a margin.) On the other hand, a line from the center borders two boxes, so
the number of lines is congruent (mod 2) to the number of lines from the center.
This would seem to imply that the second player wants an even number of lines
from the center, except in the case that the first player fills one isolated box and
then the second must give up 3 (the last position illustrated in the first row).

Thus the basic strategy of the first (resp. second) player must be to obtain an
odd (resp. even) number of lines emanating from the center, with the exception
mentioned earler. A secondary strategy of the first player is to form a corner on the
side, and/or prevent a diameter from being drawn (since the only winning position
for the second player must then be the “big box”, cf. first position, which can be
avoided later).

Suppose the first player starts with a line from the center. The second player
continues the line to the other side, and can force a drawer by preventing the first
player from drawing any other lines from the center (or else making them into
diameters).

Strategy: The first player starts on the side. If the second player draws a line
from the center, the first player draws a perpendicular through the center and wins.
If the second player continues on the side, the first player should form a corner on
the side. In the next turn he draws an appropriate line on the edge, and the
following turn draws a line from the center (to prevent the “big box”) and wins.
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There are several other possibilities involving boxes given away in the midst of
the play, cf. BCG p. 513, but this is in the same spirit. BCG also consider the
3 × 3 and 4 × 4 boxes, but not a complete description. One strategy which arises
in the larger games is that of refusing to fill the last two boxes in a chain, in order
to be the first to start the next chain.

(Philosophy: When I tried this out on my wife and daughter, they responded
that the point of the game of dots is not to win, but merely to pass away time.)

2. NIM-the ultimate fair game.
We start with a class of games called “fair” or “impartial” games; this is a game in

which switching players does not affect the payoffs, i.e. the game is independent of
the identity of the player. For example, chess is fair. Nevertheless, the first player
seems to have an advantage in chess, so to balance this, tournaments have the
players alternate playing white and black. We can formalize this by simultaneously
playing 2 games the first of which A plays first, and the second of which B plays
first. We call this a paired game. (In general, given n players one would need n!
games.) Since the two games in the pair are independent of each other, the strategy
of the paired game is simply the combination of the strategies for each game, so
its solution includes the solution of the original game. But the paired game has no
advantage for either side, and in particular the value must be 0.

We focus on NIM: You have t piles of objects. Each person can remove any
number that he wants from any pile. The one to remove the last object wins; in
other words the person who cannot move loses. Clearly NIM is impartial.

1 pile. Strategy: Take all of them.
2 piles. Strategy: Make the piles even. (Then match the second player’s move

each time) Thus (n, n) is a win for B for all n, but (m,n) is a win for A for all
m 6= n. One funny quirk is that if the one to remove the last object loses, the
outcome of the game is the same (provided each pile has at least 2)! The point is
that (1, 0) and (0, 1) are wins for B, so (1, n) and (n, 1) are wins for A for all n > 1.
Now (2, 2) is a win for B, since A takes 1 and B takes all, so any (2, n) is a win for
A, and inductively we see (n, n) is a win for B for all n, and (m,n) is a win for A
for all m 6= n.

This can be displayed graphically, by making a grid, starting with (0, 1) and
(1, 0) marked B; anything that can be reached (i.e. from above or from the right)
is a win for A. This leaves (1, 1) as a win for B. The idea is that if A starts on
(1, 1) he must move to a square previously marked A, which thus is a win for B.
But now A can get to (1, 1) from (n, 1) and (1, n) for any n, so these are all marked
A. This “backwards analysis” works as follows: One marks all the lattice points A
that give A an immediate win, and then marks the lattice points B that force A to
move onto a point previously marked A (since this now means a win for B). Now
one marks the lattice points A that enable A to move onto a point newly marked
B, and so forth.

3 piles. Strategy: Write each number m1,m2,m3 to the base 2. (For example if
m1,m2,m3 are 58, 51, and 30 resp., write them as

111010

110011
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011110

∗ ∗ ∗∗
Any column which has an odd number of 1’s you can mark with a *. (This is

like taking the “xor” bit-sum; a way of doing it mentally is canceling duplication
in the representations base 2, and then adding.) Then remove the correct number
to eradicate all *’s. This means 010101 from the bottom, for example. The next
reduction must change some columns, and thereby create columns with *; then the
same strategy can be used, and by induction, one can finish.

Note this strategy can always be attained: Find a number, say mi, which has
a 1 in the highest order column in which ∗ appears, and take the xor sum of mi

with the ∗; this will by removing an appropriate amount from mi. (Note that the
largest number need not suffice as the mi; for example the only winning strategy
given the position 2,2,1 is to remove the 1.

This proves that any game of NIM is determined, giving a win to B iff the “xor”
sum is 0. Furthermore this argument shows that the same strategy works for any
number of columns, so finishes NIM, at least for the next few seconds.

Adding NIMbers.
We write n to denote the pile of n counters. Note that as games by themselves

all n are equivalent, namely the first person wins by taking them all. However,
insofar as adding games is concerned, they yield different results since 1 + 2 differs
from 1 + 1. Then we note n + n = 0 for all n, and thus m+ n = k if (m,n, k)
is a winning combination for B, or, equivalently, as we saw above, iff there are an
even number of 1’s appearing in the three numbers in any given columnn, if the
numbers are written in binary notation. (Clearly this definition is well-defined).
It is easy to see that this operation is associative, so we have an Abelian group
in which any substitution provides a different winning position for B. This enables
one to calculate more quickly; BCG calls these “NIMbers”.

Remark. m + n = k, where k is the smallest number for which the equation u +
v = k does not hold for any (u, v) < (m,n) (where u = m or v = n).

(Proof: Whatever player A reduces from one pile, player B can reduce from the
other.)

Chinese NIM. If one wants to make the 2-pile NIM less trivial, one could permit
a player to remove an equal number from both piles. Now (m,n) is a win for A
whenever 1 ≤ m, n ≤ 1, so (1, 2) and (2, 1) are wins for B. Hence (1, n + 1),, (2, n),
(n, 2), (n + 1, 1), (n, n + 1), and (n + 1, n), are wins for A for all n ≥ 2, so (3, 5)
and (5, 3) are wins for B. Hence (n, n + 2) (3, n + 3), (5, n− 1), and others are wins
for A for all n > 3, implying (4, 7) and (7, 4) are wins for B. But now comes a twist
– since we already have (5, 3) a win for B, we have to go to row 6 to get (6, 10) a
win for B, and the next win for B after that is (8, 13). (After that is (9, 15).) This
game is analyzed in an article by Gardiner.

A more complicated version is that A can remove any combination which induc-
tively has been shown to be a win for B.

If one permits a player to take an equal number from 2 piles, this does not affect
NIM for an odd number of piles, but NIM for an even number of piles is unsolved
under these rules.
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Other NIMs.
BCG, p. 53, deals with other variants of NIM. There is “poker-NIM”, in which

one may add chips which he has taken before. However, any adding move can be
negated by deleting the same number.

Northcott’s game involves starting with the following position of checkers on a
checkerboard:

B W
W B

W B
B W

W B
B W

W B
W B

The idea is to move along a row, and see if you can trap your opponent. This is
really NIM in disguise. Why? The differences are just the number of counters in
each column, so this reduces to poker NIM.

Another variant of 2× 2 NIM is to view it as a chessboard in which either side
is permitted to make a rook move towards the origin; the first one who cannot
move loses. One could try this with other chess-pieces, say knights, and then one
could try a game in which player A must reduce the x-coordinate by 2 (i.e., move
from (m,n) to (m − 2, n ± 1)) whereas player B must reduce the y-coordinate by
2 (from (m,n)to(m ± 1, n − 2). This game is quite simple, the reverse game is
more interesting (where the last person to move loses). Combinations of this game
(playing with several knights simultaneously) are studied in BCE, pp. 260 ff.

General NIM: One starts with a vector v = (v1, . . . , vn), and is allowed to remove
from a choice of vectors s1(v), . . . , sm(v), where this choice depends on v but not
on the player.

Note one could get an equivalent game by replacing each v by

v̂ = kv = (kv1, . . . , kvn),

where si(v̂) = si(v). Also one can “translate” a game of NIM by adding the same
number to each component of each vector. (The difference vectors si would remain
the same except the ones which reach 0.)

Sprague-Grundy Theorem. Every impartial, locally finite game G of perfect
information can be reduced to General NIM in one column. Proof is by induction.
We recall that G is bounded, so we can proceed by induction on the bound on the
number of turns. The first turn yields say n new games G1, . . . , Gn, each with a
smaller bound, so by induction each Gi is equivalent to some General NIM, starting
with say vi units. We apply the translations of the previous paragraph to make all
the numbers in the different games distinct, and then put ṽ = 1 + max vi. Now
define the si(ṽ) = ṽ − vi and one has the required General NIM game for G.

Projects. Dots for up to 4 boxes square, Fancy NIM for 4 piles, a believable traffic
game.

2. Unfair games: Hackenbush.
Oan make more elaborate games of NIM, by having counters which only A can

touch, or which only B can touch (and all counters above such a counter would
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also be removed). Writing A for a counter that only A can touch, B for a counter
that only B can touch, and C for a counter that either could touch, a typical game
might look like

C C
A B A
C C A

A has a large advantage in this game, since by removing C at the bottom of the
second column produces a game in which B’s best move is to remove the first
column, and then A has 2 extra remaining moves, so the value of this game is 2 for
A, and similarly if B moves first (since A wins with 2 extra moves).

Since the existence of C counters complicates the analysis, we first consider only
A and B counters. We say the game of Hackenbush terminates when some player
cannot move (since he has removed all of his counters), in which case the other
player gets the number of his counters remaining on the table. At this stage, the
payoff for A is the number of A counters (or minus the number of B counters).
Thus, intrinsically, any Hackenbush game of nonzero value must be unfair.

Given a Hackenbush game G we define νA(G) to be the value (for A) when A
moves first; νB(G) to be the value (for A) when B moves first. Note that these
might not be the same.

To get examples where νA(G) 6= νB(G) we consider mixed columns. Intuitively
it is better to remove a counter which lies beneath counters of the opponent, but it
is bad to remove a counter lying beneath another of your counters. For example,
consider the game

B
A.

Since A’s first move removes B, the game would have approximate value 0, but
intuitively A has a stronger position than B, since A can topple B’s piece, so we
would like to give the game some positive value. (This is reflected in the game

B
A A B.

νA(G) = 1 and νB(G) = 0.
However we can modify it into a stable game. The Hackenbush game G is it

stable with value n if
We shall say that a Hackenbush game is “doubled” if its position is placed beside

itself; we call this game 2G. By “doubling” the previous G we get

B B
A A,

which has value 1 for each side. (Namely A removes one of the counters, and B
has only one counter remaining, so that leaves the final A counter standing.) The
Hackenbush game G is it stable with value n if νA(2G) = νB(2G) = 2νA(G). Thus
G should have value 1

2 .
Now we can define the value ν(G) of a Hackenbush game to be n if G is stable

of value n, and inductively ν(G) = n
2 if the doubled game has value n. Thus, when

G is stable after t doublings, we have

ν(G) =
ν(2tG)

2t
.
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(At this stage it is not clear that every game of Hackenbush has a value.)

We proved for G = B
A

that ν(G) = 1
2 .

Similarly

G =
B
B
A

has value 1
4 for A, since

B B
B B
A A

is played follows: A removes one of its counters and then B the top remaining
counter (or vica versa), in each case yielding the game

B
A,

which inductively has value 1
2 . Thus ν(G) = 1

4 .

Lemma. The Hackenbush game Gn =

B
...
B
A

has value 2−n where n is the height of

the column.

Proof. Double the game. The play by A is to remove a counter and thus a whole
column, and then B removes his uppermost counter, thereby yielding Gn−1 which,
inductively has value 2n−1. ¤

What about
B

A

A

?

At first glance the induction might seem to be going in the wrong direction, but
one needs to prove that doubling a game a finite number of times will in fact lead
to a stable game. We shall see this shortly.

More generally one could “add” games by putting one alongside another, one
would like the value of the sum to be the sum of the values of the individual games;
for example

A B A B
A B A A B A
A B A A B A

has value 4.
Here A can remove his counter in the first column so the game has approximate

value 1 for A, and 0 for B, but according to our calculations the game should have
true value 3

4 .
One might note that by definition the value of all these Hackenbush positions are

of the form m
2t . This raises the question of whether any number m

2t is the value of a
suitable (finite) Hackenbush game. The best way is to write the various positions
horizontally. We have seen:

AAA . . . A has value n; B . . . BA has value 1
2n .

Let us check some other games, seen easily by doubling them:
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ABA has value .75;
BAA has value 1.5.
Intuitively we see that if a typical word . . . BAA . . . A ends at the bottom with

a string of n A’s, then we can give that string guessed value n, and the B before it
the guessed value of − 1

2 , the letter preceding it the value of ± 1
4 , etc. (Analogously

if the bottom is a string of B′s.) It is easy to show that every string provides a
unique value of the form m

2t . The guessed value of a column is the sum of all the
guessed values in the column.

Theorem 2.1. Any game given by a string of A’s and B’s has value ν(G) equal
to the guessed value described in the previous paragraph.

Proof. This theorem is done in two passes. Write µ(G) for the guessed value of G
for A. First we prove that νA(G) ≥ µ(G), and the best strategy for A is to optimize
the guessed value.

Note if A is repeated on the bottom then by taking the top of these counters A
still removes all the B, so the extra A counters on the bottom remain and clearly
provide value 1 each. Thus in proving the theorem we may assume A is not repeated
on the bottom, and likewise B is not repeated on the bottom.

Any column will be rewritten as a string WtWt−1 . . . W1W0, where each Wi is A
or B, and the string is written from top to bottom, i.e. Wt denotes the top counter
and W0 denotes the bottom counter.

The theorem will be proved by induction on the maximum height t of the
columns. If every column has height at most 1 the theorem is obvious, so we
assume the theorem is true for all games for which all columns have height < t.

We claim that given any column of height t, and move by A decreases the guessed
value for A, and A has precisely one move to decrease his guessed value by the
smallest possible amount 2−t. Indeed, if Wt = A then A removes Wt (and no other
move is as good); if Wt = B then taking the largest j such that Wj = A, player A
removes Wj , thereby losing guessed value 2−j , but he also topples Wj+1, . . . , Wt,

all of which are B with guessed values 2−(j+1) + . . . 2−t, so the net loss for A is 2−t.
So A can remove the appropriate piece from a column of height t, which now

has smaller height. We assume B now makes his best possible move. B’s move
now will increase A’s guessed value, so he has to find another column of height t
and make the analogous move. (If there are no other columns of height t then B
is out of luck, and in fact A’s guessed value increases.) The increased in guessed
value is 2−j ≥ 2−t. Thus after some number of moves, we have a new game H, and
µ(H) ≤ νA(H) by induction, when no columns of height t remain. On the other
hand, νA(H) ≤ νA(G) since B has by assumption made his/her best possible moves.
(After we prove A has made the best possible move we shall see νA(H) = νA(G).
Putting everything together, we have

µA(G) ≤ µ(H) ≤ νA(H) ≤ νA(G),

as desired.
Now we claim in the stable case that µ(G) = ν(G). Having seen that removing the

appropriate piece from a column of length t is the optimal strategy for maintaining
the guessed value, we now see that if there are an even number of columns, then both
players can choose the optimal strategy and reach a game H with the same guessed
value µ(G), which by induction is ν(H), since H has height < t. Furthermore, there
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is a strategy of each side which will produce the outcome µA(G) in the stable case
and any deviation from this strategy will act to the detriment of the player deviating
(since it will adversely affect µA(H), which we may assume is νA(H) by induction).
But we can obtain such a game by doubling G, and subsequent doublings required
to solve H only leave the number of columns of G even. ¤

Note that this proof also gives the best strategy for the game, and shows that a
game of height t becomes stable after t doublings (since one doubling at each height
suffices).

Reversing the discussion, given any number, write it in binary notation, say of
the form m.d1d2d3 . . . dn where each dj = 1. Then write a string of m A’s on the
right, preceded by BA (for the decimal point), and, always tacking onto the left,
write A when di = 1 and B when di = 0, ignoring dn. For example the game of
value 5

16 = .0101 must be BABBA. Thus every number of this form is represented
as the value of a (unique) Hackenbush string.

Corollary 2.2. The value of the true payoffs of two Hackenbush positions is
the sum of the true payoffs.

Proof. The value of the sum is obviously the sum of the values, so the same inductive
proof works.

Modification: Consider vertical trees emanating from the bottom, and any move
cuts off a branch (whose vertex is marked by A or B). I THINK the values are still
binary.

(Another modification: Give different payoffs to different counters depending on
their branches. I think this permits other values.)

One should note that any real number can be written as an infinite string in
binary notation, and thus this value could be obtained by an infinite game; for
example 2

3 = .010101010101 · · · , so its game is · · ·BABABABA.
As BCG point out, one could get any ordinal number in this way, by permitting

ordinal numbers of counters; these are technically not games, but each played game
is finite, although not bounded. What about BB · · ·BA ? But now one can describe
square roots of ordinal numbers, etc!

Mixed Hackenbush.
As mentioned above, the presence of C counters complicates the picture, since

for example C

C
is a win for the first player, and thus does not have a value (as

described above). Such a position is called “fuzzy” in BCG; a game where the first
person (no matter who it is) to move should win is called ∗ in BCG. Thus most
NIM positions are fuzzy. A fuzzy game can favor one player, in the following sense:
A

C
is fuzzy, whereas

A A
C C

is a win for A, no matter what. Another interesting facet is that instinctively the
best strategy for either side is to remove C counters first in order to prevent the
opponent access to such a counter. In fact, one wants to be the last player to be
able to remove a C counter, and thus this stage of the game is played according
to the strategy of ordinary NIM. BUT if a player sees that he has a losing NIM
position, he will remove a counter of his lying above a C counter in order to rectify
the position.
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Some examples:
the game

B
B
B B
A C

is clearly a win for A. (In general any player would want to take the C first, to
prevent the other from taking it.) Thus the values of fuzzy games have very peculiar
properties as numbers.

Consider

C A
A A

C

Clearly this game is fuzzy, since the first person to move takes away the bottom
C and wins. BCG’s version of Hackenbush has the more general set-up of a vertical
graph whose edges are colored blue, red, or green where A can remove blue, B
can remove red, and anyone can remove green. Once an edge is removed, one also
removes any part of the graph which is not connected to the ground.

Another variant is “COL” [BCG, pp. 39ff] where players alternate coloring maps;
the value of this game is determined in [BCG, p. 49].

3. n in a row. Obvious advantage for the first person. n in a row (Scientific
American, September 1993.) Threatening position: n−1 in a row or two n−2 in a
rows. Two open n− 2 in a row force an open n− 1 in a row and thus a win. Thus
n = 3 is won on the first move.

n = 4 is a win for a 4× 30 board
n = 5 is a win on 15× 15 board
n = 6, n = 7 open
n ≥ 8 is drawn.
n ≥ 9 the draw can be demonstrated by pairing off the squares of the board in

such a way so that every line of 9 contains at least one pair (so that if one player
occupies half the pairs, the game is drawn). This is called a Hales-Jewett pairing.

If you use a square then there is an obvious Hales-Jewett pairing, namely by a
domino-type layout

1 1 2 2 3 3 4 4
5 5 6 6 7 7

9 9 10 10 11 11 12 12
13 13 14 14 15 15

This game can be played using fixed planar shapes, i.e. the object is to form one
of these shapes. The following shapes are known wins:

X XX XXX XXXX
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XX XXX XXXX X X XX XXX

X X X XXX XXXX XX XX

XX

XXXX

is thought to be a win, but is unknown. All other shapes are proven draws. (One
can reduce to 12 minimal shapes, which are all draws.)

4. Pente. This is a very interesting variant, which was given out almost free
as a promotion in the US about 4 years ago. The game is played on an (almost)
infinite board and the first to form 5 in a row (also permitting diagonals) wins. The
catch is that in a position ABBA the two B counters are removed immediately and
given to player A, and a player defaults by losing 10 counters. Obviously A has an
advantage, but the question is whether this game is finite, i.e. if A can force a win?

5. Four in a row, with a vertical board.
This game involves 4 in a row either vertical or horizontal or diagonal, but such

that any given column must be filled in order (since the checker falls to the bottom).
In other words, position i,j must be filled before (i+1,j). Suggested strategy: Color
the squares red and black, and the first player only choose red squares (since any
reasonable strategy will prevent horizontal and vertical rows of 4 from forming).
This game is sold in the US with an 8×8 board. There is an obvious strategy here,
based on even-odd parity, since it is easy to block vertical and horizontal victories,
and the diagonal must all be of the same parity; I did not work this out completely,
but expect that the game could be solved fairly easily.

III KNOWLEDGE

We just studied games having perfect information. When one lacks perfect in-
formation, the first natural question is how best to utilize the information that one
has. This raises the question of the nature of knowledge. Several ancient paradoxes
involve deductions from partial knowledge.

The most famous example is that three women are in a room, and each of them
has smudged rouge. Each sees that the other has, but is too polite to mention it.
Someone walks into the room and says, ”Someone has smudged rouge.” After a
while, all three blush. Why? (An older version is that a king is looking for a wise
counsellor, and is down to a short list of 3. He puts a red spot on each person’s
forehead, and tells them all that they have either a red or blue spot, and at least
one is red. The winner realizes that the other would have won if her spot were blue,
and thus it must be red. .)

Also there is the tale of the unfaithful wives in a small town with a river. A long
time ago, before the age of pc, a village had the rule that any husband who knows
his wife is unfaithful would throw her off the bridge at precisely midnight following
when he learns she is unfaithful. Each husband knew the status of all wives but
his. However, nothing happened until a social worker came and said in horror,
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“There exist unfaithful wives in this town!” What happens? (Hint: Induction on
the number of unfaithful wives.)

2. The executioner. (One prisoner of three is to be executed; the executioner
is not allowed to tell the prisoner who is to be executed, and is not allowed to tell
a prisoner his own status. After much pleading from prisoner A, the executioner
tells prisoner A, ”Prisoner C is not going to be executed.” How does this affect
prisoner A? On the one hand, since there are only two prisoners left, we might
expect A’s chances of execution to have increased. On the other hand, it does not
make sense that the chances have changed at all, since the fact that the executioner
said something should be irrelevant. This can be understood better when compared
the game of the doors (Example 1.5). In fact there is a strict analogy between the
plight of prisoner A and the contestant who does not change doors. (Poor prisoner
A cannot change his identity, after all.) Accordingly, his chances for execution are
indeed 1

3 . Ironically, the chances of prisoner B for execution have risen to 2
3 .

In questions 1, the existence of common knowledge changes the circumstances.
In question 2, the extra knowledge affects B but not A. (B is now 2/3 likely to be
executed, and A 1/3).

The modern explanation is that there is common knowledge, i.e. knowledge
which everybody knows and which everybody knows that everybody knows, etc.
The problem with this is that the statement that there exists a women with smudged
rouge has always been common knowledge, so one must formulate the explanation
carefully.

Before defining common knowledge, we want to describe knowledge. Define Ω
to be the set of states. Since we cannot measure a state in its entirety, we define
Pi(ω) to be the set of states which are possible according to the i-knowledge if a
given state ω is thought to have occurred, which we shall call the states consistent
with ω. Then we have

(P1) ω ∈ Pi(ω);
(P2) If ω′ ∈ Pi(ω) then Pi(ω′) ⊆ Pi(ω);
(P2) is quite clear, since if our knowledge permits us to conclude ω′ then it

certainly enables us to conlude anything consistent with ω′. Note that (P2) is a
consequence of a broader assumption:

(P3) The Pi(ω) : ω ∈ Ω comprise a partition of Ω.
In other words, if we say that two events ω, ω′ are related if ω′ is consistent with

ω, then (P1), (P2) say this relation is reflexive and transitive, whereas (P3) says it
is symmetric (and thus an equivalence).

Here is an argument that consistency is symmetric. If ω is consistent with ω′

and ω′ is not consistent with ω, that means that ω cannot hold, which would yield
a contradiction.

One could take the Pi to be cosets of a vector space, or more generally, algebraic
curves. This would enable us to utilize linear algebra and perhaps more generally
algebraic geometry.

Note that consistency is dependent on a person’s knowledge. Thus if one does
not know anything, then all events are consistent! There are many examples in
which consistency is symmetric, but here is an example in which it is not. For
example, if I can measure the lower bound of an interval, then the interval [1, 2]
is consistent with [0, 2], but not vica versa. On the other hand, if all the indivual
events are mutually exclusive (which is an implicit assumption in the exposition
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I read) and one cannot measure the discrepancies between two consistent states,
then consistency is clearly symmetric.

Once we assume consistency is an equivalence relation ∼, we can take Ω/ ∼,
which is the set of observed states.

If Pi(ω) is a singleton then player i knows that ω occurred. If everyone knows a
certain state is excluded from Ω, then this is called common knowledge.

For example, consider the space

1 2 3 4
(WWW ) (WWB) (WBW ) (WBB)

5 6 7 8
(BWW ) (BWB) (BBW ) (BBB)

Then P1 is the partition {15}, {26}, {37}, {48}; P2 is the partition {13}, {24}, {57}, {68};
P3 is the partition {12}, {34}, {56}, {78}.

After the announcement that there is a spot, ¬{1} becomes common knowledge,
and we have new partitions

{1}, {5}, {26}, {37}, {48};
{1}, {3}, {24}, {57}, {68};
{1}, {2}, {34}, {56}, {78}.

Once player 1 communicates that he has excluded {5}, we see that ¬{5} becomes
common knowledge, etc.

Of course each i has its own corresponding partition Pi. The communications
between the players is the key to utilizing the knowledge.

On the other hand, we can define the knowledge function Ki (of the i-th player)
on Ω. Suppose we are interested in a certain property, but are able only to determine
other properties in our states. Thus we want to know when our observation implies
a state has a certain property.

An event E is a subset of Ω. Intuitively E is the set of states which that we have
observed. E implies another event D iff D ⊂ E, in other words any state holding
for D also holds in E. Given Pi one defines KiE to be the set {ω : Pi(ω) ⊆ E.}
These are the states which we know occurred, since all the possible states according
to a given measurement fall within E. Thus Ki is a function from the power set of
Ω to itself.

Then (P1), (P2) imply (K0) thru (K3), and (P3) then implies (K4). Thus we
see the theory runs more smoothly with the Pi.

So KiE is the largest subset E′ ⊂ E for which if E′ implies a state then we know
E′ implies this state. Ki satisfies the following axioms:

(K0) KiΩ = Ω;
(K1) V ⊆ W implies KiV ⊆ KiW ;
(K2) KiV ⊆ V (axiom of knowledge)
(K3) KiV = K2

i V (transparency)
(K4) (¬Ki)2V ⊆ KV

i (wisdom)
(K4) is most problematic: It says if you don’t know that you don’t know some-

thing then you know it; one has to be wise indeed for this. Note that ¬ means the
set complement.
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(K2) says if you know something then it is true; (K3) says that if you know you
know something then you know it.

Proposition 2. Ki(V ∩W ) = KiV ∩KiW.

Proof. ⊆ from (K1) and ⊇ from (K3). ¤

An i-truism is an event such that KiE = E. which cannot occur without the
person knowing it. Thus KiE is a truism. Thus Pi(ω) is the intersection of truisms
containing ω. In other words, taking E to be the set of states in which this event
occurs, KiE = E.

Remark 3. Applying set complements to each side of (4) yields

Ki(¬Ki)V ⊇ KV
i ,

which means that ¬KiV is a truism.

Using (K3) it is clear that any state implied by E is implied by the i-truism
KiE. Also the intersection of truisms is a truism.

Define KV by ∩iKi(V ). This satisfies all the (Ki) except (K3). Nevertheless,
since

V ⊇ KV ⊇ K2V . . .

we see that there is some n such that KnV = Kn+1V . . . ; we call this K∞V.

IV Games of imperfect information

Combinatorial games. Although this is perhaps the most common kind of game,
we will not be discussing these, because they really belong more to a probability
course. I don’t want to be guilty of teaching you poker or shesh-besh. However,
the theory of probability is said to have been discovered by Pascal in response to a
request from a gambler acquaintance.

2-person single-move games

2-person games are the most well-studied. Even the simplest situation, where
each person has one move with n possibilities, has many subtleties. In this case
one can describe the game best in normal form, via a n × n matrix, and we shall
spend considerable time with this.

Zero-sum single-move games: saddle points.

Example 4.1. We start with the following game in normal form:

BATTLE OF THE BISMARK SEA

Japanese
Sail north Sail south

Search north (−2, 2) (−2, 2)
Adm. Kenney

Search south (−1, 1) (−3, 3)
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The payoff here is the number of days it takes the Americans to find the Japanese,
viewed negatively for the Americans and positively for the Japanese. For conve-
nience in notation, it is customary in a zero-sum game between two players to write
just the payoff for the first player.

BATTLE OF THE BISMARK SEA

Japanese
Sail north Sail south Minima

(for rows)
Search north −2 −2 −2

Adm.Kenney Search south −1 −3 −3

Maxima (col) −1 −2

In a zero-sum game, we wrote the payoff (number of days needed to find Japan-
ese) matrix from the Americans’ point of view. The first player’s most conservative
strategy is to assume his opponent will pick the worst result for him, so the first
player pessimistically expects the worst of each row. In such a case, his strategy
would be to maximize the minimum along each row. This is called the minimax
since historically it was done with zero-sum games, and one wanted to minimize the
other person’s gain. Thus Kenney’s minimax strategy is the minimum of losses of 2
and 3, which is 2. (So his payoff by minimax is -2). Since the Japanese payoff is the
negative of Adm. Kenney’s, their minimax strategy is to minimize the maximum of
each column. Both these strategies agree to go north, with payoff −2 for Admiral
Kenney this is called a saddle point. Note that if one person chooses the saddle
point then the other must choose the saddle point or else will suffer, so choosing
the saddle point gives an equilibrium.

Here is a simpler example.

Example 4.2. Reuven and Shimeon play the following game: Each shows simul-
taneously the number of fingers on a hand. If both are congruent (mod 2) then
Reuven gives Shimon 2 shekels; if Reuven is even and Shimon is odd then Shimon
pays Reuven 3 shekels; if Shimon is odd and Reuven is even then Reuven pays
Shimon 4 shekels. The matrix describing the normal form of this game (from the
point of view of Reuven ) is called the payoff matrix, and in this case is

Reuven\Shimon Even Odd
Even −2 +3
Odd −4 −2

Strictly speaking, the payoff matrix here is A =
(−2 +3
−4 −2

)

Remark 2. If Reuven and Shimon changed sides then the payoff matrix A would
become the negative transpose −At; we get the negation because we consider the
payoff to Shimon instead of Reuven (since Shimon is now in Reuven ’s previous
position).

Clearly Reuven should choose even, since in either case he does better, and thus
Shimon should choose even, and Reuven will lose 2 each time. This is called a



21

“saddle point”, or “point of equilibrium”. Also we say that Reuven ’s strategy of
choosing even “dominates” the strategy of choosing odd. This example is pretty
trivial, but there can be more subtle points; for example consider the game:

Reuven\Shimon Even Odd
Even −3 +8
Odd −2 −1

Although it might appear that neither row is superior, if Reuven is pessimistic
then Reuven will pick the second row to minimize his loss, and thus Reuven should
pick the first column to maximize his gain. Formally if the payoff matrix is (aij),
we define a maximin is (i0, j0) for which maxi ai0j = maxi minj aij .

Dually, minimax is (i0, j0) for which maxi aij0 = minj maxi aij ; this would be
the maximin solution if we reversed the game, i.e. have each player determine the
strategy of his opponent.

Lemma 4.3. maxi minj aij ≤ maxj mini aij .

Proof. Clearly for any i, minj aij ≤ maxj mini aij . ¤
Consider the matrix

1 8 3
4 5 6
7 2 9

A saddle point or point of equilibrium (if it exists) is a maximin from the point
of view of each player, i.e. it satisfies minj maxi aij = maxi minj aij . In our first
game, a21 = −2 is the saddle point. This is the mutually agreed solution, since
either side would worsen its payoff by unilaterally changing strategy. In the second
game, minj maxi aij = min{8, 6, 9} = 6 whereas maxi minj aij = max{1, 4, 2} = 4.
But neither is a point of equilibrium.

The strategy at a point of equilibrium is called a pure strategy.
Exercise: analyze the game given by the matrix

Reuven\Shimon option 1 option 2 option 3
option 1 −2 +3 +5
option 2 −1 0 +8
option 3 −2 −3 +8

Mins on row are -2,-1,-3, so maximin is -1, which occurs in the (2,1) position.
Maxs on columns are -1,3,5, so minimax is -1. Equilibrium point at (2,1)

Reuven\Shimon option 1 option 2 option 3
option 1 −2 +3 +5
option 2 −1 −2 +8
option 3 −3 −2 +8

Min’s on row are -2,-2,-3, so maximin is -2. Max’s on columns are -1,3,5, so
minimax is -1. No equilibrium point. This is the usual case.

When considering the matrix
(

a11 a12

a21 a22

)
of a two-person game with two op-

tions for each side, one may apply row permutations or column permutations (by
rearranging the options if necessary) and thus assume that a11 ≥ aij for all i, j. If
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a12 ≥ a22 then choosing the first row is a dominating strategy for the first person,
and the game is solved (and has a saddle point). Similarly, if a21 ≥ a22 then the
first column dominates for the second player and there is a saddle point. Thus the
only remaining case is when a12 < a22 and a21 < a22. In this case we have no
saddle point. (These are called elusive games, to be discussed below.

Lemma: The maximin is the negative of the minimax of −Gt, so switching sides
does not alter this analysis. Also, if one row (say the first row) dominates the others
then the minimum a1j of the first row is greater than the corresponding entry aij

on each other row, and thus greater than all other minimums, so the maximin is
a1j . On the other hand, the maximum of each column is on the first row, so we get
the same minimax a1j . This proves that a dominant strategy provides a maximin-
minimax, although in a 3 by 3 game the converse is not necessarily true. (However
for a 2 by 2 game the maximin-minimax can only come from a dominant row or
column, as seen via the last paragraph.)

An example of a game without a saddle point is PScSt. We will return to 0-sum
games later. Of course, in a competitive game, it is in each player’s interest to keep
his strategy a secret. If the competitor’s strategy is known, then one can easily find
one’s own strategy to maximize against it.

Cooperative 2-person games.
Cooperative games have more subtleties. An example of a cooperative game is

the “Battle of the Sexes;” perhaps a better although less colorful name is ”part-
nership”. In this game, if one side makes the decisions and the other is passive
then the active side gets 2 and the passive side gets 1; if both sides try to make the
decisions or both sides are passive then each side loses 1. The normal form is

PARTNERSHIP

Second
Complain Passive

Complain (−1,−1) (2, 1)
First

Passive (1, 2) (−1,−1)

In this game, there are two partners. If one is active and the other is passive, it is
good for the partnership, whereas if both are active they may go at crosspurposes,
and if both are passive the enterprise lacks leadership. (A more colorful name for
this game is “Battle of the Sexes.”) The maximin solutions (from each side) both
are (−1,−1) which is the worst possible result for everyone! However, this is no
longer a point of equilibrium. On the other hand, (2,1) and (1,2) are both points
of equilibrium. Interestingly, in this game is in the interest in one side to announce
his intention to complain, since then the other side would choose to be passive, and
the total payoff would be 3. However, the fairest solution would be for each side to
agree to complain alternatively (with the other side being passive).

A related cooperative game is ”Chicken,” in which two sides drive towards each
other in automobiles. The side that chickens off gets 0, whereas the one who bulls
on gets 4. However, if neither side backs off, they all land in a hospital and lose 10.
Thus the normal form is

CHICKEN
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Second
Bull on Chicken off

Bull on (−10,−10) (4, 0)
First

Chicken off (0, 4) (3, 3)

Here the minimax strategy is to back off, so presumably each side should back off,
but this is not an equilibrium, since if A knows B will back off, then he will go on.
The two equilibria are where one side goes on and the other chickens off, although
the “best” overall result is where both back off. Again, in first analysis, it is in A’s
interest to announce in advance he will go on. This game is also called the ”Cuban
missile crisis.”

An even stranger solution comes from the “Prisoner’s Dilemma.” In this, two
suspects are arrested. If they each keep quiet they will get 1 year in prison. If one
turns State’s witness and testifies against the other he goes free and the other gets
10 years. However, if both turn State’s witness then they both get 6 years. The
normal form is

PRISONER’S DILEMMA

Second
Rat Keep quiet

Rat (−6,−6) (0,−10)
First

Keep quiet (−10, 0) (−1,−1)

Here the equilibrium is (-6,-6), i.e. for both to rat although it produces a result
not in the interest of either prisoner. The best overall solution, for both to keep
quiet, is an anti-equilibrium! In this game, it would be in the interest of someone
to announce that he will keep quiet, but then to rat. On the other hand, it is in
the strong interest of the first player to convince the second player not to rat.

metagames.
Our object in what follows is how to find a formal justification of the obvious

case-by-case analysis:
1. In Chicken it is in one’s interest for the strategy to be known, since it scares

off the opponent; nevertheless, the opponent could feel manipulated in this way.
2. In prisoner’s dilemma one wants to convince the opponent to stay quiet.
We start with prisoner’s dilemma. This game becomes more interesting if there

were enough communication with the opponent (or if the game is played often
enough) for one could base one’s strategy on prior experience of the opponent. In
other words, one can form a strategy based on one’s idea of the opponent’s strategy
(perhaps based on repeated instances of the game), to wit:

Rat: Rat no matter what
Q : Keep quiet no matter what
Tit : Tit for tat: Rat iff the opponent is expected to rat
Tat : Tat for tit: Keep quiet iff the opponent is expected to rat.
These strategies are called “meta-strategies”. Clearly if A chooses Tit then B

should keep quiet, since this provides (-1,-1) instead of (-6,-6). But now B, knowing
that A is choosing a meta-strategy, now must respond to any possible meta-strategy,
and thus defines a new game, called a metagame, in which he provides a move in
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response to your planned meta-strategy. Thus any move by the opponent consists
of a vector (v1, v2, v3, v4) where v1, v2, v3, v4 ∈ {Rat, Q}, and v1 denotes the planned
response to Rat, v2 the response to Q, v3 the response to Tit, and v4 the response
to Tat. For example, if B chooses (Rat,Rat, Q,Rat) to A’s Tit then he chooses Q
and A chooses Q and the payoff is (−1,−1).

Note that A has 22 = 4 possible strategies in the metagame, giving B 24 =
16 meta-strategies. Although Tit is an attractive meta-strategy for A, it is not
dominant, since Rat does better against Q. On the other hand B does have a
dominant strategy in this metagame, namely (Rat, Rat,Q, Rat) (It is correct to rat
against any meta-strategy except Tit.) The payoff vector is

((−6,−6), (−10, 0), (−1,−1), (−10, 0))

and B maximizes his payoff by choosing (-1,-1), the payoff for the equilibrium,
(Rat,Rat, Q,Rat) against Tit. (If A moves from Tit he does worse, and we noted
B’s best choice against TIt is Q.

In view of the equalities among many payoffs, this metagame actually has 3
points of equilibrium, the others being (Rat, Rat,Rat, Rat) against Rat, which is
the saddle point of the original game, at (−6,−6), and (Rat,Q, Q, Rat) against Tit.
Here the payoff vector is

((−6,−6), (−1,−1), (−1,−1), (−10, 0))

So the advantage here is that there is a dominant strategy for B, and this deter-
mines the game.

The metagame for Chicken is even more subtle. Again, there are the four anal-
ogous strategies:

G: Go on no matter what
C: (Chicken): Back off no matter what;
Tit: Tit-for-Tat
Tat: Tat-for-Tit
There is an obvious dominant strategy here for B: It is correct to bull against

C or Tat, and to back off against G or Tit. Thus B has a dominant meta-strategy
(C,G, C, G). It is in the interest of A to go on and get 4, yielding an equilibrium
in this metagame, producing the outcome (4,0) which is not in the interest of B!
(Since the game is symmetric, one would intuitively expect the fair result to be
(1,1).) In order to force this outcome the first player must be willing to take on a
non-dominant meta-strategy: (G, C,C, G) or the more aggresive (B, B, C, B). This
forces B to avoid B and encourages him to choose Tit, producing the (1,1) payoff.
There also is an equilibrium when B plays the very aggressive (G,G, G, G), The
corresponding payoff vector is now

((−10,−10), (0, 4), (−10,−10), (0, 4)),

so A plays C or Tat, and A gets (0,4).
Conjecture: Any dominant strategy remains dominant in the metagame when

taken on the diagonal (i.e. repeating it in the vector). (There are parallels in
diplomacy, e.g. the Cuban missile crisis resulted in the correct resolution although
the negotiations were on the brink of disaster.) How could the dominant strategy
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fail to be the best strategy? Because one also has to take into account the payoff
of the other side. Maybe define “absolutely dominant” if the first component of
the payoff is at least as high and the other components are not higher. Thus (0,4)
does not absolutely dominate (-10,-10) in the first player’s strategy since he might
choose (-10,-10) in order to discourage the second player from following this option.
Or, perhaps B requires a payment from A for his cooperation with A.

But B of course gets the best results with the greedy strategy (B,B, B, B),
thereby forcing A to take C or Tat. It might be that in the repeated game, A will
eventually switch to Tit just to try to force the first player to abandon his strategy.
If A does not, then we have disaster.

Second level: A’s response to B’s meta-strategies. These would be 216 choices.

IV Mixed strategies in (zero sum) games

We return to analyze the 2-person single-turn game algebraically.

Elusive 2 by 2 games. 1. Reuven and Shimeon now play the following game:
Each shows simultaneously the number of fingers on a hand. If both are congruent
(mod 2) then Reuven gives Shimon 2 shekels; if Reuven is even and Shimon is odd
then Shimon pays Reuven 3 shekels; if Shimon is odd and Reuven is even then
Shimon pays Reuven 1 shekel.

Reuven\Shimon Even Odd
Even −2 +3
Odd +1 −2

Who wins? This is simplest example of a classic situation. Either side can
gain a positive result by guessing properly, and gets a negative result by guessing
improperly. If Reuven can guess what Shimeon is planning then he will base his
strategy accordingly, and it could be either choice (odd or even). Suppose in this
matrix that Reuven chooses a mixed strategy he will give an odd number p1 of the
time and an even number p2 = 1 − p1 of the time, and likewise Shimon will give
an odd number q1 of the time and an even number q2 = 1 − q1 of the time. Then
if Shimon always chooses even, Reuven ’s payoff is −2p1 + p2, whereas if Shimon
always chooses odd, Reuven ’s payoff is 3p1 − 2p2. Thus Reuven can guarantee a
good payoff by setting these equal, i.e.

−2p1 + p2 = 3p1 − 2p2,

so 3p2 = 5p1, and thus p1 = 3
8 and p2 = 5

8 . Note that Reuven ’s payoff is now − 1
8

in either case, so Shimon wins the game.
Let us look at the game from Shimon ’s point of view. Reuven ’s payoff is

−2q1 + 3q2 or q1 − 2q2, depending on whether Reuven chooses even or odd, so
equating these yields 3q1 = 5q2, so q1 = 5

8 and q2 = 3
8 ; Reuven ’s expectation is

still − 1
8 Thus each player is led to a strategy which will provide the same result.

In general, by choosing the first row p1 times and the second row p2 times, player
A gets p1a11 + p2a21, or p1a12 + p2a22, and since p1 + p2 = 1, we get two lines,
one connecting a11 and a21, and the other connecting a12 and a22. The dominant
situation is that one line lies above the other; the non-dominant is that the two
lines cross. At all points other than the crossing point, B can pick the lower of the
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two lines, and thus hurt the payoff to A, so it is in A’s interest to find where the two
lines cross, i.e. p1a11+p2a21 = p1a12+p2a22, and thus p2(a21−a22) = p1(a12−a11),
i.e., p2

p1
= a12−a11

a21−a22
, so

p2 =
a12 − a11

a12 − a11 + a21 − a22
; p1 =

a21 − a22

a12 − a11 + a21 − a22
.

We need a positive solution for p1 This happens when a12− a11 and a21− a22 have
the same signs, i.e. precisely when the game is elusive. Note the intersection of the
two lines is

a11
a21 − a22

a12 − a11 + a21 − a22
+ a21

a12 − a11

a12 − a11 + a21 − a22

=
a12a21 − a11a22

a12 − a11 + a21 − a22
= − |G|

a12 − a11 + a21 − a22
.

This is symmetric with respect to the reversal of A and B, as should be expected.

Solutions of 0-sum games

In general, given an n × n payoff matrix (aij), and assuming Reuven chooses
the i-th strategy with probability pi and Shimon chooses the j-th strategy with
probability qj , Reuven ’s payoff is f(p, q) =

∑
i,j piqjaij .

Von Neumann proved that there exists at least one point p̂ and q̂ such that
f(p, q̂) ≤ f(p̂, q̂) ≤ f(p̂, q) for all vectors p, q. These would then provide optimal
strategies for both sides, and f(p̂, q̂) is the value of the game for Reuven .

The classical way to obtain such a solution is by the method of linear program-
ming, which we shall see later. First we want to analyze this game algebraically.

Algebraic solution of an n× n game.
Let us try to reach the optimal mixed solution algebraically. As a preliminary

observation, let us note that the constraint q1 + · · · + qn = 1 is irrelevant, since
we could always divide all the qj by

∑
qj at the end (similarly with the pi, so our

solution vectors could be obtained in projective space. Although we usually do not
utilize this observation, it is useful at times. Remember that Reuven ’s task is to
maximize his payoff, whereas Shimon ’s task is to minimize Reuven ’s payoff.

Perhaps one mixed strategy (say for Shimeon) q̂′ = (q′1, . . . , q
′
n) might dominate

another q̂′′ = (q′′1 , . . . , q′′n) in the sense that, regardless of Reuven ’s strategy, q̂′

provides a lower payoff than q̂′′, i.e.
∑

j aijq
′
j ≤

∑
j aijq

′′
j for all i. We call such a

game “partially dominated”. We define the dominated components as those j for
which q′j < q′′j . Intuitively, dominated components j are “bad”, in the sense that
any strategy q̂ = (q1, . . . , qn) is dominated by

q̂ + α(q̂′ − q̂′′) = (q1 + α(q′1 − q′′1 ), . . . qn + α(q′n − q′′n))

for any α > 0, and thus q is dominated by some strategy for which some qj = 0.
Thus we could discard any dominated component. A game without dominated
strategies will be called “totally elusive”.

For example, any 2×2 game with a dominated strategy obviously is determined,
since one component dominates the other. Now let us turn to the algebraic ap-
proach.
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We start from Shimon ’s point of view, and look for a mixed strategy which
will yield the same payoff, no matter what Reuven plays. At this stage we are not
requiring this payoff to be best for Shimon , only that it be independent of Reuven
’s strategy. Let E denote this unified payoff for Shimon . Then

(1)
∑

j

aijqj = E for each i = 1, . . . , n.

Also
∑

qj = 1. Thus the mixed strategy which will yield the same result regardless
of Reuven ’s strategy is the solution to the n equations (1) along with

(2) q1 + · · ·+ qn − 1 = 0,

which yield n + 1 equations in the n + 1 unknowns q1, . . . , qn, E. Put in matrix
terms this is

(3)




a11 . . . a1n −1
...

. . .
...

...
an1 . . . ann −1
1 . . . 1 0







q1
...

qn

E


 =




0
...
0
1


 .

The solution (from Shimon ’s point of view) can be found easily by means of
Cramer’s rule, which in particular says

(4) E =
det(aij)

det




a11 . . . a1n −1
...

. . .
...

...
an1 . . . ann −1
1 . . . 1 0




,

and this solution is unique (provided the denominator is nonzero, which we assume
for the time being.) Now let us do this from Reuven ’s point of view. This could be
accomplished by making the same analysis with At = (aji), as noted in Remark 1,
so our solution is

(5) E =
det(aji)

det




a11 . . . an1 −1
...

. . .
...

...
a1n . . . ann −1
1 . . . 1 0




.
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But det At = det A, and likewise

det




a11 . . . an1 −1
...

. . .
...

...
a1n . . . ann −1
1 . . . 1 0


 = (−1)2 det




a11 . . . an1 1
...

. . .
...

...
a1n . . . ann 1
−1 . . . −1 0




= det







a11 . . . a1n −1
...

. . .
...

...
an1 . . . ann −1
1 . . . 1 0




t


= det




a11 . . . a1n −1
...

. . .
...

...
an1 . . . ann −1
1 . . . 1 0


 ,

so the values of E in (4) and (5) are the same, i.e. Reuven ’s unified strategy yields
the same payoff as Shimon ’s unified strategy!

Intuitively, we would like E (determined by (4) and (5)) to be the optimal guar-
anteed payoff for both Reuven and Shimon . Let us consider Shimon . Actually, the
solution for E could be viewed more generally as an intersection of the hyperplanes
determined by the hyperplanes

(6) Ei =
n−1∑

j=1

aijqj + anj(1−
n−1∑

j=1

qj);

We view this geometrically in n-space, where the first n − 1 axes correspond to
q1, . . . , qn−1, and the last axis (height) corresponds to the payoff. Their intersection
will be optimal for Shimon unless there is some other point (q′1, . . . , q

′
n−1) at which

the values E′
i ≤ Ei for each i. (Because if E′

i > Ei then Reuven could pick strategy
i and Shimon would lose.) In other words, if we go in the direction of the vector
v = (q′1, . . . , q

′
n−1) − (q1, . . . , qn−1), we see that each of our hyperplanes is tilted

upward, so we could continue in this direction until hitting a “boundary” point,
where some qj = 0 or 1. Thus, our algebraic solution will produce an optimal
solution Reuven iff there are no “redundant” choices for Reuven (i.e. strategies
which he would never do). For example in the game

Reuven\Shimon Even Odd
Even 4 −3

Odd 4 −1

E = 4, which is attained by q1 = 1 and q2 = 0, but it is by no means optimal for
Shimon ; in fact this is his worst strategy. On the other hand, Reuven cannot find
a strategy to attain E = 4, since his solution is p1 = − 5

2 and p2 = 7
2 , which is

absurd! (He must pick moves with probabilities lying between 0 and 1).
We have uncovered the hidden difficulty that some of the qi might turn out to

be negative in the algebraic solution. This happens in the 2 × 2 game precisely
when a11−a12 and a21−a22 have the same sign, which means that one strategy for



29

Reuven dominates the other. Thus we conclude that in the 2× 2 case, a game has
an algebraic solution which can be attained for either side, iff the game is elusive.

In general, let

J = {j : qj ≥ 0} and J ′ = {1, . . . , n} \ {j : qj ≥ 0} = {j : qj < 0}.
Then ∑

j∈J

aijqj = E +
∑

j∈J′
aij(−qj)

We can use this equation to modify strategies. Explicitly, let s′ =
∑

j∈J qj , and
q̂′ = (q′1, . . . , q

′
n) be defined as q′j = 0 if qj ≤ 0 and q′j = qj

s′ otherwise. Likewise let
s′′ =

∑
j∈J ′ qj = 1 − s′, and q̂′′ = (q′′1 , . . . , q′′n) be defined as q′′j = 0 if qj ≤ 0 and

q′j = qj

s′′ otherwise. Note that s′ > 1 so s′′ < 0 Also let E′
i be the i-th payoff for q̂′

and E′′
i be the i-th payoff for q̂′′.Then

s′E′
i = Ei − s′′E′′

i ,

so

E′
i − E′′

i =
1
s′

E − s′ + s′′

s′
E′′

i =
1
s′

E − 1
s′

E′′
i .

This means that given a mixed strategy, we can “improve” it by looking at the
i with the worst payoff and then replacing αq̂′ by αq̂ (or visa versa) for the largest
α which is appropriate (either until we reach the next strategy or until one of the
strategies becomes 0). I don’t know how one would proceed from here, but this
approach might shorten the time for the method to operate.

Of course if the denominator in (4) is 0 then we have a difficulty, but this can
only happen if the rows are linearly dependent, i.e. if some linear combination of
the rows of the payoff matrix yield a vector (m,m, . . . , m). For example the payoff
matrix could be

(
1 2

2 1

)
. This happens iff the columns of the payoff matrix satisfy

this same property, i.e.
∑

aijsj = m, for 1 ≤ i ≤ n and
∑

sj = 0. But then some
sj are negative and we have the situation described in the previous paragraph. Let
us summarize our results.

Theorem 3. In a square matrix game, there is an algebraic solution for which
Reuven and Shimon have the same payoff, but this can be obtained in reality iff
the probabilities pi and qj are non-negative. In this case, one can show easily that
this is the best strategy for each.

In case some qj are negative we still saw that the algebraic approach yields infor-
mation, and it would be interesting to incorporate this into the linear programming
solution. Incidentally, we shall see below that every game came be reduced to a
square game.

Another point: Any mixed strategy could be substituted for one of the strategies
involved in it, and then yields a new payoff matrix. Such a transformation yields
an equivalent game iff the transformation matrix B has the property that both its
entries and the entries of its inverse are non-negative. (For example, a diagonal
matrix with positive entries would be an example of such a matrix.) Interesting
question: What is the class of matrices having this property?

If the strategy involves the same payoff E for each player, independent of the
choice of the other player, then we may assume the payoff matrix satisfies a1i = a′i1
for each i.
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Farkas’ Theorem.

Farkas’ Theorem. Suppose A = (αij) is an arbitrary `×m matrix over the field R.
Write ai = (αi1, . . . , αim) for 1 ≤ i ≤ `, the rows of A. The system

∑
j αijλj > 0

of linear inequalities, for 1 ≤ i ≤ `, has a simultaneous solution over R, iff every
non-negative, nontrivial linear combination of the ai is nonzero.

Proof: (⇒) If x = (x1, . . . , xn) ∈ Rn is a solution then, for any βi ∈ R,

(
∑

i

βiai) · x =
∑

ij

βiαijxj =
∑

i

βi(
∑

j

αijxj) > 0.

(⇐) Consider the cone C of vectors of the form Avt, where v = (v1, . . . , vm) is
non-negative and

∑
vi = 1. C is convex, i.e. if x,y ∈ C then tx + (1− t)y ∈ C, for

all 0 ≤ t ≤ 1. 0 ∈ C. By a compactness argument there is some point p ∈ C at a
minimum distance from 0.

Take any q 6= p in C. By hypothesis on p, the angle 0pq cannot be acute, so

0 ≥ (q− p) · (0− p) = p · p− q · p.

Hence q · p ≥ p · p > 0 for each q ∈ C, so conclude taking

q = ai = eiA ∈ C

for each i. (The solution is p.
This enables us to prove that any fair game has an optimal strategy, by means

of:

Corollary (Fundamental Theorem of Game Theory). If there is no x > 0
in R(m) (written as a column) with Ax < 0, then there exists w ≥ 0 (written as a
row) in R(m) with wA ≥ 0.

proof. Define ai = (ai1, . . . , ain). By hypothesis there is no simultaneous solution
to the inequalities −ai ·x > 0, xj > 0. In other words, defining Ã to be the `+m×m

matrix
(−A

I

)
, there is no solution to Ã · x = 0. Hence by Farkas’ Theorem, the

rows of Ã are dependent with non-negative coefficients. ¤
Indeed, subtract the largest constant possible such that the hypothesis still holds,

and the corollary says that the first player can force this result to be obtained. We
shall generalize this result soon.

Summary. Algebraic solution of a 1-move game

First discard all dominated strategies via linear programming. This will yield a
square matrix (prove), and this can be solved by the solution of the simultaneous
equations the payoffs to be equal.

Julia Robinson’s solution of a 1-move game by successive approxima-
tions.

Recall that in a fair game, reversing the players yields the negative of the trans-
pose of the payoff matrix (since we also have to reverse the person receiving the
payoff), so a game is symmetric iff the payoff matrix is skew-symmetric (and in
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particular, 0 on the diagonal). By pairing the game, we shall assume it is symmet-
ric. (Explicitly, the matrix for this is an mn×mn matrix, whose payoff for Reuven
choosing the pair (i, j) and Shimon choosing the pair (i′, j′) is aij′ − aj′i, which is
antisymmetric. Thus the matrix is symmetric.

Since we assume the opponent is picking the best possible strategy, the best we
can hope for in a fair symmetric game is a draw, and on the other hand, the best
strategy should result in a draw. Thus we look for a mixed strategy with outcome
0.

The idea here is for Reuven to learn from Shimon since Shimon is playing as well
as possible. Thus, Reuven always bases his move on the history of what Shimon
has done until then.

We start by solving the mixed strategy for the symmetric game. The algorithm
is very easy: Let i0 be arbitrary, and inductively, let jk be Shimon ’s best strategy
against Reuven ’s mixed strategy up to this point. Define

pi,t =
# of jk equal to i, with k ≤ t

t + 1
,

and pi = limt→∞ pi,t.

For example, suppose

A =




0 2 −1 3
−2 0 2 1
1 −2 0 1
−3 −1 −1 0


 .

Note that Shimon will never choose the last column, so this becomes irrelevant to
our consideration.

Here is an iterated strategy:
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k (p1, p2, p3, p4) Shimon ’s response payoff
1 (1, 0, 0, 0) 3 −1
2 (1, 0, 1, 0) 3 −1
3 (1, 0, 2, 0) 2 − 2

3

4 (1, 1, 2, 0) 2 − 2
4

5 (1, 2, 2, 0) 1 − 2
5

6 (2, 2, 2, 0) 1 − 1
3

7 (3, 2, 2, 0) 1 − 2
7

8 (4, 2, 2, 0) 1 − 1
4

9 (5, 2, 2, 0) 1 − 2
9

10 (6, 2, 2, 0) 1 − 1
5

11 (7, 2, 2, 0) 3 − 3
11

12 (7, 2, 3, 0) 3 − 1
4

13 (7, 2, 4, 0) 3 − 3
13

14 (7, 2, 5, 0) 3 − 3
14

15 (7, 2, 6, 0) 3 − 3
15

16 (7, 2, 7, 0) 3 − 3
16

17 (7, 2, 8, 0) 3 − 3
17

18 (7, 2, 9, 0) 2 − 4
18

19 (7, 3, 9, 0) 2 − 4
19

20 (7, 4, 9, 0) 2 − 4
20

. . . . . . . . .

The convergence is painfully slow, but we are not so far from the algebraic
solution, which is p1 = p3 = .4, p2 = .2 (since p4 is dominated by p2). This would
have been the vector (8,4,8,0).

Theorem 4. p = (p1, . . . , pn) (as defined above) exists, and is the optimal strat-
egy for Reuven (and thus for Shimon , since the game is symmetric).

Proof. We need to show the value of the game is 0. We show that the payoff
of the mixed strategy p, limt→∞ ut

t+1 = 0, where ut is the payoff of the sequence
p1,t, . . . , pn,t.

First note that the payoff for the jth strategy against ik is aik,j = −aj,ik
. Let

ct+1 = (
t∑

k=0

a1,ik
, · · ·

t∑

k=0

an,ik
),

i.e., tc is the payoff vector for the strategy at row t. Then Shimon ’s payoff is
maxj ct+1,j

t+1 , which we want ≤ ε, for arbitrarily small ε, so it is enough to prove
maxj ct+1,j ≤ (t + 1)ε for all j. It is convenient to prove the following more general
result

Lemma 5. (Main Lemma) Suppose c1,c2, . . . , is a sequence of vectors for which
c0 ≤ 0 (in each component) and each ck+1 =ck+aik

, where aik
= (a1,ik

, . . . , an,ik
)

and aij = −aji. Write ck,j for the j-th component of ck. Then for large enough t,

max
j

ct,j ≤ tε
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for all j.

Proof. We will find a function f = f(n; a, ε), where n ∈ N, a ∈ R+, and ε ∈ R+, such
that for any antisymmetric matrix (aij) with each aij ≤ a and each t > f(n; a, ε),
that each maxj ctj ≤ tε. If n = 1 then a = 0 so the assertion is obvious (since
ct1 = c01 ≤ 0 is non-positive). Thus we assume n > 1.

STEP 1. For any t, there exists j ≤ n such that the entry ct,j ≤ 0. (Indeed
take the sum of the jk- components from 1 ≤ k ≤ t, counting repetitions of the
subscript. Then for any give ik, ct,ik

=
∑

` ai`,ik
, so

∑

k

ct,ik
=

∑

`,k

ai`,ik
.

But
∑

`,k ai`,ik
= 0 since the subscripts are symmetric in the components but (aij)

is skew-symmetric. Thus the left-hand side ≤ 0, so one of its summands ≤ 0.
STEP II Given η > 0 (to be determined later), define t1 = f(n − 1, a, η). Also,

write jk for that j for which maxj ck,j = ck,jk
. We consider t1 consecutive rows

starting from a given t.
First we claim that if there is an index i 6= jt1 , . . . , jt+t1 then max ct+t1,j ≤

max ct,j + t1η. (Indeed, take b = maxj 6=i ct1,j and define the vector of length n− 1,
c′k, by

c′k,j =
{

ck+t1,j − b for j < i;
ck+t1,j−1 − b for j > i;

thus, we have eliminated the i-th column and normalized to make c′ < 0. (Note
that neither the i-th row (which is the ith column of the previous step) nor the
i-th column enters into the computation. Thus one can strike out the i-th row and
column from the antisymmetric matrix (aij), so is still left with an antisymmetric
n−1×n−1 matrix. Of course one has to compress the indices, which are 1, 2, . . . , i−
1, i + 1, . . . , n. Then by induction

tη ≥ max
j

c′t1,j = max
j

(ct+t1,j)−max
j 6=i

ct1,j ≥ max
j

(ct+t1,j)−max
j

ct1,j ,

as desired.)
On the other hand, we claim that if jt, . . . , jt+t1 run over all the indices, then

we claim maxj ct+t1,j ≤ t1a. Indeed take j′ for which ct,j′ ≤ 0 (by step I), and by
assumption we have some k between t and t+ t1 for which jk = j′. This means that
ck,j′ is the maximum of the ck,j .

Thus for any j,

ck,j ≤ ck,j′ ≤ ct,j′ + (k − t)a ≤ (k − t)a,

so
ct+t1,j ≤ ck,j + (t + t1 − k)a ≤ (k − t)a + (t + t1 − k)a ≤ t1a,

as desired.
STEP III (Conclusion of proof of main lemma) Take η > 0 to be determined

below, compute t1 = f(n− 1, a, η) and given arbitrary large t, write t = qt1 + r, by
means of the Euclidean algorithm. By Step II, for any u < q we see that
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max
j

c(u+1)t1+r,j ≤
{

maxj cut1+r,j + t1η or
t1a,

so iterating over the q values of u we cannot add t1η more than q + 1 times, and
noting that t1 ≤ t

q we get

max
j

ct,j ≤ t1a + (q + 1)t1η ≤ t(
a

q
+ η +

η

q
),

Since we may assume η < 1, we are done whenever a+1
q + η ≤ ε; thus we put for

example q = 2(a+1)
ε , and take η = ε

2 and F (n; a, ε) = qt1. ¤
Given an arbitrary (fair) game, suppose (Reuven , Shimon ) starts with a strategy

(i0, j0), and inductively take ik+1 (resp. jk+1) to be Reuven ’s (resp Shimon ’s) best
response to the sequence j0, . . . , jk (resp. i0, . . . , ik. Then both it and jt tend to
the optimal strategies for Reuven and Shimon , since one sees easily that ((it, jt))
tends towards the best strategy in the symmetrized game. Thus we have proved
that every game can be solved iteratively.

A corollary to this is that the iterative solution is the algebraic solution we
reached earlier (when it exists!), since the algebraic solution is unique.

Nash’s theoretical solution.
There is an extremely elegant solution of John Nash, which proves that any

competitive fair 1-move game with n players has an equilibrium. Indeed, consider
n-tuples of payoff vectors (b1, . . . , bn) where the i-th player gets bi based on a
certain mixed strategy. At each stage, the i player looks at the current strategies
and picks a strategy to improve his payoff (if possible); otherwise he sticks with
his strategy. In fact, he can choose several possible strategies, but assuming the
payoff is a linear function, his choice of improved payoff is convex, in the sense that
combining two improved payoffs still gives an improved payoff. Also, if there is a
convergent sequence of improved payoffs, then the limit is also an improved playoff.
Each player does this, leading to a new vector (b′1, . . . , b

′
n). There is a theorem in

mathematical analysis called the Kakutani Fixed Point Theorem, which says that
any convex mapping closed under limits has a fixed point, and this is the Nash
equilibrium!

Theory of linear programming applied to game theory.
Clearly Shimon ’s task is to minimize w such that −∑

aijqj + w ≥ 0 for i =
1, . . . , n and

∑
qj = 1. Analogously, Reuven ’s task is to solve the “dual problem”,

to maximize u such that −∑
aijpi + u ≤ 0 for i = 1, . . . , m, with

∑
pi = 1. Not

worrying about symmetric games, we note that the strategies are unaffected by
adding the same constant quantity a to each aij , so we may assume each aij > 0.
Thus we may assume u,w > 0. Writing yj = qj

w , we have the new problem of finding
non-negative yj such that

(8)
∑

aijyj ≤ 1 for each i, with
∑

yj maximal.

Then taking w =
∑

yj we simply put qj = yj

w . The dual analysis holds for the pi.
This leads us to solve a problem in linear programming, which can be solved by

the simplex method.
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Topological background. Let V be a vector space over R.
By multilinear form f we mean a multilinear function f(x1, . . . , xn) = α1x1 +

· · ·+ αnxn.

Definition 8. A half-space Hf
α (for a number α and a multilinear form f) is the set

of points (x1, . . . , xn) given by f(x1, . . . , xn) ≥ α. A polytope is an intersection of a
finite number of half-spaces. The profile øS of a convex set S is its set of vertices.

A “line” is a subspace of dimension 1, whereas a “hyperplane” is a coset of a
subspace V1 of dimension n− 1.

Remark 12. Every hyperplane is defined as {(v1, . . . , vn) : αivi = α0}.
A supporting hyperplane of a set S is a hyperplane which touches S, but such

that all of the points of S are on the same side of its half-space.

Theorem 13. Every supporting plane of a non-empty compact convex set S
contains a vertex of S.

Proof. Induction on n = dim S. If n = 0 then S is a point and there is nothing to
prove; in general any supporting hyperplane P which does not contain S is also a
supporting hyperplane for P ∩ S, which has lower dimension, and thus contains a
vertex v, which is also a vertex of S. ¤

Theorem 14. A point v of a polytope is a vertex iff v is the intersection of the
generating planes through v.

Corollary 15. The profile of a polytope is finite.

Corollary 16. Every bounded nonempty polytope is a convex polyhedron.

The simplex method for solving the Fundamental Problem of Linear
Programming, for the case of a hyperplane.

Here we suppose f is multilinear. Then the constraints are given by a finite set
of half-spaces, so our possible solution set is a polytope T . Take a vertex v and all
Tv to be the intersection of all generating hyperplanes of T which pass through v.
Then T ′ also is a polytope. By an easy transformation we may put the origin at v,
i.e. assume v = 0.

CASE I. f(x) ≤ f(0) for any x on an edge of T ′. Thenf(x) ≤ f(0) for all x in
T ′ (and thus for all x in T ), so v is the desired point.

CASE II. There is a point x0 on an edge such that f(x0) > f(0). Then for any
α ∈ R. we have

f(αx0)− f(0) = α(f(x0)− f(0).

Take α maximal such that αx0 ∈ T. Then αx0 is the next vertex, and since T has
a finite number of vertices, we conclude by iteration.

Note that the problem here is to determine the polytope in question, since the
solution lies on one of its vertices. For m = n = 2 this can be done quite easily on
graph paper. For example using (8) we have four inequalities whose intersection
is (in the nondegenerate case) a quadrilateral formed from the X and Y axes and
two other lines L1, L2. The point L1 ∩ L2 provides the solution when the game is
elusive. But we have seen already that the 2 × 2 game can be solved quickly via
algebra.
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In general Dantzig provided the “simplex method” to solve the basic problem in
linear programming. We start by converting (8) into the equalities

(9)
∑

j

aijyj + zj = 1

and want

(10) f =
∑

yj

to be maximal.
We start with the basic feasible solution zj = 1, qj = 0, and f = 0. At this stage

the zj are called the basic variables and the yj are the nonbasic variables. We now
want to replace as many zj as needed by yj , at each stage increasing f . Clearly
increasing y1 would improve f , and, justified by the theory above, we increase y1

as much as possible to find the next vertex, i.e. y1 = mini
1
a i01

. Suppose this
minimum occurs at i1. Then we make y1 a basic variable instead of zi1 , using
y1 = 1

ai01
(1− zi1 −

∑
j>1 ai0jyj) to eliminate all other appearances of y1 in (9) and

(10). Thus (10) has become

(11) f =
1
a i01

− zi1 +
∑

j>1

(1− 1
ai01

ai0j)yj

If all of the coefficients (1 − 1
ai01

ai0j) ≤ 0 then we are done; any nonpositive co-
efficient corresponds to a dominated move. If some coefficient is positive then for
that value of j we make yj a basic variable, finding the suitable zi to replace by
the modified version of (9). We continue doing this until we are done; since we
have followed the general procedure described above, we must finish after a finite
number of steps.

NOTE that in the continuation, when we create a new basic variable yj we
need not replace some zij , but unfortunately might replace some other yj previ-
ously found. Thus, although we eventually finish this procedure, it need not be
after n stages. (Important question, how many steps do we need; van den Panne
conjectures it is between m and 3m.)

Convex functions with linear constraints.
Let us view all this in a more general framework. We say a function f : V → R

is convex if for any nonnegative numbers α1, α2 and any given v1, v2 in V we have
f(α1v1 + α2v2) ≤ α1f(v1) + α2f(v2). (We say f is concave if −f is convex.) Note
that any linear function is both concave and convex.

The Fundamental problem of linear programming Given (aij) and bi, find y1, . . . , yn

with
∑

aijyj ≥ bi for 1 ≤ i ≤ r and
∑

aijyj = bi for i = r + 1, . . . , m, such that
the convex function f(y1, . . . , yn) is minimized.

Lemma 17. If C is a closed convex nonempty set in R(n) not containing the origin,
then there is a linear form f and α > 0 such that if x ∈ C then f(x) > α.

Proof. Take a closed ball B with center at the origin, which intersects C. Then
C ∩B is compact and thus has some point v with minimum norm. Take α = ||v||2;
then taking f(x) = 〈v, x〉 (the scalar product) we shall see f(x) ≥ α for all x ∈ C.
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Indeed, suppose on the contrary there is x ∈ C with ε = ||v||2 − 〈v, x〉 > 0, Then
for any β we get

|(1− β)v + βx||2 ≤ ||v||2 − 2β||v||2 + β2||v||2 + 2β(1− β)(||v||2 − ε) + β2||x||2
= ||v||2 − 2β(1− β)ε + β2(||x||2 − ||v||2).

Choosing 0 < β < 1 such that β
1−β (||x||2 − ||v||2) < 2ε shows we have found a new

point in C with smaller norm, contradiction. ¤
Lemma 18. If C is a nonempty convex set in R(n) not containing the origin, then
there is a linear form f such that if x ∈ C then f(x) ≥ 0.

Proof. For any x ∈ C write Ax = {v : ||v|| = 1 and 〈v, x〉 ≥ 0}. Any finite intersec-
tion of the Ax is 0 (seen by applying lemma 17 to the polyhedron formed by these
points), so, since the unit sphere is compact we have ∩x∈CAx 6= ∅. ¤
Theorem 19. ( Separation Theorems) (i) Any two nonempty disjoint convex sets
C and C ′ are separated by a plane.

(ii) Any two nonempty disjoint convex sets C and C ′ are strictly separated by a
plane, provided C is compact and C ′ is closed.

Proof. In each case, we make a translation so that both C and C ′ miss the origin.
(i) C + (−C ′) is convex and misses the origin, so there is a linear form f such

that f(c− c′) ≥ 0 for all c ∈ C, c′ ∈ C ′. Thus inf f(c) ≥ sup f(c′).
(ii) Now C + (−C ′) is also closed, so in (i) one has f(c− c′) > α for some α > 0;

the rest is easy. ¤
The separation in this theorem need not be strict, i.e. the plane might have to

touch one or the other (but not both), even when both sets are closed, for example
the lower half-plane and the upper half of the hyperbola xy = 1.

Corollary 19. The closure C of the convex hull of a set equals the intersection
of the closed half-hyperplanes which contain it.

Proof. For every point not in this intersection, there is a hyperplane which separates
it from C. ¤
Theorem 20. (Intersection Theorem) Suppose C1, . . . Cm are closed convex sets
in R(n) whose union is convex. If the intersection of every m−1 of these is nonempty
then ∩Ci 6= ∅.
Proof. . Take ai ∈ ∩j 6=iCj , for each i; replacing Ci by its intersection with the
convex hull of {a1, . . . , an}, we may assume each Ci is convex???. The assertion
is vacuous for n = 1 and easy for n = 2, by theorem 19, since any hyperplane
separating C1 and C2 would intersect their union, by convexity of C1 ∪ C2, which
is absurd.

So assume inductively that the theorem is true for m−1, but assume Ĉ = ∩m−1
i=1 Ci

is disjoint from Cm. Take a separating hyperplane P and let C ′i = P ∩ Ci. Then

∪m
i=1Ci′ = P ∩ (∪m−1

i=1 Ci) = P ∩ (∪m
i=1Ci),

which is convex. The intersection of any m− 2 of the Ci contains Ĉ and intersects
Cm, so therefore intersects P . Thus the corresponding m − 2 of the C ′i intersect;
by induction we have

∅ 6= ∩m−1
i=1 C ′i = Ĉ ∩ P,
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which is absurd. ¤
Corollary 21. Suppose a convex set C is disjoint from ∩m

i=1Ci but is intersects
the intersection of any m− 1 of the Ci. Then C 6⊆ ∪Ci.

Proof. Induction on m, the case m = 1 being trivial. Take ai ∈ ∩j 6=iCj , as before,
and C ′i be the intersection of Ci with the convex hull A of a1, . . . , an. Then ∪Ci is
not convex, so misses some point a of A. Then a ∈ C \ ∪Ci. ¤
Corollary 22. (Helley’s Theorem) Suppose C1, . . . , Cm are convex sets in R(n),
with m > n + 1. If the intersection of any n + 1 of the Ci is nonempty then
∩m

i=1Ci 6= ∅.
Proof. By induction; we take ai ∈ ∩j 6=iCi and by iteration we see that the inter-
section of the polyhedra determined by all aj , j 6= i is nonempty. ¤
Von Neumann’s theorem. We now provide Von Neumann’s proof that any ma-
trix game has a solution.

Theorem 23. (Fundamental Theorem) Suppose C ⊂ R(n) is a convex set and
f1, . . . , fm convex functions on C. If fk(x) < 0 has no solution in C, for 1 ≤ k ≤ m,

then there exists a function of the form f(x) =
∑n+1

i=1 pifki
(x) with pi ≥ 0,

∑
pi = 1,

and infx∈C f(x) ≥ 0.

Proof. Let S = {v = (v1, . . . vm) ∈ R(m) : There exists x ∈ C satisfying fi(x) < vi

for each i}. Then 0 6= S, and S is convex. By First Sep Thm there is a nonzero
form

∑
pixi which takes on positive values for all points in S. Thus for any positive

numbers α1, . . . , αm we have (fi(x) + ti) ∈ S, and thus
∑

pifi(x) +
∑

αipi ≥ 0

for all αi > 0. Thus
∑

pifi(x) ≥ 0 for all x in C, but also each pi ≥ 0. Dividing
through by

∑
pi enables us to assume pi = 1.

The theorem is proved for m ≤ n + 1; for m > n + 1 we need Helley’s Theorem
applied to reduce the problem to n + 1, in which case we are already done. ¤
Definition 25. A function f : A → R is lower semicontinuous if for any α > 0,
the set {a ∈ A : f(a) > α} is open. f is upper semicontinuous if −f is upper
semicontinuous.

Corollary 26. Suppose C ⊆ R(n) is compact convex and let fu : C → R be
a (possibly infinite) family of convex functions which are lower semicontinuous. If
the system fu(c) ≤ 0 has no solution c in C then there are p1, . . . , pn ≥ 0 with∑

pi = 1 and u1, . . . un satisfying

inf
c∈C

f(c) > 0.

Proof. For each ε > 0 there is no c satisfying all fu(c) ≤ ε; thus Cu,ε = {c ∈ C :
fu(c) ≤ ε} are closed subsets with empty intersection, so an intersection of a finite
number of subsets Cu1,ε1 ∩ · · · ∩Cum,εm is empty, i.e. fui − εi has no simultaneous
nonpositive solution. One concludes with Theorem 23 to get

inf
c∈C

n+1∑

j=1

pjfuij
(c) ≥

∑
pjεij > 0.
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¤

Theorem 27. (Von Neumann’s minimax theorem) Suppose A ⊂ R(m) and B ⊂
R(n) are nonempty compact convex sets and let f(x, y) : R(m) × R(n) → R be
upper semicontinuous concave in the first component and lower semicontinuous
convex in the second. Then A×B has a saddle point, i.e., there is an ordered pair
(a0, b0) ∈ A×B with f(a, b) ≤ f(a0, b0) ≤ f(a0, b) for all a ∈ A and b ∈ B.

Proof. By upper semicontinuity, for any b, f(a, b) : a ∈ A attains its upper bound
maxa∈A f(a, b). Let

α = min
b∈B

max
a∈A

f(a, b)

and
β = max

a∈A
min
b∈B

f(a, b);

we shall prove α = β. Clearly α ≥ β, so we need to show β > α− ε for every ε > 0.
Given a in A define

ga(b) = f(a, b)− α + ε.

There is no b for which all ga(b) ≤ 0, so Corollary 25 yields ai and pi with
∑

pi = 1
such that g =

∑
pigai

is positive-valued. Then

f(
∑

piai, b) ≥
∑

pif(ai, b) > α− ε

for every b, implying
β ≥ min f(

∑
piai, b) > α− ε,

as desired. ¤

Sion (BG, p. 68) has generalized Von Neumann’s theorem to quasi-convex in-
stead of convex functions. (This means {c ∈ C : f(c) < α} is convex.)

V OPTIMIZATION (non-zero sum) GAMES

1. The traffic jam.

2. The stock market. This would be a 0-sum game, except for two problems:
(1) There are other investments, so call it the investment game
(2) if the money supply were constant

3. Grades. Is this a 0-sum game or not?

4. Strikes.

VI GAMES OF NEGOTIATION

We start with an amazingly simple analysis by Nash of distributing assets. Each
person assigns a utility value for each object.

For example, if one has the utilities
object : 1 2 3 4 5 6

U1 : 1 3 10 5 4 2
U2 : 6 4 2 3 5 5

Should we give {2, 3, 4} to player 1 and {1, 5, 6} to player 2, or {3, 4, 5} to player
1 and {1, 2, 6} to player 2, or {3, 4} to player 1 and {1, 2, 5, 6} to player 2?
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We assume utility is linear, in the sense that one adds all the utilities together.
Given a convex set S of possible distributions, we write c(S) for the optimal distri-
bution. Also, we make the following assumptions:

(1) If U1(a) < U1(b) and if U2(a) < U2(b), then a 6= c(S).
(2) If T ⊇ S and c(T ) ∈ S, then c(S) = c(T ).
(3) If S is symmetric with respect to the players, then c(S) is on the diagonal.
Nash’s solution is to distribute the assets such that the product of the utilities

is maximal. His argument: normalizing, we may assume that U1U2 takes on some
maximal value on some point a0 in S. Normalizing, (replacing U1(a) by U1(a)

U1(a0)
and

U2(a0) by U2(a)
U2(p) we may assume that U1(a0) = U2(a0) = 1. The line L given by

U1 + U2 = 2 is tangent to the hyperbola H given by U1U2 = 1, so for any point
p ∈ S above L, the straight line connecting p and a0 crosses the H, and thus would
yield a point of greater value for U1U2. Thus S is bounded by L, and we enlarge
S to the square T bounded by L and centered around the line U1 = U2. Since T is
symmetric, c(T ) lies on the diagonal and thus is a0. Hence c(S) = a0, as desired.

The three values of the product of utility functions described above are as follows:

18 · 16 = 288; 19 · 15 = 285; 15 · 20 = 300.


