Algebraic Number Theory 88-798
Question Sheet 2
Due Dec. 2, 2008
Please feel free to e-mail me at mschein@math.biu.ac.il with any questions of translation or otherwise. Throughout these exercises, K is a number field and $[K: \mathbb{Q}]=n$.
(1) Let $\alpha \in \mathcal{O}_{K}$. We denote by (α) the principal ideal (אידאל ראשי) generated by it. Prove that $N((\alpha))=\left|N_{K / \mathbb{Q}}(\alpha)\right|$.

Hint: Here is one way to do it. Let $\omega_{1}, \ldots, \omega_{n}$ be a basis for \mathcal{O}_{K} as \mathbb{Z}-module. Then $\alpha \omega_{1}, \ldots, \alpha \omega_{n}$ is a basis for (α) as \mathbb{Z}-module. Write $\alpha \omega_{j}=\sum_{i=1}^{n} a_{i j} \omega_{i}$, for $a_{i j} \in \mathbb{Z}$, and let A be the matrix $A=\left(a_{i j}\right)$. Now show that $N((\alpha))=|\operatorname{det} A|$ (recall that the volume of the parallelipiped spanned by the columns of a matrix A is $|\operatorname{det} A|)$.

Prove that $\operatorname{det} A=N_{K / \mathbb{Q}}(\alpha)$. It may be helpful to consider K as a \mathbb{Q}-vector space, and consider the linear transformation $M_{\alpha}: K \rightarrow K$ defined by $M_{\alpha}(v)=v \alpha$.

The following two exercises are preparation for the proof of Minkowski's bound.
(2) Let $r, s \geq 0$ be integers such that $r+2 s=n$. Let $t \in \mathbb{R}$, and let $X_{t} \subset \mathbb{R}^{n}$ be the set

$$
X_{t}=\left\{\left(x_{1}, \ldots, x_{r}, y_{1}, z_{1}, \ldots, y_{s}, z_{s}\right):\left|x_{1}\right|+\cdots+\left|x_{r}\right|+2 \sqrt{y_{1}^{2}+z_{1}^{2}}+\cdots+2 \sqrt{y_{s}^{2}+z_{s}^{2}}<t\right\} .
$$

Prove that X_{t} is bounded, convex (קמור), and symmetric (if $\left(x_{1}, \ldots, x_{r}, \ldots, z_{s}\right) \in X_{t}$, then $\left.\left(\pm x_{1}, \ldots, \pm z_{s}\right) \in X_{t}\right)$. Recall that the volume of X_{t} is $\operatorname{vol}\left(X_{t}\right)=\int_{X_{t}} 1 \cdot d x_{1} \cdots d z_{s}$. Prove that

$$
\operatorname{vol}\left(X_{t}\right)=\frac{2^{r-s} \pi^{s} t^{n}}{n!}
$$

Hint: Change to polar coordinates and use induction on r.
(3) Let $C \subset \mathbb{R}^{n}$ be bounded, convex, and symmetric. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be linearly independent vectors, and let A be the $n \times n$ matrix whose columns are the vectors v_{i}. Suppose that $\operatorname{vol}(C)>2^{n}|\operatorname{det} A|$. Prove that there exist $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, not all zero, such that $x_{1} a_{1}+\cdots x_{n} a_{n} \in C$.

Hint: Consider the set $D=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} a_{1}+\cdots x_{n} a_{n} \in C\right\} \in \mathbb{R}^{n}$. We need to show that D contains a lattice point.

For the remaining exercises you may assume Minkowski's bound. We will prove it in class next week.
(4) Let $\mathfrak{a} \subset \mathcal{O}_{K}$ be an ideal, and let $\mathcal{C} \in C l_{K}$ be a class in the class group (חבורת המחלקות) of K. Prove that there exists an ideal $\mathfrak{b} \subset \mathcal{O}_{K}$ such that $\mathfrak{b} \in \mathcal{C}$ and \mathfrak{b} is coprime (r) to \mathfrak{a}.
(5) Find the class number of $\mathbb{Q}(\sqrt{17})$.
(6) Find the class number of $\mathbb{Q}(\sqrt{14})$.
(7) Let p be a prime number such that $p \equiv 11(\bmod 12)$. Prove that if $p>3^{m}$, then the class group of $K=\mathbb{Q}(\sqrt{-p})$ contains an element of order at least m.

Hint: Let \mathfrak{p} be a prime ideal that divides $3 \mathcal{O}_{K}$. Prove that the corresponding element of $C l_{K}$ has order at least m.
(8) Prove that if K is a number field and $K \neq \mathbb{Q}$, then $\left|d_{K}\right|>1$.

