
Algebraic Number Theory 88-798
Remarks on Question Sheet 2

(1) The third exercise on Question Sheet 2 is the following:
Let C ⊂ Rn be bounded, convex, and symmetric. Let v1, . . . , vn ∈ Rn be linearly

independent vectors, and let A be the n × n matrix whose columns are the vectors vi.
Suppose that vol(C) > 2n|detA|. Prove that there exist x1, . . . , xn ∈ Z, not all zero, such
that x1a1 + · · ·xnan ∈ C.

Hint: Consider the set D = {(x1, . . . , xn) ∈ Rn : x1a1 + · · ·xnan ∈ C} ∈ Rn. We need
to show that D contains a lattice point; a sketch of a proof follows. Show first that D is
bounded, convex, and symmetric, and that vol(D) > 2n.

Let D′ ⊂ D be the subset consisting of points (x1, . . . , xn) such that (2x1, . . . , 2xn) ∈ D.
Then vol(D′) > 1. Let χ : Rn → R be the characteristic function of D′:

χ(x) =

1 : x ∈ D′

0 : x 6∈ D′
.

Now define the function ψ : Rn → R by

ψ(x) =
∑
y∈Zn

χ(x+ y).

If y ∈ Zn is a lattice point, it is clear that ψ(x) = ψ(x+ y), so that ψ induces a function
on Rn/Zn. The function is ψ : Rn/Zn → R is integrable, and∫

Rn/Zn

ψ(x)dx = vol(D′) > 1.

Since vol(Rn/Zn) = 1 and ψ takes integer values, there must be a point x ∈ Rn such
that ψ(x) ≥ 2. Equivalently, there exist two points P1, P2 ∈ D′ such that P1 − P2 ∈ Zn.
Therefore, 2P1, 2P2 ∈ D. By symmetry and convexity of D, it follows that the lattice point
P1 − P2 is contained in D.

(2) Recall that for an ideal a ⊂ OK we defined N(a) to be the cardinality of the quotient ring
OK/a. We claimed that N(ab) = N(a)N(b) and left this as an exercise. Here are some
hints about how to do it. By the decomposition into primes it suffices to prove that if a =
pe1
1 · · · per

r , where the pi are prime ideals and pi 6= pj for i 6= j, then N(a) =
∏r

i=1N(pi)ei .
First show by the Chinese Remainder Theorem that N(a) =

∏r
i=1N(pei

i ). To apply
the Chinese Remainder Theorem, you will need to prove that pe1

1 + pe2
2 = OK for any

distinct prime ideals p1, p2 and any exponents e1, e2. To see that, first obtain an expression
1



2

x1 + x2 = 1 for xi ∈ pi, which clearly exists by maximality of p1 and p2. Then,

(x1 + x2)e1+e2 =
e1+e2∑
j=0

(
e1 + e2
j

)
xj

1x
e1+e2−j
2 = 1,

and it follows that 1 ∈ pe1
1 + pe2

2 .
It remains to show that N(pe) = N(p)e for any prime ideal p. To prove that, it suffices

to show that the index of pe in pe−1 is equal to the index of p in OK . Let x ∈ pe−1 be such
that x 6∈ pe. Then we claim that the map f(y + p) = xy + pe is an isomorphism of abelian
groups

f : OK/p
∼→ pe−1/pe.

Everything except the surjectivity of f is obvious. Consider the ideal I = xOK + pe ⊂ OK .
Then, pe ⊆ I ⊆ pe−1, and it follows by uniqueness of the prime decomposition that either
I = pe or I = pe−1. But I = pe is impossible, since x 6∈ pe. Therefore I = pe−1, which
implies that f is surjective.


