(1) The third exercise on Question Sheet 2 is the following:

Let $C \subset \mathbb{R}^{n}$ be bounded, convex, and symmetric. Let $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$ be linearly independent vectors, and let A be the $n \times n$ matrix whose columns are the vectors v_{i}. Suppose that $\operatorname{vol}(C)>2^{n}|\operatorname{det} A|$. Prove that there exist $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, not all zero, such that $x_{1} a_{1}+\cdots x_{n} a_{n} \in C$.

Hint: Consider the set $D=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1} a_{1}+\cdots x_{n} a_{n} \in C\right\} \in \mathbb{R}^{n}$. We need to show that D contains a lattice point; a sketch of a proof follows. Show first that D is bounded, convex, and symmetric, and that $\operatorname{vol}(D)>2^{n}$.

Let $D^{\prime} \subset D$ be the subset consisting of points $\left(x_{1}, \ldots, x_{n}\right)$ such that $\left(2 x_{1}, \ldots, 2 x_{n}\right) \in D$. Then $\operatorname{vol}\left(D^{\prime}\right)>1$. Let $\chi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the characteristic function of $D^{\prime}:$

$$
\chi(x)=\left\{\begin{array}{ll}
1 & : x \in D^{\prime} \\
0 & : x \notin D^{\prime}
\end{array} .\right.
$$

Now define the function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\psi(x)=\sum_{y \in \mathbb{Z}^{n}} \chi(x+y) .
$$

If $y \in \mathbb{Z}^{n}$ is a lattice point, it is clear that $\psi(x)=\psi(x+y)$, so that ψ induces a function on $\mathbb{R}^{n} / \mathbb{Z}^{n}$. The function is $\psi: \mathbb{R}^{n} / \mathbb{Z}^{n} \rightarrow \mathbb{R}$ is integrable, and

$$
\int_{\mathbb{R}^{n} / \mathbb{Z}^{n}} \psi(x) d x=\operatorname{vol}\left(D^{\prime}\right)>1
$$

Since $\operatorname{vol}\left(\mathbb{R}^{n} / \mathbb{Z}^{n}\right)=1$ and ψ takes integer values, there must be a point $x \in R^{n}$ such that $\psi(x) \geq 2$. Equivalently, there exist two points $P_{1}, P_{2} \in D^{\prime}$ such that $P_{1}-P_{2} \in \mathbb{Z}^{n}$. Therefore, $2 P_{1}, 2 P_{2} \in D$. By symmetry and convexity of D, it follows that the lattice point $P_{1}-P_{2}$ is contained in D.
(2) Recall that for an ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ we defined $N(\mathfrak{a})$ to be the cardinality of the quotient ring $\mathcal{O}_{K} / \mathfrak{a}$. We claimed that $N(\mathfrak{a b})=N(\mathfrak{a}) N(\mathfrak{b})$ and left this as an exercise. Here are some hints about how to do it. By the decomposition into primes it suffices to prove that if $\mathfrak{a}=$ $\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}$, where the \mathfrak{p}_{i} are prime ideals and $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ for $i \neq j$, then $N(\mathfrak{a})=\prod_{i=1}^{r} N\left(\mathfrak{p}_{i}\right)^{e_{i}}$.

First show by the Chinese Remainder Theorem that $N(\mathfrak{a})=\prod_{i=1}^{r} N\left(\mathfrak{p}_{i}^{e_{i}}\right)$. To apply the Chinese Remainder Theorem, you will need to prove that $\mathfrak{p}_{1}^{e_{1}}+\mathfrak{p}_{2}^{e_{2}}=\mathcal{O}_{K}$ for any distinct prime ideals $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ and any exponents e_{1}, e_{2}. To see that, first obtain an expression
$x_{1}+x_{2}=1$ for $x_{i} \in \mathfrak{p}_{i}$, which clearly exists by maximality of \mathfrak{p}_{1} and \mathfrak{p}_{2}. Then,

$$
\left(x_{1}+x_{2}\right)^{e_{1}+e_{2}}=\sum_{j=0}^{e_{1}+e_{2}}\binom{e_{1}+e_{2}}{j} x_{1}^{j} x_{2}^{e_{1}+e_{2}-j}=1
$$

and it follows that $1 \in \mathfrak{p}_{1}^{e_{1}}+\mathfrak{p}_{2}^{e_{2}}$.
It remains to show that $N\left(\mathfrak{p}^{e}\right)=N(\mathfrak{p})^{e}$ for any prime ideal \mathfrak{p}. To prove that, it suffices to show that the index of \mathfrak{p}^{e} in \mathfrak{p}^{e-1} is equal to the index of \mathfrak{p} in \mathcal{O}_{K}. Let $x \in \mathfrak{p}^{e-1}$ be such that $x \notin \mathfrak{p}^{e}$. Then we claim that the map $f(y+\mathfrak{p})=x y+\mathfrak{p}^{e}$ is an isomorphism of abelian groups

$$
f: \mathcal{O}_{K} / \mathfrak{p} \xrightarrow{\sim} \mathfrak{p}^{e-1} / \mathfrak{p}^{e} .
$$

Everything except the surjectivity of f is obvious. Consider the ideal $I=x \mathcal{O}_{K}+\mathfrak{p}^{e} \subset \mathcal{O}_{K}$. Then, $\mathfrak{p}^{e} \subseteq I \subseteq \mathfrak{p}^{e-1}$, and it follows by uniqueness of the prime decomposition that either $I=\mathfrak{p}^{e}$ or $I=\mathfrak{p}^{e-1}$. But $I=\mathfrak{p}^{e}$ is impossible, since $x \notin \mathfrak{p}^{e}$. Therefore $I=\mathfrak{p}^{e-1}$, which implies that f is surjective.

