Algebraic Number Theory 88-798
Question Sheet 4
Due Jan. 13, 2009
Please feel free to e-mail me at mschein@math.biu.ac.il with any questions.
(1) Let $d \in \mathbb{Z}$ be a square-free integer, and let $p \in \mathbb{Z}$ be a prime number such that $p \nmid 2 d$. Show that p splits completely (מתפרק לגמרי) in $\mathbb{Q}(\sqrt{d})$ if the equation $x^{2} \equiv d \bmod p$ has a solution and that p is inert otherwise.
(2) Let L / K be a Galois extension with non-cyclic Galois group $\operatorname{Gal}(L / K)$. Prove that no prime ideal of \mathcal{O}_{K} is inert in L.
(3) Let L / K be an extension of number fields, and let N / K be its normal closure. In other words, $N \supset L \supset K$ is the smallest extension such that N / K is Galois. Show by means of the following steps that a prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ splits completely in L if and only if it splits completely in N.
(a) Show that if \mathfrak{p} splits completely in N, then it splits completely in L.
(b) Let G be a group and let $U, V \subset G$ be two subgroups. If $g, h \in G$, we say that $g \sim h$ if there exist $u \in U$ and $v \in V$ such that $h=u g v$. Then \sim is an equivalence relation, and the equivalence classes $U g H$ are called double cosets. The set of double cosets is written $U \backslash G / V$. (Note that if U is trivial, then the double cosets are just the usual left cosets of V.)
Set $G=\operatorname{Gal}(N / K)$ and $H=\operatorname{Gal}(N / L) \subset G$. Choose a prime ideal \mathcal{P}_{N} of N dividing \mathfrak{p}, and let $G_{\mathcal{P}_{N}} \subset G$ be its decomposition subgroup (תת-חבורת פירוק). Let $A_{\mathfrak{p}}$ be the set of prime ideals of \mathcal{O}_{L} dividing \mathfrak{p}. Show that the following map is a bijection:

$$
\begin{aligned}
H \backslash G / G_{\mathcal{P}_{N}} & \rightarrow A_{\mathfrak{p}} \\
\sigma(\in G) & \mapsto \sigma\left(\mathcal{P}_{N}\right) \cap \mathcal{O}_{L}
\end{aligned}
$$

(c) Suppose now that \mathfrak{p} splits completely in L. For any $\sigma \in G$, show that $H \sigma G_{\mathcal{P}_{N}}=H \sigma$. Conclude that $\sigma G_{\mathcal{P}_{N}} \subseteq H \sigma$ for all $\sigma \in G$.
(d) Let $\tilde{H}=\bigcap_{\sigma \in G} \sigma^{-1} H \sigma$. Show that $G_{\mathcal{P}_{N}} \subset \tilde{H}$ and that $\tilde{H} \subset H$ is a normal subgroup. Conclude that either $\tilde{H}=H$ or \tilde{H} is trivial, and in both cases show that \mathfrak{p} splits completely in N.
(4) Let $p \in \mathbb{Z}$ be an odd prime number such that $p \equiv 2 \bmod 3$. If $L=\mathbb{Q}(\sqrt[3]{2})$, prove that $p \mathcal{O}_{L}=\mathcal{P}_{1} \mathcal{P}_{2}$, where $f\left(\mathcal{P}_{1} \mid p\right)=1$ and $f\left(\mathcal{P}_{2} \mid p\right)=2$.

Hint: Use the previous exercises. You may also use the following facts without proof:
(a) If m is a cube-free integer, then $\mathbb{Q}(\sqrt[3]{m})$ has discriminant $-27 m^{2}$.
(b) Let n be an integer, and let ζ_{n} be a primitive n-th root of unity $\left(\left(\zeta_{n}\right)^{n}=1\right.$ and $\left(\zeta_{n}\right)^{m} \neq 1$ for $\left.1 \leq m<n\right)$. An odd prime number p splits completely in $\mathbb{Q}\left(\zeta_{n}\right)$ if and only if $p \equiv 1 \bmod n$.

