Algebraic Number Theory 88-798 Question Sheet 5

Please feel free to e-mail me at mschein@math.biu.ac.il with any questions.

- (1) Let K be a number field and $\mathfrak{p} \subset \mathcal{O}_K$ a prime ideal. Recall that we defined an absolute value $|\cdot|_{\mathfrak{p}} : K \to \mathbb{R}_{\geq 0}$ associated to \mathfrak{p} . We can complete K with respect to this absolute value to obtain a field $K_{\mathfrak{p}}$, in the same way as we constructed \mathbb{Q}_p . Let L/K be an extension of number fields, and let \mathcal{P} be a prime of L that divides \mathfrak{p} . Show that there is a natural embedding of fields $K_{\mathfrak{p}} \subset L_{\mathcal{P}}$.
- (2) Let p be an odd prime and let $u \in \mathbb{Z}_p^*$ be an element that is not the square of any element of \mathbb{Z}_p . Let K/\mathbb{Q}_p be a quadratic extension. Show that K is equal to one of $\mathbb{Q}_p(\sqrt{u})$, $\mathbb{Q}_p(\sqrt{p})$, or $\mathbb{Q}_p(\sqrt{up})$.

Note: This is another example of the behavior of \mathbb{Q}_p being very different from that of \mathbb{Q} . Recall that the fields $\mathbb{Q}(\sqrt{d})$ are all non-isomorphic for distinct square-free integers d, so \mathbb{Q} has infinitely many non-isomorphic quadratic extensions.

- (3) Let K be field with a non-Archimedean valuation $|\cdot|$. Let $x, y \in K$ such that $|x| \neq |y|$. Show that $|x + y| = \max\{|x|, |y|\}$.
- (4) For every $\lambda \in \mathbb{F}_p$, let $[\lambda] \in \mathbb{Z}_p$ be the canonical representative of the class $\lambda \in \mathbb{Z}_p/p\mathbb{Z}_p \simeq \mathbb{F}_p$ that was defined in class.
 - (a) Recall the isomorphism $\mathbb{Z}_p \simeq \varprojlim \mathbb{Z}/p^n \mathbb{Z}$. What element on the right-hand side corresponds to $[\lambda]$?
 - (b) Prove that $[\lambda_0] + p[\lambda_1] + 1 \equiv [\lambda_0 + 1] + p[\lambda_1 + \frac{\lambda_0^p + 1 (\lambda_0 + 1)^p}{p}] \mod p^2$, for all $\lambda_0, \lambda_1 \in \mathbb{F}_p$.