Algebraic Number Theory (88-798)

5773 Semester A
Question Sheet 2
א' בכסלו תשע"ג , Due 15/11/2011
(1) Let A be a Dedekind domain. Let $I, J \subset A$ be ideals. We say that $J \mid I$ if there exists an ideal $J^{\prime} \subset A$ such that $J J^{\prime}=I$. Prove that $J \mid I$ if and only if $I \subseteq J$.
(2) Let A be a Dedekind domain. Prove that A is a PID if and only if it is a UFD.
(3) Let K be a number field with $n=[K: \mathbb{Q}]$, and let p be a prime number. Prove that there are at most n prime ideals $P \subset \mathcal{O}_{K}$ such that $p \mathcal{O}_{K} \subseteq P$.
(4) Let D be a square-free integer, and let $K=\mathbb{Q}(\sqrt{D})$. Prove that

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{D}] & : D \equiv 2,3 \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & : D \equiv 1 \bmod 4\end{cases}
$$

Find the discriminant of K.
(5) Prove that every UFD is integrally closed.
(6) Let K be a number field with $n=[K: \mathbb{Q}]$, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be an integral basis for \mathcal{O}_{K}. Let $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ be the collection of embeddings $K \hookrightarrow \overline{\mathbb{Q}}$. Let $M \in M_{n}(\overline{\mathbb{Q}})$ be the matrix given by $M_{i j}=\sigma_{i}\left(x_{j}\right)$, and recall from the first lecture that $d_{K}=d\left(x_{1}, \ldots, x_{n}\right)=$ $(\operatorname{det}(M))^{2}$. Recall the definition of $\operatorname{det}(M)$ from your linear algebra course; it is a sum of $n!$ terms, each of which is a product of matrix entries times ± 1. Let P be the sum of terms with sign +1 and N be the sum of terms with sign -1 , so that $\operatorname{det}(M)=P-N$. Prove that $P+N$ and $P N$ are fixed by each $\sigma_{i} \in \Sigma$ and conclude that $P+N, P N \in \mathbb{Q}$.
(7) With notation as in the previous exercise, show that $P+N, P N \in \mathbb{Z}$. Conclude that either $d_{K} \equiv 0 \bmod 4$ or $d_{K} \equiv 1 \bmod 4$. This statement is called Stickelberger's discriminant relation.

