Algebraic Number Theory (88-798) 5773 Semester A Question Sheet 2 Due 15/11/2011, א' בכסלו תשע"ג

- (1) Let A be a Dedekind domain. Let $I, J \subset A$ be ideals. We say that J|I if there exists an ideal $J' \subset A$ such that JJ' = I. Prove that J|I if and only if $I \subseteq J$.
- (2) Let A be a Dedekind domain. Prove that A is a PID if and only if it is a UFD.
- (3) Let K be a number field with $n = [K : \mathbb{Q}]$, and let p be a prime number. Prove that there are at most n prime ideals $P \subset \mathcal{O}_K$ such that $p\mathcal{O}_K \subseteq P$.
- (4) Let D be a square-free integer, and let $K = \mathbb{Q}(\sqrt{D})$. Prove that

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{D}] & : D \equiv 2,3 \mod 4\\ \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right] & : D \equiv 1 \mod 4. \end{cases}$$

Find the discriminant of K.

- (5) Prove that every UFD is integrally closed.
- (6) Let K be a number field with n = [K : Q], and let {x₁,...,x_n} be an integral basis for O_K. Let Σ = {σ₁,...,σ_n} be the collection of embeddings K → Q. Let M ∈ M_n(Q) be the matrix given by M_{ij} = σ_i(x_j), and recall from the first lecture that d_K = d(x₁,...,x_n) = (det(M))². Recall the definition of det(M) from your linear algebra course; it is a sum of n! terms, each of which is a product of matrix entries times ±1. Let P be the sum of terms with sign +1 and N be the sum of terms with sign -1, so that det(M) = P N. Prove that P + N and PN are fixed by each σ_i ∈ Σ and conclude that P + N, PN ∈ Q.
- (7) With notation as in the previous exercise, show that $P + N, PN \in \mathbb{Z}$. Conclude that either $d_K \equiv 0 \mod 4$ or $d_K \equiv 1 \mod 4$. This statement is called Stickelberger's discriminant relation.