Algebraic Number Theory (88-798)
 5773 Semester A
 Question Sheet 3

ח' בכסלו תשע"ג , 3
(1) Let $r, s \geq 0$ be integers such that $r+2 s=n$. Let $t \in \mathbb{R}$, and let $X_{t} \subset \mathbb{R}^{n}$ be the set $X_{t}=\left\{\left(x_{1}, \ldots, x_{r}, y_{1}, z_{1}, \ldots, y_{s}, z_{s}\right):\left|x_{1}\right|+\cdots+\left|x_{r}\right|+2 \sqrt{y_{1}^{2}+z_{1}^{2}}+\cdots+2 \sqrt{y_{s}^{2}+z_{s}^{2}}<t\right\}$.

Prove that X_{t} is bounded, convex (קמור), and symmetric. Recall that the volume of X_{t} is $\operatorname{vol}\left(X_{t}\right)=\int_{X_{t}} 1 \cdot d x_{1} \cdots d z_{s}$. Prove that

$$
\operatorname{vol}\left(X_{t}\right)=\frac{2^{r-s} \pi^{s} t^{n}}{n!}
$$

Hint: Change to polar coordinates and use induction on r.
(2) Let K be a number field. If $y \in \mathcal{O}_{K}$, prove that $N\left(y \mathcal{O}_{K}\right)=\left|N_{K / \mathbb{Q}}(y)\right|$.
(3) Let $I \subset \mathcal{O}_{K}$ be a non-zero ideal, and let $\mathcal{C} \in \mathrm{Cl}_{K}$ be any class in the class group. Prove that there exists an ideal $J \subset \mathcal{O}_{K}$ such that $J \in \mathcal{C}$ and J is co-prime (i.e. has no common prime factors) with I.

For the remaining exercises, you may assume Minkowski's determinant bound, which we will finish proving in class next week: If K is a number field such that $[K: \mathbb{Q}]=n$ and such that among the n distinct embeddings $K \hookrightarrow \mathbb{C}$ there are r_{1} real embeddings and r_{2} pairs of conjugate complex embeddings (in particular, $n=r_{1}+2 r_{2}$), then every class in Cl_{K} contains an integral ideal $I \subset \mathcal{O}_{K}$ such that

$$
N(I) \leq\left(\frac{4}{\pi}\right)^{r_{2}} \frac{n!}{n^{n}} \sqrt{\left|d_{K}\right|} .
$$

(4) Let K be a number field. Prove that if $\left|d_{K}\right| \leq 1$, then $K=\mathbb{Q}$.
(5) Prove that the rings of integers of the fields $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2}), \mathbb{Q}(\sqrt{-3})$, and $\mathbb{Q}(\sqrt{-7})$ are all PID's.
(6) Find the class number of the field $\mathbb{Q}(\sqrt{6})$.
(7) Prove that if $K=\mathbb{Q}(\sqrt{-5})$, then $h_{K}=2$.
(8) Prove that there are no integers x, y such that $x^{2}+5=y^{3}$.

Hint: Suppose that such $x, y \in \mathbb{Z}$ do exist. Prove that they must be relatively prime, that x is even, and that y is odd. Consider the ideals $I, J \subset \mathbb{Z}[\sqrt{-5}]$ given by $I=(x+\sqrt{-5})$ and $J=(x-\sqrt{-5})$. Note that $I J=(y)^{3}$. Prove that I and J must be relatively prime. It follows that $I=\left(I^{\prime}\right)^{3}$ for some ideal $I^{\prime} \subset \mathcal{O}_{K}$. Now use the result of the previous exercise to deduce a contradiction.

