

Algebraic Number Theory (88-798)

5773 Semester A

Question Sheet 6

Due 20/12/2012, ג' בטבת תשע"ג

(1) The following exercises involve the same set-up as in the lecture: A is a Dedekind domain, $K = \text{Frac}(A)$, L/K is a finite separable extension, and B is the integral closure of A in L . Let $\theta \in B$ be such that $L = K(\theta)$. Let $B' = A[\theta] \subset B$, and recall that the conductor \mathcal{F}_θ is the largest ideal of B contained in B' .

Let $\mathfrak{p} \subset A$ be a prime ideal, as in class set $k = A/\mathfrak{p}$, and let $g(X) \in A[X]$ be the minimal polynomial of θ . Prove that evaluation at θ induces an isomorphism $B' \simeq A[X]/(g(X))$ and hence that $B'/\mathfrak{p}B' \simeq k[X]/(\bar{g}(X))$, where $\bar{g}(X) \in k[X]$ is the reduction of $g(X)$ modulo \mathfrak{p} .

(2) What are the prime ideals of the ring $k[X]/(\bar{g}(X))$? Prove that if $\bar{g}(X)$ is a separable polynomial, then the intersection of the non-zero prime ideals is trivial.

(3) Use the isomorphism $B'/\mathfrak{p}B' \simeq B/\mathfrak{p}B$ that was proved in class to study the prime ideals of $B/\mathfrak{p}B$. Finally, prove the following theorem: Assume that $\mathfrak{p}B$ has no common prime factors with \mathcal{F}_θ . If $\bar{g}(X) = (\bar{g}_1(X))^{e_1} \cdots (\bar{g}_r(X))^{e_r}$ is the decomposition of $\bar{g}(X) \in k[X]$ into irreducible factors, and if $g_i(X) \in A[X]$ is a lift of $\bar{g}_i(X)$, where without loss of generality the g_i and \bar{g}_i may be taken to be monic, then $\mathfrak{p}B = P_1^{e_1} \cdots P_r^{e_r}$, where $P_i = \mathfrak{p}B + g_i(\theta)B$.

(4) Prove moreover that $f_i = \dim_k B/P_i$ is equal to the degree of $\bar{g}_i(X)$.

(5) Let L and L' be finite Galois extensions of \mathbb{Q} and suppose that $\gcd(d_L, d_{L'}) = 1$. Let LL' be the compositum. Prove that $[LL' : \mathbb{Q}] = [L : \mathbb{Q}][L' : \mathbb{Q}]$.

Hint: Prove that $L \cap L' = \mathbb{Q}$.