Algebraic Number Theory (88-798) 5773 Semester A Question Sheet 7 Due 27/12/2012, י"ד בטבת תשע"ג

- (1) Let A be an integral domain, let $K = \operatorname{Frac}(K)$, and let L and L' be two Galois extensions of K such that $L \cap L' = K$. Suppose that [L:K] = n and [L':K] = m. If $\operatorname{Gal}(LL'/L') = \{\sigma_1, \ldots, \sigma_n\}$ and $\operatorname{Gal}(LL'/L) = \{\tau_1, \ldots, \tau_m\}$, then prove that $\operatorname{Gal}(LL'/K) = \{\sigma_i \tau_j | 1 \le i \le n, 1 \le j \le m\}$.
- (2) Let B and B' be the integral closures of A in L and L', respectively. Suppose that

$$B = Ax_1 + Ax_2 + \dots + Ax_n$$
$$B' = Ay_1 + Ay_2 + \dots + Ay_m$$

and that $d(x_1, \ldots, x_n) = d$ and $d(y_1, \ldots, y_m) = d'$. Suppose that d and d' (which are elements of A) are relatively prime, in the sense that dA + d'A = A. The aim of this exercise and the next one is to prove that $\{x_iy_j | 1 \le i \le n, 1 \le j \le m\}$ is an integral basis of LL'.

Let \mathcal{O} be the integral closure of A in LL'. Let $a \in \mathcal{O}$. Show that we may write $a = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} x_i y_j$, with $a_{ij} \in K$. We need to prove that all the a_{ij} actually lie in A. For every j, define $b_j = \sum_{i=1}^{n} a_{ij} x_i$. Prove that $d'b_j \in B$ and hence that $d'a_{ij} \in A$ for each pair i, j.

Hint: Use the same idea that we used to prove that $d(z_1, \ldots, z_n)B \subset Az_1 + \cdots + Az_n$ for any basis $\{z_1, \ldots, z_n\}$ of L as a K-vector space.

- (3) Prove also that $da_{ij} \in A$ for each pair (i, j) and conclude that $a_{ij} \in A$.
- (4) Prove that $d(x_1y_1, ..., x_ny_m) = d^m(d')^n$.
- (5) Let L/K be a Galois extension of number fields, and suppose that Gal(L/K) is not cyclic. Prove that there are only finitely many prime ideals of K that are non-split in L. (Recall that a prime ideal of K is called non-split in L if only one prime ideal of L lies above it.)
- (6) Let L/K be an extension of number fields, and let N/K be its normal closure. In other words, $N \supset L \supset K$ is the smallest extension such that N/K is Galois. The aim of this and the next three exercises is to show that a prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ splits completely in L if and only if it splits completely in N. Show that if \mathfrak{p} splits completely in N, then it splits completely in L.
- (7) Let G be a group and let $U, V \subset G$ be two subgroups. If $g, h \in G$, we say that $g \sim h$ if there exist $u \in U$ and $v \in V$ such that h = ugv. Then \sim is an equivalence relation, and the equivalence classes UgH are called double cosets. The set of double cosets is written $U \setminus G/V$. (Note that if U is trivial, then the double cosets are just the usual left cosets of V.)

Set $G = \operatorname{Gal}(N/K)$ and $H = \operatorname{Gal}(N/L) \subset G$. Choose a prime ideal \mathcal{P}_N of N dividing \mathfrak{p} , and let $G_{\mathcal{P}_N} \subset G$ be its decomposition subgroup. Let $A_{\mathfrak{p}}$ be the set of prime ideals of \mathcal{O}_L dividing \mathfrak{p} . Show that the following map is a bijection:

$$\begin{array}{rcl} H \backslash G/G_{\mathcal{P}_N} & \to & A_{\mathfrak{p}} \\ \\ \sigma(\in G) & \mapsto & \sigma(\mathcal{P}_N) \cap \mathcal{O}_L \end{array}$$

- (8) Suppose now that \mathfrak{p} splits completely in L. For any $\sigma \in G$, show that $H\sigma G_{\mathcal{P}_N} = H\sigma$. Conclude that $\sigma G_{\mathcal{P}_N} \subseteq H\sigma$ for all $\sigma \in G$.
- (9) Let $\tilde{H} = \bigcap_{\sigma \in G} \sigma^{-1} H \sigma$. Show that $G_{\mathcal{P}_N} \subset \tilde{H}$ and that $\tilde{H} \subset H$ is a normal subgroup. Conclude that either $\tilde{H} = H$ or \tilde{H} is trivial, and in both cases show that \mathfrak{p} splits completely in N.
- (10) Let $p \in \mathbb{Z}$ be an odd prime number such that $p \equiv 2 \mod 3$. If $L = \mathbb{Q}(\sqrt[3]{2})$, prove that $p\mathcal{O}_L = \mathcal{P}_1\mathcal{P}_2$, where $f(\mathcal{P}_1|p) = 1$ and $f(\mathcal{P}_2|p) = 2$.

Hint: Use the previous exercises. You may also use the following facts without proof:

- (a) If m is a cube-free integer, then $\mathbb{Q}(\sqrt[3]{m})$ has discriminant $-27m^2$.
- (b) Let *n* be an integer, and let ζ_n be a primitive *n*-th root of unity $((\zeta_n)^n = 1$ and $(\zeta_n)^m \neq 1$ for $1 \leq m < n$). An odd prime number *p* splits completely in $\mathbb{Q}(\zeta_n)$ if and only if $p \equiv 1 \mod n$.