

Algebraic Number Theory (88-798)

5773 Semester A

Question Sheet 7

Due 27/12/2012, ג"ע בטבת תשע"ד

- (1) Let A be an integral domain, let $K = \text{Frac}(A)$, and let L and L' be two Galois extensions of K such that $L \cap L' = K$. Suppose that $[L : K] = n$ and $[L' : K] = m$. If $\text{Gal}(LL'/L') = \{\sigma_1, \dots, \sigma_n\}$ and $\text{Gal}(LL'/L) = \{\tau_1, \dots, \tau_m\}$, then prove that $\text{Gal}(LL'/K) = \{\sigma_i \tau_j \mid 1 \leq i \leq n, 1 \leq j \leq m\}$.
- (2) Let B and B' be the integral closures of A in L and L' , respectively. Suppose that

$$\begin{aligned} B &= Ax_1 + Ax_2 + \cdots + Ax_n \\ B' &= Ay_1 + Ay_2 + \cdots + Ay_m \end{aligned}$$

and that $d(x_1, \dots, x_n) = d$ and $d(y_1, \dots, y_m) = d'$. Suppose that d and d' (which are elements of A) are relatively prime, in the sense that $dA + d'A = A$. The aim of this exercise and the next one is to prove that $\{x_i y_j \mid 1 \leq i \leq n, 1 \leq j \leq m\}$ is an integral basis of LL' .

Let \mathcal{O} be the integral closure of A in LL' . Let $a \in \mathcal{O}$. Show that we may write $a = \sum_{i=1}^n \sum_{j=1}^m a_{ij} x_i y_j$, with $a_{ij} \in K$. We need to prove that all the a_{ij} actually lie in A . For every j , define $b_j = \sum_{i=1}^n a_{ij} x_i$. Prove that $d'b_j \in B$ and hence that $d'a_{ij} \in A$ for each pair i, j .

Hint: Use the same idea that we used to prove that $d(z_1, \dots, z_n)B \subset Az_1 + \cdots + Az_n$ for any basis $\{z_1, \dots, z_n\}$ of L as a K -vector space.

- (3) Prove also that $da_{ij} \in A$ for each pair (i, j) and conclude that $a_{ij} \in A$.
- (4) Prove that $d(x_1 y_1, \dots, x_n y_m) = d^m (d')^n$.
- (5) Let L/K be a Galois extension of number fields, and suppose that $\text{Gal}(L/K)$ is not cyclic. Prove that there are only finitely many prime ideals of K that are non-split in L . (Recall that a prime ideal of K is called non-split in L if only one prime ideal of L lies above it.)
- (6) Let L/K be an extension of number fields, and let N/K be its normal closure. In other words, $N \supset L \supset K$ is the smallest extension such that N/K is Galois. The aim of this and the next three exercises is to show that a prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ splits completely in L if and only if it splits completely in N . Show that if \mathfrak{p} splits completely in N , then it splits completely in L .
- (7) Let G be a group and let $U, V \subset G$ be two subgroups. If $g, h \in G$, we say that $g \sim h$ if there exist $u \in U$ and $v \in V$ such that $h = ugv$. Then \sim is an equivalence relation, and the equivalence classes UgH are called double cosets. The set of double cosets is written $U \backslash G / V$. (Note that if U is trivial, then the double cosets are just the usual left cosets of V .)

Set $G = \text{Gal}(N/K)$ and $H = \text{Gal}(N/L) \subset G$. Choose a prime ideal \mathcal{P}_N of N dividing \mathfrak{p} , and let $G_{\mathcal{P}_N} \subset G$ be its decomposition subgroup. Let $A_{\mathfrak{p}}$ be the set of prime ideals of \mathcal{O}_L dividing \mathfrak{p} . Show that the following map is a bijection:

$$\begin{aligned} H \backslash G / G_{\mathcal{P}_N} &\rightarrow A_{\mathfrak{p}} \\ \sigma (\in G) &\mapsto \sigma(\mathcal{P}_N) \cap \mathcal{O}_L \end{aligned}$$

- (8) Suppose now that \mathfrak{p} splits completely in L . For any $\sigma \in G$, show that $H\sigma G_{\mathcal{P}_N} = H\sigma$. Conclude that $\sigma G_{\mathcal{P}_N} \subseteq H\sigma$ for all $\sigma \in G$.
- (9) Let $\tilde{H} = \bigcap_{\sigma \in G} \sigma^{-1} H \sigma$. Show that $G_{\mathcal{P}_N} \subset \tilde{H}$ and that $\tilde{H} \subset H$ is a normal subgroup. Conclude that either $\tilde{H} = H$ or \tilde{H} is trivial, and in both cases show that \mathfrak{p} splits completely in N .
- (10) Let $p \in \mathbb{Z}$ be an odd prime number such that $p \equiv 2 \pmod{3}$. If $L = \mathbb{Q}(\sqrt[3]{2})$, prove that $p\mathcal{O}_L = \mathcal{P}_1\mathcal{P}_2$, where $f(\mathcal{P}_1|p) = 1$ and $f(\mathcal{P}_2|p) = 2$.

Hint: Use the previous exercises. You may also use the following facts without proof:

- (a) If m is a cube-free integer, then $\mathbb{Q}(\sqrt[3]{m})$ has discriminant $-27m^2$.
- (b) Let n be an integer, and let ζ_n be a primitive n -th root of unity ($(\zeta_n)^n = 1$ and $(\zeta_n)^m \neq 1$ for $1 \leq m < n$). An odd prime number p splits completely in $\mathbb{Q}(\zeta_n)$ if and only if $p \equiv 1 \pmod{n}$.