Algebraic Number Theory (88-798)
 5773 Semester A
 Question Sheet 8
 Due 3/1/2013, כ"א בטבת תשע"ג

(1) Let $n>2$. Prove that the cyclotomic field $\mathbb{Q}\left(\zeta_{n}\right)$ contains at least one quadratic subfield, i.e. that there exists a field $K \subset \mathbb{Q}\left(\zeta_{n}\right)$ such that $[K: \mathbb{Q}]=2$.
(2) Let p be an odd prime. Determine the discriminant $d_{\mathbb{Q}\left(\zeta_{p}\right)}$ (in class we only determined it up to sign). Let q be such that $q= \pm p$ and $q \equiv 1 \bmod 4$. Show that $K=\mathbb{Q}(\sqrt{q})$ is the unique quadratic field contained in $\mathbb{Q}\left(\zeta_{p}\right)$.

Hint: Keep track of the sign in the calculation of the discriminant that we did in class. Observe that it is the square of something.
(3) Let G be a finite abelian group. Show that there exists a Galois extension L / \mathbb{Q} such that $\operatorname{Gal}(L / \mathbb{Q}) \simeq G$.
(4) Let K be a field with a valuation. A sequence $\left(a_{n}\right)$ of elements $a_{n} \in K$ is called a Cauchy sequence if for all $\varepsilon \in \mathbb{R}_{>0}$ there exists N such that for all $m, n>N$ the inequality $\left|a_{m}-a_{n}\right|<\varepsilon$ holds. A sequence $\left(a_{n}\right)$ is called a null-sequence if for all $\varepsilon>0$ there exists N such that $\left|a_{n}\right|<\epsilon$ for all $n>N$ (in other words, it satisfies the usual condition for convergence to the limit zero).

Consider the ring R_{K} of all Cauchy sequences, with component-wise addition and multiplication. Prove that the set $N_{K} \subset R_{K}$ of null-sequences is a maximal ideal.
(The field $\hat{K}=R_{K} / N_{K}$ is called the completion of K with respect to the valuation $|\cdot|$.)
(5) Let K be a field with a non-Archimedean valuation. Let $\left(a_{n}\right)$ be a sequence of elements of K. Prove that the series $\sum_{n=0}^{\infty} a_{n}$ converges (i.e. its sequence of partial sums is Cauchy) if and only if $\left(a_{n}\right)$ is a null-sequence.
(6) Let K be a field with a valuation $|\cdot|$. Prove that this valuation can be extended to the completion \hat{K} by defining $|x|=\lim _{n \rightarrow \infty}\left|a_{n}\right|$, where $\left(a_{n}\right) \in R_{K}$ is a sequence representing $x \in \hat{K}$.
(7) Show that K is dense in the completion \hat{K} and that \hat{K} is indeed complete, i.e. for every Cauchy sequence $\left(a_{n}\right)$ of elements of \hat{K} there exists $\ell \in \hat{K}$ which is the limit of the sequence in the usual sense: for every $\varepsilon>0$ there exists N such that $\left|a_{n}-\ell\right|<\varepsilon$ for all $n>N$.

