Algebraic Number Theory (88-798)
 5773 Semester A
 Question Sheet 9

ו' בשבט תשע"ג , Due 17/1/2013
(1) Let $\pi_{n}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n-1} \mathbb{Z}$ be the natural projection (reduction modulo p^{n-1}. Let $R=$ $\varliminf_{亡} \mathbb{Z} / p^{n} \mathbb{Z}$ be the ring of sequences $\left(c_{1}, c_{2}, \ldots\right)$ such that $c_{n} \in \mathbb{Z} / p^{n} \mathbb{Z}$ and $\pi_{n}\left(c_{n}\right)=c_{n-1}$, where addition and multiplication are defined term by term.

Prove that R is a local ring with maximal ideal $p R$, and prove that $R / p^{n} R \simeq \mathbb{Z} / p^{n} \mathbb{Z}$ for all $n \geq 1$.
(2) Recall that $\mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}: v_{p}(x) \geq 0\right\}$. Prove that R and \mathbb{Z}_{p} are isomorphic as rings.
(3) Define the topology on R by giving it the weakest topology such that all the natural maps

$$
\begin{aligned}
R & \rightarrow \mathbb{Z} / p^{n} \mathbb{Z} \\
\left(c_{1}, c_{2}, \ldots\right) & \mapsto c_{n}
\end{aligned}
$$

are continuous. Find an isomorphism of rings between R and \mathbb{Z}_{p} that is also a homeomorphism (where \mathbb{Z}_{p} carries the metric topology that it inherited from \mathbb{Q}_{p}).
(4) Let K be a field that is complete with respect to the non-Archimedean valuation $|\cdot|$, and let $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0} \in K[x]$ be an irreducible polynomial with $a_{n} \neq 0$. Prove that $\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n-1}\right|,\left|a_{n}\right|\right\}=\max \left\{\left|a_{0}\right|,\left|a_{n}\right|\right\}$. In particular, show that any monic irreducible $f(x) \in K[x]$ with $a_{0} \in \mathcal{O}$ is automatically contained in $\mathcal{O}[x]$.

Hint: Hensel's lemma.
(5) Let K be a field with respect to the valuation $|\cdot|$. Let V be an n-dimensional K-vector space. Recall that a norm on V is a function $|\cdot|: V \rightarrow \mathbb{R}_{\geq 0}$ such that for all $v, w \in V$ and $a \in K$ we have
(a) $|v|=0$ if and only if $v=0$.
(b) $|v+w| \leq|v|+|w|$.
(c) $|a v|=|a||v|$.

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V, and define

$$
\left\|a_{1} v_{1}+\cdots+a_{n} v_{n}\right\|=\max \left\{\left|a_{1}\right|, \ldots,\left|a_{n}\right|\right\} .
$$

Prove that $\|\cdot\|$ is a norm on V.
(6) Now suppose that K is complete with respect to its valuation. Let $|\cdot|$ be an arbitrary norm on V. Choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V and define a norm $\|\cdot\|$ as above. The aim of the next exercises is to show that $|\cdot|$ and $\|\cdot\|$ are equivalent, in the sense that they define the same metric topology on V. For this is suffices to show that there exist constants $\rho, \rho^{\prime}>0$ such that $\rho||x|| \leq|x| \leq \rho^{\prime}| | x| |$ for all $x \in V$.

Show that $\rho^{\prime}=\left|v_{1}\right|+\cdots+\left|v_{n}\right|$ works.
(7) To prove the existence of ρ, use induction on n. First prove the claim for $n=1$. Now, for each $i=1,2, \ldots, n$, let $V_{i} \subset V$ be the span of $\left\{v_{1}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right\}$. By induction, prove that each V_{i} is complete with respect to the norm $|\cdot|$. Deduce that $\bigcup_{i=1}^{n}\left(V_{i}+v_{i}\right)$ is closed in the $|\cdot|$-topology. Prove that there exists $\rho>0$ such that $\rho \leq\left|v_{i}+w_{i}\right|$ for all i and all $w_{i} \in V_{i}$.

Now, let $x=a_{1} v_{1}+\cdots+a_{n} v_{n} \in V-\{0\}$ and suppose $\|x\|=\left|a_{k}\right|$. Prove that $\rho \leq\left|a_{k}^{-1} x\right|$ and conclude the desired claim.
(8) Let K be a number field, let p be a prime number, and suppose that $p \mathcal{O}_{K}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}}$. Let $\mathcal{O}_{P_{i}}$ be the valuation ring of $K_{P_{i}}$, the completion of K with respect to the P_{i}-valuation. Let M_{i} be the maximal ideal of $\mathcal{O}_{P_{i}}$. Show that $p \mathcal{O}_{P_{i}}=M_{i}^{e_{i}}$.
(9) If K is a valued field, let k_{K} be the residue field \mathcal{O} / M, where \mathcal{O} is the valuation ring of K and M is its maximal ideal. In particular, $k_{\mathbb{Q}_{p}}=\mathbb{F}_{p}$. A finite extension F / \mathbb{Q}_{p} is called unramified if $\left[k_{F}: \mathbb{F}_{p}\right]=\left[F: \mathbb{Q}_{p}\right]$. Prove that any unramified extension F / \mathbb{Q}_{p} of degree n is isomorphic to $\mathbb{Q}_{p}(\zeta)$, where ζ is a primitive $\left(p^{n}-1\right)$-th root of unity.

