Algebraic Number Theory (88-798) 5773 Semester A Question Sheet 9 Due 17/1/2013, ו' בשבט תשע"ג

(1) Let $\pi_n : \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n-1}\mathbb{Z}$ be the natural projection (reduction modulo p^{n-1} . Let $R = \lim_{n \to \infty} \mathbb{Z}/p^n\mathbb{Z}$ be the ring of sequences $(c_1, c_2, ...)$ such that $c_n \in \mathbb{Z}/p^n\mathbb{Z}$ and $\pi_n(c_n) = c_{n-1}$, where addition and multiplication are defined term by term.

Prove that R is a local ring with maximal ideal pR, and prove that $R/p^n R \simeq \mathbb{Z}/p^n \mathbb{Z}$ for all $n \ge 1$.

- (2) Recall that $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : v_p(x) \ge 0\}$. Prove that R and \mathbb{Z}_p are isomorphic as rings.
- (3) Define the topology on R by giving it the weakest topology such that all the natural maps

$$\begin{array}{rccc} R & \to & \mathbb{Z}/p^n\mathbb{Z} \\ (c_1, c_2, \dots) & \mapsto & c_n \end{array}$$

are continuous. Find an isomorphism of rings between R and \mathbb{Z}_p that is also a homeomorphism (where \mathbb{Z}_p carries the metric topology that it inherited from \mathbb{Q}_p).

- (4) Let K be a field that is complete with respect to the non-Archimedean valuation | · |, and let f(x) = a_nxⁿ + · · · + a₁x + a₀ ∈ K[x] be an irreducible polynomial with a_n ≠ 0. Prove that max{|a₀|, |a₁|, . . . , |a_{n-1}|, |a_n|} = max{|a₀|, |a_n|}. In particular, show that any monic irreducible f(x) ∈ K[x] with a₀ ∈ O is automatically contained in O[x]. *Hint*: Hensel's lemma.
- (5) Let K be a field with respect to the valuation $|\cdot|$. Let V be an n-dimensional K-vector space. Recall that a norm on V is a function $|\cdot|: V \to \mathbb{R}_{\geq 0}$ such that for all $v, w \in V$ and $a \in K$ we have
 - (a) |v| = 0 if and only if v = 0.
 - (b) $|v+w| \le |v| + |w|$.
 - (c) |av| = |a||v|.
 - Let $\{v_1, \ldots, v_n\}$ be a basis of V, and define

$$||a_1v_1 + \dots + a_nv_n|| = \max\{|a_1|, \dots, |a_n|\}.$$

Prove that $|| \cdot ||$ is a norm on V.

(6) Now suppose that K is complete with respect to its valuation. Let $|\cdot|$ be an arbitrary norm on V. Choose a basis $\{v_1, \ldots, v_n\}$ of V and define a norm $||\cdot||$ as above. The aim of the next exercises is to show that $|\cdot|$ and $||\cdot||$ are equivalent, in the sense that they define the same metric topology on V. For this is sufficient to show that there exist constants $\rho, \rho' > 0$ such that $\rho||x|| \le |x| \le \rho'||x||$ for all $x \in V$.

Show that $\rho' = |v_1| + \cdots + |v_n|$ works.

(7) To prove the existence of ρ , use induction on n. First prove the claim for n = 1. Now, for each i = 1, 2, ..., n, let $V_i \subset V$ be the span of $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$. By induction, prove that each V_i is complete with respect to the norm $|\cdot|$. Deduce that $\bigcup_{i=1}^n (V_i + v_i)$ is closed in the $|\cdot|$ -topology. Prove that there exists $\rho > 0$ such that $\rho \leq |v_i + w_i|$ for all i and all $w_i \in V_i$.

Now, let $x = a_1v_1 + \cdots + a_nv_n \in V - \{0\}$ and suppose $||x|| = |a_k|$. Prove that $\rho \leq |a_k^{-1}x|$ and conclude the desired claim.

- (8) Let K be a number field, let p be a prime number, and suppose that $p\mathcal{O}_K = P_1^{e_1} \cdots P_r^{e_r}$. Let \mathcal{O}_{P_i} be the valuation ring of K_{P_i} , the completion of K with respect to the P_i -valuation. Let M_i be the maximal ideal of \mathcal{O}_{P_i} . Show that $p\mathcal{O}_{P_i} = M_i^{e_i}$.
- (9) If K is a valued field, let k_K be the residue field \mathcal{O}/M , where \mathcal{O} is the valuation ring of K and M is its maximal ideal. In particular, $k_{\mathbb{Q}_p} = \mathbb{F}_p$. A finite extension F/\mathbb{Q}_p is called unramified if $[k_F : \mathbb{F}_p] = [F : \mathbb{Q}_p]$. Prove that any unramified extension F/\mathbb{Q}_p of degree n is isomorphic to $\mathbb{Q}_p(\zeta)$, where ζ is a primitive $(p^n 1)$ -th root of unity.