Algebraic Number Theory (88-798) 5777 Semester B Question Sheet 1 כ״ז בניסן תשע״ז 23/4/2017, Due

- (1) Is $\frac{3+2\sqrt{6}}{1-\sqrt{6}}$ ^{1+2√6} an algebraic integer?
- (2) Let L/K be a finite separable extension of fields. If $\alpha \in L$, define $M_\alpha: L \to L$ to be the *K*-linear map given by $M_{\alpha}(y) = \alpha y$ for all $y \in L$. Choose a basis of L as a *K*-vector space, let Mat_{*α*} be the matrix of M_α with respect to this basis, and let $c_\alpha(x) \in K[x]$ be the characteristic polynomial of this matrix. Clearly $c_{\alpha}(x)$ is independent of the choice of basis. We call it the *characteristic polynomial* of *α*.

Recall that the *minimal polynomial* $m_\alpha(x) \in K[x]$ of α is the unique monic polynomial in *K*[*x*] that generates the ideal ${f \in K[x] : f(\alpha) = 0}$.

Suppose that $n = [L : K]$ and $d = [K(\alpha) : K]$. Prove that $c_{\alpha}(x) = (m_{\alpha}(x))^{n/d}$.

Hint: First prove the claim in the case $L = K(\alpha)$. In the general case, let *A* be the matrix of $M_{\alpha}|_{K(\alpha)}$ with respect to some *K*-basis of $K(\alpha)$. Show that one can find a *K*-basis of *L* such that Mat_{α} has the form

$$
\left(\begin{array}{cccc}A&0&\cdots&0\\0&A&\cdots&0\\ \vdots&&\ddots&\\0&0&\cdots&A\end{array}\right).
$$

(3) Maintaining the notation of the previous exercise, let \overline{K} be an algebraic closure of *K*, and recall that Σ is the set of embeddings $\sigma : L \hookrightarrow \overline{K}$ such that $\sigma(y) = y$ for all $y \in K$. Prove that $c_{\alpha}(x) = \prod_{\sigma \in \Sigma} (x - \sigma(\alpha)).$

Hint: As in the previous exercise, first consider the case $L = K(\alpha)$ and then the general case.

- (4) Prove that $N_{L/K}(\alpha)$ and $\text{Tr}_{L/K}(\alpha)$ are, respectively, the determinant and trace of the matrix Mat*α*. In particular, they both lie in *K*.
- (5) Let *A* be a PID, *K* the fraction field of *A*, and let L/K be a finite extension. If $\alpha \in L$, let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α . Prove that the following two statements are equivalent.
	- (a) $\alpha \in L$ is integral over A.
	- (b) $m_\alpha(x) \in A[x]$.

Hint: Prove that if $f \in A[x]$ and $g, h \in K[x]$ are monic polynomials such that $f = gh$, then $g, h \in A[x]$.

- (6) Prove directly (not using general theorems) that $\mathbb Z$ is integrally closed.
- (7) Let $R \subset S \subset T$ be rings. Show that the following are equivalent:
- (a) *T* is integral over *R*. (Recall this means that *t* is integral over *R* for all $t \in T$.)
- (b) *S* in integral over *R* and *T* is integral over *S*.
- (8) Let *A ⊂ L* be an extension of rings, where *L* is a field. Let *B* be the integral closure of *A* in *L*. Prove that *B* is integrally closed.
- (9) Let K/\mathbb{Q} be a number field. Let $\{x_1, \ldots, x_n\}$ be a \mathbb{Q} -basis of K such that $\mathcal{O}_K = \mathbb{Z}x_1 +$ \cdots + $\mathbb{Z}x_n$. Define the discriminant of *K* to be $d_K = d(x_1, \ldots, x_n)$. Prove that this notion is well-defined, i.e. that it is independent of the choice of basis.
- (10) Let $K = \mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$. Every element $\alpha \in K$ can be written uniquely as $\alpha = b_0 + b_1 \theta +$ $b_2\theta^2 + b_3\theta^3$, where $\theta = \sqrt[4]{\frac{4}{\pi}}$ 2 and $b_i \in \mathbb{Q}$. Find $\text{Tr}_{K/\mathbb{Q}}(\alpha)$.
- (11) Prove that $\sqrt{3} \notin \mathbb{Q}(\sqrt[4]{2})$.

Hint: Assume that $\sqrt{3}$ can be written in the form above and compute the traces of $\sqrt{3}$ and *θ √* 3. The Eisenstein criterion may be useful.