Algebraic Number Theory (88-798) 5777 Semester B Question Sheet 4 $Due 5/6/2017$, יא בסיון תשע״ז

- (1) Find all the pairs $(x, y) \in \mathbb{Z}^2$ such that $5x^2 = y^4 + 5y^2$.
- (2) Let *L* and *L'* be finite Galois extensions of Q and suppose that $gcd(d_L, d_{L'}) = 1$. Let LL' be the compositum. Prove that $[LL':\mathbb{Q}]=[L:\mathbb{Q}][L':\mathbb{Q}].$ *Hint:* Prove that $L \cap L' = \mathbb{Q}$.
- (3) Let $n = \ell^a$ be a power of the prime number ℓ , and let ζ_n denote a primitive *n*-th root of unity. Consider the extension $\mathbb{Q}(\zeta_n)/\mathbb{Q}$. Show that $\{1,\zeta_n,\zeta_n^2,\ldots,\zeta_n^{\varphi(n)-1}\}$ is a \mathbb{Q} -basis of $\mathbb{Q}(\zeta_n)$. Prove that $d(1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{\varphi(n)-1}) = \pm \ell^{\ell^{a-1}(a\ell-a-1)}$.

Hint: Let $\Phi_n(X) \in \mathbb{Z}[X]$ be the minimal polynomial of ζ_n . Consider the element $\Phi'_n(\zeta_n)$. item Let A be an integral domain, let $K = \text{Frac}(K)$, and let L and L' be two Galois extensions of *K* such that $L \cap L' = K$. Suppose that $[L : K] = n$ and $[L' : K] = n$ $K] = m$. If $Gal(LL'/L') = {\sigma_1, \ldots, \sigma_n}$ and $Gal(LL'/L) = {\tau_1, \ldots, \tau_m}$, then prove that $Gal(LL'/K) = {\sigma_i \tau_j | 1 \leq i \leq n, 1 \leq j \leq m}.$

(4) Let *B* and *B′* be the integral closures of *A* in *L* and *L ′* , respectively. Suppose that

$$
B = Ax_1 + Ax_2 + \cdots Ax_n
$$

$$
B' = Ay_1 + Ay_2 + \cdots + Ay_m
$$

and that $d(x_1, \ldots, x_n) = d$ and $d(y_1, \ldots, y_m) = d'$. Suppose that *d* and *d'* (which are elements of *A*) are relatively prime, in the sense that $dA + d'A = A$. The aim of this exercise and the next one is to prove that $\{x_iy_j | 1 \le i \le n, 1 \le j \le m\}$ is an integral basis of *LL′* .

Let $\mathcal O$ be the integral closure of A in LL' . Let $a \in \mathcal O$. Show that we may write $a =$ $\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} x_i y_j$, with $a_{ij} \in K$. We need to prove that all the a_{ij} actually lie in *A*. For every j, define $b_j = \sum_{i=1}^n a_{ij} x_i$. Prove that $d'b_j \in B$ and hence that $d'a_{ij} \in A$ for each pair *i, j*.

Hint: Use the same idea that we used to prove that $d(z_1, \ldots, z_n)B \subset Az_1 + \cdots + Az_n$ for any basis $\{z_1, \ldots, z_n\}$ of *L* as a *K*-vector space.

- (5) Prove also that $da_{ij} \in A$ for each pair (i, j) and conclude that $a_{ij} \in A$.
- (6) Prove that $d(x_1y_1, ..., x_ny_m) = d^m(d')^n$.
- (7) Let L/K be a Galois extension of number fields, and suppose that $Gal(L/K)$ is not cyclic. Prove that there are only finitely many prime ideals of *K* that are non-split in *L*. (Recall that a prime ideal of *K* is called non-split in *L* if only one prime ideal of *L* lies above it.)
- (8) Let *L/K* be an extension of number fields, and let *N/K* be its normal closure. In other words, $N \supset L \supset K$ is the smallest extension such that N/K is Galois. The aim of this

and the next three exercises is to show that a prime ideal $\mathfrak{p} \subset \mathcal{O}_K$ splits completely in *L* if and only if it splits completely in *N*. Show that if $\mathfrak p$ splits completely in *N*, then it splits completely in *L*.

(9) Let *G* be a group and let $U, V \subset G$ be two subgroups. If $g, h \in G$, we say that $g \sim h$ if there exist $u \in U$ and $v \in V$ such that $h = ugv$. Then \sim is an equivalence relation, and the equivalence classes *UgH* are called double cosets. The set of double cosets is written $U\backslash G/V$. (Note that if *U* is trivial, then the double cosets are just the usual left cosets of *V* .)

Set $G = \text{Gal}(N/K)$ and $H = \text{Gal}(N/L) \subset G$. Choose a prime ideal \mathcal{P}_N of N dividing \mathfrak{p} , and let $G_{\mathcal{P}_N} \subset G$ be its decomposition subgroup. Let $A_{\mathfrak{p}}$ be the set of prime ideals of \mathcal{O}_L dividing p. Show that the following map is a bijection:

$$
H \backslash G / G_{\mathcal{P}_N} \rightarrow A_{\mathfrak{p}}
$$

$$
\sigma(\in G) \rightarrow \sigma(\mathcal{P}_N) \cap \mathcal{O}_L
$$

- (10) Suppose now that **p** splits completely in *L*. For any $\sigma \in G$, show that $H\sigma G_{\mathcal{P}_N} = H\sigma$. Conclude that $\sigma G_{\mathcal{P}_N} \subseteq H\sigma$ for all $\sigma \in G$.
- (11) Let $\tilde{H} = \bigcap_{\sigma \in G} \sigma^{-1} H_{\sigma}$. Show that $G_{\mathcal{P}_N} \subset \tilde{H}$ and that $\tilde{H} \subset H$ is a normal subgroup. Conclude that either $\tilde{H} = H$ or \tilde{H} is trivial, and in both cases show that p splits completely in *N*.
- (12) Let $p \in \mathbb{Z}$ be an odd prime number such that $p \equiv 2 \mod 3$. If $L = \mathbb{Q}(\sqrt[3]{2})$, prove that $p\mathcal{O}_L = \mathcal{P}_1 \mathcal{P}_2$, where $f(\mathcal{P}_1|p) = 1$ and $f(\mathcal{P}_2|p) = 2$.
	- *Hint*: Use the previous exercises. You may also use the following facts without proof:
	- (a) If *m* is a cube-free integer, then $\mathbb{Q}(\sqrt[3]{m})$ has discriminant $-27m^2$.
	- (b) Let *n* be an integer, and let ζ_n be a primitive *n*-th root of unity $((\zeta_n)^n = 1$ and $(\zeta_n)^m \neq 1$ for $1 \leq m < n$). An odd prime number *p* splits completely in $\mathbb{Q}(\zeta_n)$ if and only if $p \equiv 1 \mod n$.