Algebraic Number Theory (88-798) 5777 Semester B Question Sheet 5 Due 26/6/2017, ב' בתמוז תשע״ז

- (1) Let K be a field complete with respect to an Archimedean absolute value $|\cdot|$. The aim of this exercise is to prove Ostrowski's theorem that there exists either an isomorphism $\sigma: K \to \mathbb{R}$ or an isomorphism $\sigma: K \to \mathbb{C}$ such that there exists $s \in (0, 1]$ such that for all $a \in K$ we have $|a| = |\sigma(a)|_{\infty}$. Here $|\cdot|_{\infty}$ is the usual absolute value on \mathbb{R} or \mathbb{C} .
 - (a) Prove that char K = 0 and hence that \mathbb{Q} embeds in K.
 - (b) Replacing the absolute value by an equivalent one if necessary, show that \mathbb{R} embeds in K and that $|\cdot|_{|\mathbb{R}} = |\cdot|_{\infty}$.
 - (c) Let $a \in K$ be arbitrary and consider the function $f_a : \mathbb{C} \to \mathbb{R}$ given by $f(z) = |a^2 (z + \overline{z})a + z\overline{z}|$. Show that $m = \min\{f_a(z) : z \in \mathbb{C}\}$ exists and that to obtain Ostrowski's theorem it is enough to prove that m = 0.
 - (d) Prove that there exists $z_0 \in S = \{z \in \mathbb{C} : f_a(z) = m\}$ such that $|z_0|_{\infty}$ is maximal.
 - (e) Assume by way of contradiction that m > 0 and let $0 < \varepsilon < m$. Let $z_1 \in \mathbb{C}$ be a root of the polynomial $g(x) = x^2 (z_0 + \overline{z_0})x + z_0\overline{z_0} + \varepsilon$. Prove that $f_a(z_1) > m$.
 - (f) For any $n \in \mathbb{N}$ consider the polynomial $G_n(x) = (g(x) \varepsilon)^n + (-1)^{n+1}\varepsilon^n$. Show that $G_n(z_1) = 0$ and that $|G_n(a)|^2 \ge f_a(z_1)m^{2n-1}$.
 - (g) Show that $|G_n(a)| \leq m^n + \varepsilon^n$. Conclude that $f_a(z_1) \leq m$. Now finish the proof.
- (2) Let K be a field with a non-Archimedean absolute value $|\cdot|$. Let $a_n \in K$ for all $n \in \mathbb{N}$. Prove that the series $\sum_{n=1}^{\infty} a_n$ converges (i.e. its sequence of partial sums is a Cauchy sequence) if and only if $|a_n| \to 0$. Note that one direction of this statement fails in the Archimedean setting and is one of the most common mistakes made by students in Infi 1.
- (3) Let K be a field with absolute value $|\cdot|$. Prove that this absolute value can be extended to the completion \hat{K} by defining $|x| = \lim_{n \to \infty} |a_n|$, where $(a_n) \in R_K$ is a sequence representing $x \in \hat{K}$.
- (4) Show that K is dense in the completion \hat{K} and that \hat{K} is indeed complete, i.e. for every Cauchy sequence (a_n) of elements of \hat{K} there exists $\ell \in \hat{K}$ which is the limit of the sequence in the usual sense: for every $\varepsilon > 0$ there exists N such that $|a_n \ell| < \varepsilon$ for all n > N.
- (5) Let p be a prime number and let \mathbb{Z}'_p be the ring of formal series $\sum_{n=0}^{\infty} a_n p^n$, where $a_n \in \{0, 1, \ldots, p-1\}$; this is an example you saw in the ring theory course. Given $\sum_{n=0}^{\infty} a_n p^n \in \mathbb{Z}'_p$, prove that the sequence $b_k = a_0 + a_1 p + \cdots + a_k p^k$ is a Cauchy sequence of rational numbers with respect to the absolute value $|\cdot|_p$. Hence the equivalence class of $\{b_k\}$ is an element of \mathbb{Q}_p . Prove that it actually lies in \mathbb{Z}_p and that this construction gives an isomorphism of rings $\mathbb{Z}'_p \simeq \mathbb{Z}_p$.

- (6) Let n > 2. Prove that the cyclotomic field $\mathbb{Q}(\zeta_n)$ contains at least one quadratic subfield, i.e. that there exists a field $K \subset \mathbb{Q}(\zeta_n)$ such that $[K : \mathbb{Q}] = 2$.
- (7) Let G be a finite abelian group. Show that there exists a Galois extension L/\mathbb{Q} such that $\operatorname{Gal}(L/\mathbb{Q}) \simeq G$.