Algebraic Number Theory (88-798) 5777 Semester B Question Sheet 6 י״ח בתמוז תשע״ז 12/7/2017, Due

- (1) Let *K* be a field and let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise non-equivalent absolute values on *K*. Let $a_1, \ldots, a_n \in K$ and let $\varepsilon > 0$. The aim of this exercise is to prove the Strong Approximation Theorem, which asserts that there exists $x \in K$ such that $|x - a_i|_i < \varepsilon$ for all $1 \leq i \leq n$.
	- (a) Prove that there exists $z \in K$ such that $|z|_1 > 1$ while $|z|_i < 1$ for all $2 \le i \le n$. Hint: Induction on *n*, starting from $n = 2$. Suppose, by induction, that we have $z \in K$ that satisfies the required conditions for all the absolute values except $|\cdot|_n$. If $|z|_n = 1$, consider the element $z^m y$ for a sufficiently large power *m* and a suitable element $y \in K$. If $|z|_n > 1$, consider the element $z^m y/(1 + z^m)$ for a sufficiently large power *m* and a suitable $y \in K$.
	- (b) Define $M = \max\{|a_i|_j, 1 \leq i, j \leq n\}$. For each *i* show that there is an element z_i satisfying $|z_i - 1|_i < \varepsilon/Mn$ and $|z_i|_j < \varepsilon/Mn$ for all $j \neq i$.
	- (c) Show that $x = a_1z_1 + \cdots + a_nz_n$ works.
- (2) Let *K* be a field with absolute value *| · |*. Let *V* be an *n*-dimensional *K*-vector space. A norm on *V* is a function $| \cdot | : V \to \mathbb{R}_{\geq 0}$ such that for all $v, w \in V$ and $a \in K$ we have (a) $|v| = 0$ if and only if $v = 0$.
	- (b) $|v + w| \leq |v| + |w|$.
	- (c) $|av| = |a||v|$.

Let $\{v_1, \ldots, v_n\}$ be a basis of *V*, and define

 $||a_1v_1 + \cdots + a_nv_n|| = \max\{|a_1|, \ldots, |a_n|\}.$

Prove that $|| \cdot ||$ is a norm on *V*.

- (3) Now suppose that K is complete with respect to its absolute value. Let $|\cdot|$ be an arbitrary norm on *V*. Choose a basis $\{v_1, \ldots, v_n\}$ of *V* and define a norm $|| \cdot ||$ as above. The aim of this exercise and the next is to show that *| · |* and *|| · ||* are equivalent. Show that it suffices to find constants $\rho, \rho' > 0$ such that $\rho||x|| \leq |x| \leq \rho'||x||$ for all $x \in V$. Show also that $\rho' = |v_1| + \cdots + |v_n|$ works.
- (4) To prove the existence of ρ , use induction on *n*. First prove the claim for $n = 1$. Now, for each $i = 1, 2, \ldots, n$, let $V_i \subset V$ be the span of $\{v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n\}$. By induction, prove that each V_i is complete with respect to the norm $|\cdot|$. Deduce that $\bigcup_{i=1}^n (V_i + v_i)$ is closed in the $|\cdot|$ -topology. Prove that there exists $\rho > 0$ such that $\rho \leq |v_i + w_i|$ for all *i* and all $w_i \in V_i$.

Now, let $x = a_1v_1 + \cdots + a_nv_n \in V - \{0\}$ and suppose $||x|| = |a_k|$. Prove that $\rho \leq |a_k^{-1}x|$ and conclude the desired claim.

- (5) Let *K* be a field, complete with respect to the non-Archimedean absolute value *| · |*. Let *L/K* be an algebraic extension. We proved in class that *| · |* extends uniquely to an absolute value of *L*. Prove that *L* is complete with respect to this absolute value if and only if $[L: K] < \infty$.
- (6) Let *K* be a number field, let *p* be a prime number, and suppose that $pO_K = P_1^{e_1} \cdots P_r^{e_r}$. Let \mathcal{O}_{P_i} be the valuation ring of K_{P_i} , the completion of *K* with respect to the P_i -valuation. Let M_i be the maximal ideal of \mathcal{O}_{P_i} . Show that $p\mathcal{O}_{P_i} = M_i^{e_i}$.
- (7) Let *p* be an odd prime and let $u \in \mathbb{Z}_p^*$ be an element that is not the square of any element of \mathbb{Z}_p . Let K/\mathbb{Q}_p be a quadratic extension. Show that *K* is equal to one of $\mathbb{Q}_p(\sqrt{n}), \mathbb{Q}_p(\sqrt{p}),$ or $\mathbb{Q}_p(\sqrt{up})$.

Note: This is another example of the behavior of \mathbb{Q}_p being very different from that of \mathbb{Q}_p . Recall that the fields $\mathbb{Q}(\sqrt{d})$ are all non-isomorphic for distinct square-free integers d, so \mathbb{Q} has infinitely many non-isomorphic quadratic extensions.

- (8) Let *p* be an odd prime. For every $\lambda \in \mathbb{F}_p$, let $[\lambda] \in \mathbb{Z}_p$ be the $(p-1)$ -th root of unity whose image in \mathbb{F}_p is λ . Recall that we proved in class that $[\lambda]$ exists and is unique.
	- (a) Recall the isomorphism between \mathbb{Z}_p and the ring of formal power series $\sum a_n p^n$. Which power series corresponds to $[\lambda]$?
	- (b) Prove that $[\lambda_0]+p[\lambda_1]+1 \equiv [\lambda_0+1]+p[\lambda_1+\frac{\lambda_0^p+1-(\lambda_0+1)^p}{p}] \mod p^2$, for all $\lambda_0, \lambda_1 \in \mathbb{F}_p$.
- (9) If *K* is a valued field, let k_K be the residue field \mathcal{O}/M , where $\mathcal O$ is the valuation ring of *K* and *M* is its maximal ideal. In particular, $k_{\mathbb{Q}_p} = \mathbb{F}_p$. A finite extension F/\mathbb{Q}_p is called unramified if $[k_F : \mathbb{F}_p] = [F : \mathbb{Q}_p]$. Prove that any unramified extension F/\mathbb{Q}_p of degree *n* is isomorphic to $\mathbb{Q}_p(\zeta)$, where ζ is a primitive (p^n-1) -th root of unity.