Algebraic Number Theory (88-798) 5777 Semester B Question Sheet 6 Due 12/7/2017, י״ח בתמוז תשע״ז

- (1) Let K be a field and let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise non-equivalent absolute values on K. Let $a_1, \ldots, a_n \in K$ and let $\varepsilon > 0$. The aim of this exercise is to prove the Strong Approximation Theorem, which asserts that there exists $x \in K$ such that $|x a_i|_i < \varepsilon$ for all $1 \le i \le n$.
 - (a) Prove that there exists z ∈ K such that |z|1 > 1 while |z|i < 1 for all 2 ≤ i ≤ n. Hint: Induction on n, starting from n = 2. Suppose, by induction, that we have z ∈ K that satisfies the required conditions for all the absolute values except | · |n. If |z|n = 1, consider the element z^my for a sufficiently large power m and a suitable element y ∈ K. If |z|n > 1, consider the element z^my/(1 + z^m) for a sufficiently large power m and a suitable power m and a suitable y ∈ K.
 - (b) Define $M = \max\{|a_i|_j, 1 \le i, j \le n\}$. For each *i* show that there is an element z_i satisfying $|z_i 1|_i < \varepsilon/Mn$ and $|z_i|_j < \varepsilon/Mn$ for all $j \ne i$.
 - (c) Show that $x = a_1 z_1 + \cdots + a_n z_n$ works.
- (2) Let K be a field with absolute value | · |. Let V be an n-dimensional K-vector space. A norm on V is a function | · | : V → ℝ_{≥0} such that for all v, w ∈ V and a ∈ K we have
 (a) |v| = 0 if and only if v = 0.
 - (b) |v| = 0 if and only if (b) $|v+w| \le |v| + |w|$.
 - (a) |a| = |a||a|

(c) |av| = |a||v|.

Let $\{v_1, \ldots, v_n\}$ be a basis of V, and define

 $||a_1v_1 + \dots + a_nv_n|| = \max\{|a_1|, \dots, |a_n|\}.$

Prove that $|| \cdot ||$ is a norm on V.

- (3) Now suppose that K is complete with respect to its absolute value. Let $|\cdot|$ be an arbitrary norm on V. Choose a basis $\{v_1, \ldots, v_n\}$ of V and define a norm $||\cdot||$ as above. The aim of this exercise and the next is to show that $|\cdot|$ and $||\cdot||$ are equivalent. Show that it suffices to find constants $\rho, \rho' > 0$ such that $\rho ||x|| \le |x| \le \rho' ||x||$ for all $x \in V$. Show also that $\rho' = |v_1| + \cdots + |v_n|$ works.
- (4) To prove the existence of ρ , use induction on n. First prove the claim for n = 1. Now, for each i = 1, 2, ..., n, let $V_i \subset V$ be the span of $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$. By induction, prove that each V_i is complete with respect to the norm $|\cdot|$. Deduce that $\bigcup_{i=1}^n (V_i + v_i)$ is closed in the $|\cdot|$ -topology. Prove that there exists $\rho > 0$ such that $\rho \leq |v_i + w_i|$ for all i and all $w_i \in V_i$.

Now, let $x = a_1v_1 + \cdots + a_nv_n \in V - \{0\}$ and suppose $||x|| = |a_k|$. Prove that $\rho \leq |a_k^{-1}x|$ and conclude the desired claim.

- (5) Let K be a field, complete with respect to the non-Archimedean absolute value $|\cdot|$. Let L/K be an algebraic extension. We proved in class that $|\cdot|$ extends uniquely to an absolute value of L. Prove that L is complete with respect to this absolute value if and only if $[L:K] < \infty$.
- (6) Let K be a number field, let p be a prime number, and suppose that $p\mathcal{O}_K = P_1^{e_1} \cdots P_r^{e_r}$. Let \mathcal{O}_{P_i} be the valuation ring of K_{P_i} , the completion of K with respect to the P_i -valuation. Let M_i be the maximal ideal of \mathcal{O}_{P_i} . Show that $p\mathcal{O}_{P_i} = M_i^{e_i}$.
- (7) Let p be an odd prime and let $u \in \mathbb{Z}_p^*$ be an element that is not the square of any element of \mathbb{Z}_p . Let K/\mathbb{Q}_p be a quadratic extension. Show that K is equal to one of $\mathbb{Q}_p(\sqrt{u})$, $\mathbb{Q}_p(\sqrt{p})$, or $\mathbb{Q}_p(\sqrt{up})$.

Note: This is another example of the behavior of \mathbb{Q}_p being very different from that of \mathbb{Q} . Recall that the fields $\mathbb{Q}(\sqrt{d})$ are all non-isomorphic for distinct square-free integers d, so \mathbb{Q} has infinitely many non-isomorphic quadratic extensions.

- (8) Let p be an odd prime. For every $\lambda \in \mathbb{F}_p$, let $[\lambda] \in \mathbb{Z}_p$ be the (p-1)-th root of unity whose image in \mathbb{F}_p is λ . Recall that we proved in class that $[\lambda]$ exists and is unique.
 - (a) Recall the isomorphism between \mathbb{Z}_p and the ring of formal power series $\sum a_n p^n$. Which power series corresponds to $[\lambda]$?
 - (b) Prove that $[\lambda_0] + p[\lambda_1] + 1 \equiv [\lambda_0 + 1] + p[\lambda_1 + \frac{\lambda_0^p + 1 (\lambda_0 + 1)^p}{p}] \mod p^2$, for all $\lambda_0, \lambda_1 \in \mathbb{F}_p$.
- (9) If K is a valued field, let k_K be the residue field \mathcal{O}/\dot{M} , where \mathcal{O} is the valuation ring of K and M is its maximal ideal. In particular, $k_{\mathbb{Q}_p} = \mathbb{F}_p$. A finite extension F/\mathbb{Q}_p is called unramified if $[k_F : \mathbb{F}_p] = [F : \mathbb{Q}_p]$. Prove that any unramified extension F/\mathbb{Q}_p of degree n is isomorphic to $\mathbb{Q}_p(\zeta)$, where ζ is a primitive $(p^n 1)$ -th root of unity.