Algebraic Number Theory (88-798)
 5779 Semester A
 Question Sheet 1

(1) Is $\frac{3+2 \sqrt{6}}{1-\sqrt{6}} \in \mathbb{R}$ an algebraic integer, i.e. is it integral over \mathbb{Z} ?
(2) Let L / K be a finite separable extension of fields. If $\alpha \in L$, define $M_{\alpha}: L \rightarrow L$ to be the K-linear map given by $M_{\alpha}(y)=\alpha y$ for all $y \in L$. Choose a basis of L as a K-vector space, let Mat_{α} be the matrix of M_{α} with respect to this basis, and let $c_{\alpha}(x) \in K[x]$ be the characteristic polynomial of this matrix. Clearly $c_{\alpha}(x)$ is independent of the choice of basis. We call it the characteristic polynomial of α.

Recall that the minimal polynomial $m_{\alpha}(x) \in K[x]$ of α is the unique monic polynomial in $K[x]$ that generates the ideal $\{f \in K[x]: f(\alpha)=0\}$.

Suppose that $n=[L: K]$ and $d=[K(\alpha): K]$. Prove that $c_{\alpha}(x)=\left(m_{\alpha}(x)\right)^{n / d}$.
Hint: First prove the claim in the case $L=K(\alpha)$. In the general case, let A be the matrix of $\left.M_{\alpha}\right|_{K(\alpha)}$ with respect to some K-basis of $K(\alpha)$. Show that one can find a K-basis of L such that Mat_{α} has the form

$$
\left(\begin{array}{cccc}
A & 0 & \cdots & 0 \\
0 & A & \cdots & 0 \\
\vdots & & \ddots & \\
0 & 0 & \cdots & A
\end{array}\right)
$$

(3) Maintaining the notation of the previous exercise, let \bar{K} be an algebraic closure of K, and recall that Σ is the set of embeddings $\sigma: L \hookrightarrow \bar{K}$ such that $\sigma(y)=y$ for all $y \in K$. Prove that $c_{\alpha}(x)=\prod_{\sigma \in \Sigma}(x-\sigma(\alpha))$.

Hint: As in the previous exercise, first consider the case $L=K(\alpha)$ and then the general case.
(4) Prove that $N_{L / K}(\alpha)$ and $\operatorname{Tr}_{L / K}(\alpha)$ are, respectively, the determinant and trace of the matrix Mat_{α}. In particular, they both lie in K.
(5) Let A be an integrally closed integral domain, $K=\operatorname{Frac} A$, and let L / K be an algebraic extension. If $\alpha \in L$, let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K. Prove that the following are equivalent.
(a) α is integral over A.
(b) $m_{\alpha}(x) \in A[x]$.

Hint: Consider the roots of $m_{\alpha}(x)$ over an algebraic closure of L.
(6) Let $R \subset S \subset T$ be rings. Show that the following are equivalent:
(a) T is integral over R. (Recall this means that t is integral over R for all $t \in T$.)
(b) S in integral over R and T is integral over S.
(7) Let $A \subset L$ be an extension of rings, where L is a field. Let B be the integral closure of A in L. Prove that B is integrally closed.
(8) Let K / \mathbb{Q} be a number field. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ be a \mathbb{Q}-basis of K such that $\mathcal{O}_{K}=\mathbb{Z} x_{1}+$ $\cdots+\mathbb{Z} x_{n}$. Define the discriminant of K to be $d_{K}=d\left(x_{1}, \ldots, x_{n}\right)$. Prove that this notion is well-defined, i.e. that it is independent of the choice of basis.
(9) Let $d \notin\{0,1\}$ be a square-free integer, and let $K=\mathbb{Q}(\sqrt{d})$. Prove that

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{d}] & : d \equiv 2,3 \bmod 4 \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & : d \equiv 1 \bmod 4\end{cases}
$$

Find the discriminant of K.
(10) Let $K=\mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$. Every element $\alpha \in K$ can be written uniquely as $\alpha=b_{0}+b_{1} \theta+$ $b_{2} \theta^{2}+b_{3} \theta^{3}$, where $\theta=\sqrt[4]{2}$ and $b_{i} \in \mathbb{Q}$. Find $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)$.
(11) Prove that $\sqrt{3} \notin \mathbb{Q}(\sqrt[4]{2})$.

Hint: Assume that $\sqrt{3}$ can be written in the form above and compute the traces of $\sqrt{3}$ and $\theta \sqrt{3}$. The Eisenstein criterion may be useful.

