Algebraic Number Theory (88-798)
 5779 Semester A
 Question Sheet 2

(1) Let A be a Dedekind domain. Let $I, J \subset A$ be ideals. We say that $J \mid I$ if there exists an ideal $J^{\prime} \subset A$ such that $J J^{\prime}=I$. Prove that $J \mid I$ if and only if $I \subseteq J$.
(2) Let A be a Dedekind domain. Prove that A is a PID (principal ideal domain) if and only if it is a UFD (unique factorization domain).
(3) Let K be a number field with $n=[K: \mathbb{Q}]$, and let p be a prime number. Prove that there are at most n prime ideals $P \subset \mathcal{O}_{K}$ such that $p \mathcal{O}_{K} \subseteq P$.
(4) Let K be a number field and let $x \in \mathcal{O}_{K}$. Prove that $N\left(x \mathcal{O}_{K}\right)=\left|N_{K / \mathbb{Q}}(x)\right|$.
(5) Let $r, s \geq 0$ be integers such that $r+2 s=n$. Let $t \in \mathbb{R}$, and let $X_{t} \subset \mathbb{R}^{n}$ be the set
$X_{t}=\left\{\left(x_{1}, \ldots, x_{r}, y_{1}, z_{1}, \ldots, y_{s}, z_{s}\right):\left|x_{1}\right|+\cdots+\left|x_{r}\right|+2 \sqrt{y_{1}^{2}+z_{1}^{2}}+\cdots+2 \sqrt{y_{s}^{2}+z_{s}^{2}}<t\right\}$.
Prove that X_{t} is bounded, convex, and symmetric. Recall that the volume of X_{t} is $\operatorname{vol}\left(X_{t}\right)=\int_{X_{t}} 1 \cdot d x_{1} \cdots d z_{s}$. Prove that

$$
\operatorname{vol}\left(X_{t}\right)=\frac{2^{r-s} \pi^{s} t^{n}}{n!}
$$

Hint: Change to polar coordinates and use induction on r.
(6) Let $I \subset \mathcal{O}_{K}$ be a non-zero ideal, and let $\mathcal{C} \in \mathrm{Cl}_{K}$ be any class in the class group. Prove that there exists an ideal $J \subset \mathcal{O}_{K}$ such that $J \in \mathcal{C}$ and J is co-prime to I.
(7) Let K be a number field. Prove that if $\left|d_{K}\right| \leq 1$, then $K=\mathbb{Q}$.
(8) Let K be a number field. In this exercise we will give a proof of the finiteness of Cl_{K} that avoids the geometry of numbers.
(a) Let x_{1}, \ldots, x_{n} be an integral basis of K, and let $a=c_{1} x_{1}+\cdots c_{n} a_{n} \in K$. Consider the map

$$
\begin{aligned}
\varphi: \mathbb{Z} & \rightarrow[0,1]^{n} \\
t & \mapsto\left(\left\{t c_{1}\right\}, \ldots,\left\{t c_{n}\right\}\right),
\end{aligned}
$$

where $\{y\}$ denotes the fractional part of $y \in \mathbb{Q}$. Subdivide each edge of the n-cube $[0,1]^{n}$ into L equal segments (for some $L \in \mathbb{N}$ to be chosen judiciously later). Let $\sigma_{1}, \ldots, \sigma_{n}$ be the embeddings $K \hookrightarrow \mathbb{C}$. Using the pigeonhole principle, show that there exists an integer $1 \leq t \leq L^{n}$ and $b \in \mathcal{O}_{K}$ such that

$$
\left|N_{K / \mathbb{Q}}(t a-b)\right| \leq \frac{1}{L^{n}} \sum_{i_{1}=1}^{n} \cdots \sum_{i_{n}=1}^{n} \prod_{j=1}^{n}\left|\sigma_{j}\left(x_{i_{j}}\right)\right| .
$$

(b) Fix some $H_{K}>\sum_{i_{1}=1}^{n} \cdots \sum_{i_{n}=1}^{n} \prod_{j=1}^{n}\left|\sigma_{j}\left(x_{i_{j}}\right)\right|$ and observe that this condition is independent of a. Show that for any $a \in K$ there exists $b \in \mathcal{O}_{K}$ and an integer $1 \leq t \leq H_{K}$
such that $\left|N_{K / \mathbb{Q}}(t a-b)\right|<1$. This statement should be viewed as a basic Diophantine approximation theorem: every $a \in K$ is close to a fraction with bounded denominator.
(c) Let $I \subset \mathcal{O}_{K}$ be a non-zero ideal, and fix $0 \neq y \in I$ such that $\left|N_{K / \mathbb{Q}}(y)\right|$ is minimal. Let $a \in I$ be arbitrary. Using the previous part of the question, show that there exists $w \in \mathcal{O}_{K}$ and an integer t such that $|t| \leq H_{K}$ and $t a=w y$.
(d) Conclude that every class in Cl_{K} contains an (integral) ideal J satisfying $N(J) \leq$ $\left(H_{K}!\right)^{n}$. As we discussed in the lecture, this implies that Cl_{K} is finite.

